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Abstract  
 

A smoothness regularization algorithm  was employed in ArcGIS for parsimoniously 
constructing a forecast, vulnerability  endmember, 5 meter (m), chlorophyll (Chl-a), RapidEye™,  
trailing vegetation, turbid water, capture point, black fly, vector, Similium damnosum s.l., geometric, 
endmember, signature,  stochastic interpolator for implementing onchocerciasis larval control  
strategies (i.e., ‘Slash and Clear’) in two agro-village complexes  in the Goma district in northern 
Uganda. The study sites were geolocated 1 kilometer (km) or less from the river Ayago, and were 
separated by approximately 15km from one another. Interventions were conducted in the Gongcoyo 
and Adibuk villages, while larval control monitoring with no interventions were conducted in the 
Ayago-Nile and Laminlatoo villages. A line transect delineating a plot of 15km × 15km was measured 
onto a 128km x 128km, RapidEyeTM, 5m polygon employing four, differentially corrected, cardinal 
points to calculate the frequency of occurrence of the dominant flora encompassing the oviposition 
capture points at the agro-village, eco-epidemiological, study sites. Canopy plants associated with 
larval breeding attachments at the study sites were Oryza barthii, Pterocarpus santalinoides, 
Andropogon gayanus and Lawsonia inermis. Colored dissolved organic matter (CDOM) absorption 
was deduced at a mean of 440nm for the study sites, which were measured between 0.30 to 2.10m−1. 
Secchi disk transparency ranged from 0.21m to 1.3m. An interpretive, three-band, signature model 
was tuned to select the 5m spectral bands for iterative interpolation of the endmember, Chl-a, canopy 
foliage. The spatial non-randomness in the oviposition, canopy gap pixel reflectance was tabulated in 
ENVI employing visible and near infra-red (NIR), RapidEyeTM waveband data. Canopy leaf, 
eigenvector emittance was measured by the adaxial, sparsely shaded, leaf surfaces specifically where 
light passed through the leaf into the integrating, wavelength, 5m sphere. Linear models were 
constructed between the intervention, agro-village complexes and log-normalized, multivariate, 
satellite data. The residual prediction deviation (RPD) endmember scores were derived based on 
model performance. The coefficient of determination (R2) and the root mean squares error (RMSE) of 
calibration sets, and the RPD were used to evaluate the model forecasts. VNIR calibration obtained 
accounted for at least 65% of the variance in log Chl-a wavelengths employing only VNIR 
spectra.The high RPD of 2.81 obtained suggested that the final model derived was suitable to 
prognosticate  Chl-a, canopy concentrations. The three-band, model forecasts included 675 and 755 
nm (R675 and R755) and reflectance of Red Edge center wavelength at 731nm (R718), with the equation 
RES = (R718-R675)/(R755- R675) where R was λ. A differential equation was generated where F was 
written as a linear combination of the forecast, oviposition, endmember derivatives of y: 

where ai(x) and r(x) were continuous functions in x. The articulated regression, 
proxy, uncoalesced, signature, land use land cover (LULC) explanators accounted for an average of 
83.7% of variation in Chl-a, capture point, canopy, concentration values with a RMSE of less than 
7.14%. The background landscape emittance rendered from the Chl-a, canopy material, sample 
material  was linked to its optical depth (τ) and to the capture point, synthetic, orthogonal surfaces. 

Absorbance rates were quantitated, employing where Φe
t was the radiant flux 

transmitted by the uncoalesced canopy pigment, sample. Φe
i illustrated the radiant flux emitted by the 

sample. An n attenuating species in the discontinuous canopy sample via 

 was synthesized. By developing a tool in ArcGIS based 
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on simultaneous diagonalization of positive definite kernels, minimax rates of convergence were 
achieved for forecasts rendered from an iterative stochastic interpolator which revealed that the 
optimal rate of convergence for the regularized estimator (i.e., fnX) was n—2(1—a)(r+s)/(2(r(s+1)). An 
eigenfunction decompostion algorithm revealed that smoothness, regularized, CDOM-specific, time 
series descriptors could achieve optimal RMSE (< 11.3 %) with quantizable rates of convergence for 
unbiasedly prognosticating seasonal hyperproductive, S. damnosum s.l., Chl-a endmember, 
oviposition, eigenvector ensembles.  New properties in the  model arose due to the orthogonal eigen-
decomposition of the Hilbert space, including projections, over the unit interval of one dimension and  
angles between  functions, particularly between those which were non-zero constant mulitples of each 
other whenst A2 Ʊ and (D[W0

1,2 (Ʊ)] were exposed.Numerical results were formulated to elucidate 
the merits of the the targeted, immature habitat, removal technique (i.e., “Slash and Clear”) based on 
the the Chl-a canopy, capture point, iteratively quantitively interpolated, proxy, endmember, 
vulnerability, signature maps of the intervention villages. In Gonycogo, the mean daily collection 
during the last three days of the 31 day study was 32.66, representing an 89.10% reduction in biting 
density from the mean collection in the baseline collection of 292.4 adults. In contrast, the mean daily 
collection in the paired control village of Ayago/Nile was essentially unchanged from the baseline 
collection during the last three days of the study (352.7 baseline  versus 348.6 at the end of the study). 
Similar results were seen in the other village pair. An 81.21% reduction in biting rate was observed in 
the intervention village (Adbuk), while the biting rate in the control village (Laminlato) at the end of 
the study was 98.11% of that seen in the baseline evaluation. 
 
Keywords; Chlorophyll,  trailing vegetation, ‘Slash and Clear, RapidEye™, S. damnosum 
s.l., canopy, onchocerciasis, ArcGIS. 

_____________________________________________ 
 
Introduction 

Onchocerciasis, or river blindness, is historically one of the most important causes of 
blindness worldwide [1]. The disease is caused by the filarial parasite Onchocerca volvulus. 
Approximately 37 million individuals in Africa alone are believed to be infected with this 
parasite [2]. Several characteristics of onchocerciasis combine to make it a particularly severe 
public health problem. The major pathogenic manifestation of the infection, ocular damage 
leading to blindness, commonly affects individuals beginning in the second decade of life. 
This has the effect of disabling individuals just as they are entering the most productive 
period of their lives. Further, although blindness associated with onchocerciasis has been 
shown to lead to a fourfold increase in mortality [3], the majority of the afflicted individuals 
survive and require long term care by the community. In areas where blinding onchocerciasis 
is hyperendemic, the care of blinded individuals places a severe stress on the community. 
Historically, this has often led to the dissolution of entire communities as a result of the 
infection [4]. Finally, the parasite is transmitted by black flies (Simulium damnosum s.l.) that 
breed in fast running rivers and streams. Thus, transmission of the parasite is most intense in 
the river basins, rendering many such areas uninhabitable [4]. Unfortunately, the river basins 
contain much of the fertile land found in the sub-Saharan African savanna. By preventing the 
agricultural use of the most fertile lands, onchocerciasis has had a significant negative impact 
on the economic growth of many of the poorest countries of Africa.  

 
In the 1980s, ivermectin was first shown to be a potent microfilaricide against O. 

volvulus [5]. Early studies also demonstrated that mass treatment of an afflicted population 
with ivermectin could reduce transmission of the parasite [6, 7]. Based upon the dramatic 
effect of ivermectin on both O. volvulus and its ability to reduce or eliminate the symptoms of 
the infection in afflicted individuals, Merck, the manufacturer of ivermectin, announced that 
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they would provide the drug free of charge for the treatment of onchocerciasis, “as much as 
needed for as long as needed” [8]. As a result of this generous donation, several large 
international programs were begun to either control or eliminate onchocerciasis, employing a 
strategy of mass drug administration (MDA) of ivermectin to the afflicted communities. Most 
notably, these included the African Programme for Onchocerciasis Control (APOC) in Africa 
and the Onchocerciasis Elimination Program of the Americas (OEPA). OEPA, employing a 
strategy of semi-annual distribution of ivermectin with high coverage rates, has succeeded in 
eliminating onchocerciasis in three of the six formerly endemic countries in Latin America 
(Colombia, Ecuador, and Mexico), and has interrupted transmission in all but two foci in the 
region [9]. In Africa, studies conducted in Mali and Senegal [10] and Nigeria [11] have 
suggested that long term annual community directed treatment with ivermectin (CDTI) 
resulted in the elimination of onchocerciasis from some isolated foci in West Africa. These 
successes have resulted in a change in strategic focus from a goal of disease control of 
onchocerciasis to a goal of complete elimination. This goal was enshrined in the London 
Declaration on Neglected Tropical Diseases in 2010, where the international community set a 
goal of eliminating onchocerciasis from Africa by 2020 [12]. 

 
Despite the successes documented in both Africa and in Latin America that 

demonstrate that mass distribution of ivermectin can eliminate onchocerciasis in some 
situations, it is clear that ivermectin alone is not likely to be a panacea. For example, in many 
areas of Africa where vector populations are high, eco-epidemiological, vulnerability, 
forecasting, risk models indicate that ivermectin MDA alone will probably not be sufficient 
to interrupt transmission. This is due to the fact that transmission intensity is driven by the 
amount of exposure to the vector, as measured by the annual biting rate (ABR), or the 
average number of bites from the vector experienced over one year by an individual living in 
the endemic area. Thus, in areas where the vector density is very high, annual MDA alone 
may not be sufficient to interrupt transmission [13].  

 
Vector control, as  a tactic to combat onchocerciasis in Africa, has a long and storied 

history. The use of larvicides to eliminate adult flies and to block transmission of O. volvulus 
was first implemented in Kenya from 1946-1955 [14] using DDT to eliminate populations of 
the local vector Simulium neavei in the six Kenyan foci of onchocerciasis. Elimination of the 
vector was successful in interrupting transmission in Kenya, and follow-up studies conducted 
in 1964 confirmed that the parasite had been eliminated from these foci [15]. The Kenyan 
success of targeting the vector population was used as a model for the first international 
onchocerciasis control program in Africa. The Onchocerciasis Control Programme of West 
Africa, or OCP, was a large-scale, vertically integrated program whose aim was to eliminate 
blinding onchocerciasis as a public health problem throughout eleven countries in West 
Africa, where the disease was a significant public health problem. The OCP began operations 
in 1975, and relied primarily upon a strategy of source reduction, (i.e., aerial spraying of 
Simulium damnosum sensu lato larval breeding sites, the major vector of O. volvulus 
throughout Africa). The OCP was a disease control program and not an elimination program; 
thus, while elimination of the parasite did not occur over the entire area under control by the 
OCP, elimination of severe ocular disease was achieved in its core transmission areas that 
were formerly hyperendemic in Burkina Faso, Ghana and Togo after 14 years of vector 
control [16]. A great deal of public health value was accomplished by this landmark effort 
throughout the region. Skin disease was significantly reduced, more than 200,000 cases of 
blindness were prevented and the size and distribution of the O. volvulus population in the 
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regions was substantially decreased [17]. The OCP successfully completed its operations in 
2002. 

  
More recently, Uganda has demonstrated the power of utilizing a combination of 

vector control and ivermectin MDA. The first evidence for this came from western Uganda, 
where it was found that combining vector control (larviciding small streams supporting 
populations of Simulium neavei) with ivermectin MDA resulted in a rapid decline in 
transmission and in the prevalence of infection in the human population [18]. In 2007, this 
observation was incorporated into the strategic plan of the newly formed Uganda 
Onchocerciasis Elimination Program (UOEP). Since beginning operations in 2007, the UOEP 
has used a strategy that combines the use of vector control (local larviciding of vector 
breeding sites) with semi-annual MDA. This has resulted in the apparent interruption of 
transmission of onchocerciasis in 9 of the 17 foci in Uganda, a finding that has been 
confirmed in the Wadelai, Itwara and Mt. Elgon foci [19-21]. These data support the 
hypothesis that vector control, used in combination with ivermectin MDA, is a powerful 
strategy to eliminate onchocerciasis, an approach that has the potential of bringing the goals 
of the London declaration within reach.  
 

The vector control measures that have been used to assist in onchocerciasis control 
and elimination have traditionally relied upon insecticide treatment of breeding sites to kill 
larvae. This approach is expensive and logistically difficult to accomplish, as it relies upon 
expensive insecticides and trained entomologists to implement. Here, we evaluated a 
different cost-effective approach for the control of the black fly vectors of O. volvulus. Our 
approach utilizes an accurate mathematical model constructed in an ArcGIS 
cyberenvironment employing object-based technology (i.e., ENVI) and  geospectral, 
geosampled eco-georeferenceable, capture point, narrow, African, riverine, tributary, agro-
village, trailing vegetation, Precambrian rock,  S. damnosum s.l., oviposition site, 
uncoalesced, proxy, biosignature, landscape, explanators iteratively interpolated to identify 
hyperproductive, sparsely shaded,unknown, un-geosampled, breeding sites for the black fly 
vectors of this parasite while utilizing local residents to destroy the breeding habitats 
containing larvae at these sites (i.e., “Slash and Clear”). This approach is in keeping with the 
approach of Community Directed Treatment with Ivermectin (CDTI), which is the approach 
currently used to conduct MDA with ivermectin throughout Africa. CDTI relies upon 
volunteer drug administrators, chosen by the communities themselves, to distribute 
ivermectin to targeted villages based on adult catching rates. 

Medical, entomological-related, stochastic, land use land cover (LULC) endmember, 
biosignature, endemic models constructed from moderate resolution [e.g., visible and near  
infra-red (NIR), RapidEyeTM, 5m wavelengths], log-transformed, normalized,  explanators in  
literature has revealed that  unknown, infrequently canopied, seasonal, hyperproductive, 
trailing vegetation, capture point, Precambrian rock, S. damnosum s.l., endemic, turbid water, 
geosampled in oviposition sites in narrow, African, riverine, agro-village tributaries may be 
precisely  prognosticated for mapping geolocations within multitemporal, ArcGIS, vector 
libraries. Simulium larvae is limited to fluvial ecosystem and its ecology have been recorded 
in watercourses which run through quaternary sediments, large pebbles and coarse, sharp, 
sand bed with earth stones or from bedrocks of tertiary volcanic and or Precambrian origin 
[6]. Larvae are attached to sun exposed substrata near the surface of water while some are 
found in completely shaded areas. The breeding sites of Simulium species are well aerated 
clean streams with rocky rapids [7]. 
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An uncoalesced dataset of hyperspectral, seasonal, oviposition, S. damnosum s.l., 
Precambrian rock, trailing vegetation, inhomogeneously canopied, image endmembers may 
be defined as "pure" land use land cover (LULC) attributes extracted under idealized in situ 
or laboratory conditions whenst discontinuous, capture point,  frequency, wavelength, 
reflectance, derivative spectra are acquired employing a portable spectroradiometer[1]. 
Alternatively, discontinuity in a dataset of seasonal, hyperproductive, S. damnosum s.l., 
capture points, sparsely canopied, mixed pixel (“mixel”) endmembers may be discernible 
from imagery employing object-based "classifers [e.g., Spectral Angle Mapper in ENVITM] 
which may be stored in a variety of sources (ASCII spectra, spectral libraries, spectral plots, 
statistics files, ROIs). Geostatistical, algorithmic, endmember, LULC, biosignature, forecast, 
vulnerability models may regress orthogonally eigen-decomposable, moderate resolution, 
geoclassifiable, stochastic, endogeneous descriptors which may identify eco-
georeferenceable, oviposition, seasonal, hyperproductive, S. damnosum s.l., capture points 
based on grid-stratifiable, eigenvalues. Black fly, time series grid-stratifiable, endmember, 
biosignature,  explicative, ecological forecasts values in a raster format optimally derived  
from a limited number of geo-spatiotemporal or geo-spatiotemporal, geosampled  
geoclassifiable, sub-mixel, LULC,  narrow, African, riverine, hyperproductive, capture points 
may be optimally employable to determine unknown un-geosample, values of eco-
geographic, geomorphological, capture point, immature habitat, data points such as elevation, 
rainfall, soil chemical concentrations[1]. 

Unfortunately, signal viewing detection problems may arise when binary hypothesis 
testing explicatively, iterable, trailing vegetation, Precambrian rock, S. damnosum s.l., 
endemic, oviposition, proxy,  geometric, orthogonal, endmember,  moderate resolution, 
LULC biosignatures with unquantitated,  frequency, wavelength,  white  noise. In signal 
processing, white noise is a random signal with a constant power spectral density [2]. The 
term is used in many scientific and technical disciplines, including physics, acoustic 
engineering, telecommunications, statistical forecasting, and many more. White noise refers 
to a statistical model for signals and signal sources, rather than to any specific signal 
[www.esri.com]. 

In an inhomogeneously canopied, hyperproductive, endemic, oviposition, capture 
point, trailing vegetation, Precambrian rock, S. damnosum s.l.,  eco-epidemiologically 
forecastable,  moderate resolution, uncoalesced, mixed pixel ( “mixel”),  unquantitated white 
noise could be a geoclassifiable, oviposition foci, discrete signal whose samples may be  
regarded as a sequence of serially uncorrelated LULC, random variables with zero mean and 
finite variance in a hierachical regression-oriented framework. Two geosampled, moderate 
resolution, geoclassfiable, unmixed, S. damnosum s.l., oviposition,  capture point, LULC, 
explanatorial, regressable,  random variables,  X,Y, are said to be uncorrelated if 
their covariance, E(XY) − E(X)E(Y), is zero[2]. If two  variables are uncorrelated, there is no 
linear relationship between them[24].Uncorrelated, oviposition, S. damnosum s.l., 
endmember, LULC, capture point, probabilistic, random variables may be  optimized 
employing a Pearson correlation coefficient of zero, except in the trivial case when sub-
mixel, immature habitat geosampled variables reveal  zero variance [1]. 

 
Jacob et al. [1] managed to show that if an empirical, optimizable, eco-

epidemiological, dataset of empirical, 
 uncoalesced. geosampled, trailing vegetation, Precambrian rock, seasonal 

hyperproductive, S. damnosum s.l. oviposition, moderate resolution, endmember, random 
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variable is constant : P(X=μ)=1P(X=μ)=1, then the variance in the summary statement is 
zero:E[X2]=∑ki=1piX2i=>E[X2]=∑i=1kpiXi2=> (given X_i is 
constant)=>X2∑ki=1pi=X2=>X2∑i=1kpi=X2E[X]2=(∑ki=1piXi)2=(X∑ki=1pi)2=X2E[X]2
=(∑i=1kpiXi)2=(X∑i=1kpi)2=X2. This is relatively straight forward  to computate in an 
unmixed,  eco-epidemiological,  black  fly, forecast, vulnerability  model predictive equation 
for targeting   geoclassifiable seasonal, hypeproductive, geosampled, moderate resolution, 
geometric endmember dataset  since the variance may be optiamlly computated  employing 
E[X2]−E[X]2.  

 
The question an arbovirologist or onchocerciasis researchist  may want to resolve 

however, is that does a zero variance necessarily imply a constant oviposition, time series, 
random variable in an capture point,  S. damnosum s.l. endmember forecast, vulnerability, 
LULC remotely sensed, eco-epidemiological, entomological model? Jacob et al. [1] managed 
to show that if an empirical dataset of uncoalesced, trailing vegetation, Precambrian rock, 
seasonal hyperprproductive, endmember,  S. damnosum s.l. moderate resolution,  oviposition, 
random variables is constant : P(X=μ)=1P(X=μ)=1 then the variance is zero in the 
geosampled dataset whenst E[X2]=∑ki=1piX2i=>E[X2]=∑i=1kpiXi2=> (given X_i is 
constant)=>X2∑ki=1pi=X2=>X2∑i=1kpi=X2E[X]2=(∑ki=1piXi)2=(X∑ki=1pi)2=X2E[X]2
=(∑i=1kpiXi)2=(X∑i=1kpi)2=X2. This is relatively straight forward  to computate for 
determining seasonal, hyperproductive,  black  fly foci geolocation from  an uncoalesced 
explanatory, capture point, time series, eco-epidemiological forecast, vulnerability, LULC 
model for optimally remotely targeting   geoclassifiable seasonal, geo-spectrotemporal or 
geo-spatiotemporal geosampled, moderate resolution, biosignature endmembers  since the 
variance in the model may be computatable  employing E[X2]−E[X]2.  

 
The question an arbovirologist or onchocerciasis researchist may want to resolve 

however,   in an eco-epidemiological, oviposition, capture point, S. damnosum s.l. 
endmember LULC, remotely sensed, forecast, vulnerability entomological model is that does 
a zero variance necessarily imply a constant random variable? Although the probability a 
geo-spectrotemporal or geo-spatiotemporal, geosampled, grid-stratifiable, moderate 
resolution, black fly model sub-mixel,time series, to take on  a different endmember, LULC 
eco-epidemiological estimator value is 0, no constant random variable process would be 
present in the prognosticated eco-georeferenceable, remotey  targeted oviposition dataset. 
  

There also may be examples where the converse is false in the capture point, 
endmember, biosignature, LULC model. For example, if an arbovirologist or onchocerciasis 
researcher chooses U uniformly in [0,1] whenst constructing the entomological model and 
lets X=2 then  U would be  rational and X would equal 3. In such circumstances the variance 
of X is zero in the model output since the Lebesgue measure of Q is 0 

In measure theory, the Lebesgue measure is the standard way of assigning 
a measure to subsets of n dimensional Euclidean space[44]. For n = 1, 2, or 3, it coincides 
with the standard measure of length, area, or volume. In general, it is also called n-
dimensional volume, n-volume, or simply volume. It is employed throughout  eco-
entomological, vector arthropod-related time series regression LULC , biosignature 
endmember analysis, in particular to define Lebesgue integration. 
  The integral of a non-negative function of a single explanatory geo-spectrotemporal 
or geo-spatiotemporal geosampled, moderate resolution, S. damnosum s.l., oviposition  
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optimizable,   geometric,endmember, LULC, variable can be regarded, in the simplest case, 
as the area between the graph of that function and the x-axis. The Lebesgue integral will 
extends the integral to a larger class of functions [24]. It may also extends the domains on 
which  geoclassifiable,  LULC, S. damnosum functions can be defined. 

It had long been understood that for non-negative functions with a smooth enough 
graph—such as continuous functions on closed bounded intervals—the area under the 
curve could be defined as the integral, and computed using approximation techniques on the 
region by polygons. However, as the need to consider more irregular functions arises—(e.g., 
quantiating the limiting processes of a seasonal, geosampled, S. damnosum s.l.,  eco-
epidemiological, oviposition, moderate resolution, geometric, endmember analysis ) —it 
became clear that more careful approximation techniques are needed to define a suitable 
integral for remotely targeting seasonal hyperproductive, immature habitat, capture points. 
Also, an arbovirologist or onchocerciasis researcher might wish to integrate on spaces more 
general than the real line whenst constructing a robust, prognosticative, sub-mixel, eco-
epidemiological,  oviposition,  trailing vegetation, Precambrian rock, capture point, S. 
damnosum s.l. endemic, LULC moderate resolution, eco-georeferenceable, risk model . The 
Lebesgue integral would provide the right abstractions needed for the model to render 
optimal eco-diagnostic, explicative, field verifiable forecasts ( e.g., seasonal geolocations of 
high density  immature foci). The Lebesgue integral plays an important role in probability 
theory, in the branch of mathematics called real analysis and in many other fields in the 
mathematical sciences. It is also a pivotal part of the axiomatic theory of probability. 

 
Regardless a non-negative, geo-spectrotemporal or geo-spatiotemporal , eco-

epidemiolgical, geosampled, forecast-oriented, seasonal, hypeproductive, S. damnosum s.l. 
eco-georeferenceable,  capture point, moderate resolution, endmember, 
optimizable,prognosticative ovispoition, uncoalesced, biosignature, random variable with a 
zero expected value is almost surely equal to 0. This may be ascertained from the properties 
of the integral in the entomological model .If an arbovirologist or onchocerciasis researcher  
applies this perspective  to the geosampled eco-epidemiological, immature habitat black fly, 
oviposition, optimizable, moderate resolution, LULC  random, ecogeorferenceable, 
explanatory variables employing (X−E(X))2(X−E(X))2, which is non-negative, then 
V(X)=E[(X−E(X))2]=0V(X)=E[(X−E(X))2]=0 would imply that (X−E(X))2=0(X−E(X))2=0  
whenst  X=E(X)X=E(X).In so doing, seasonal hyperproductive foci of  S. damnosum s.l. 
ovispoition sites may be identifiable on moderate resolution, grid-stratified,  satellite data 

   
In general, uncorrelatedness in an eco-epidemiological, eco-georeferenceable, black 

fly, forecast, vulnerability, habitat, biosignature, oviposition model is not the same as 
orthogonality, except in the special case where either X or Y has an expected value of 0. In 
this case, the covariance in the endmember, biosignature LULC, prognosticative model 
would be the expectation of the product, and X and Y would be   uncorrelated if and only if 
E(XY) = 0.If X and Y are independent, with finite second moments, then the grid-stratifiable, 
moderate resolution,  entomological, vector arthropod, parameterizable, uncoalesced,  
immature habitat, capture point, orthogonal, LULC geosampled covariates would be 
uncorrelated. In mathematics, the second moment method is a technique  employable in 
probability theory and analysis to show that a random variable has positive probability of 
being positive[24]. More generally, in a robust black fly, moderate resolution, endmember, 
geo-spectrotemporal or geo-spatiotemporal, eco-epidemiological LULC, model the "moment 
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method" would consist of bounding the probability that a random variable fluctuates far from 
its mean, by using its moments. 

 
    Quantitating first moments in a seasonal, hyperproductive, trailing vegetation, Precambrian 
rock, S. damnosum s.l., oviposition, moderate resolution, capture point, eco-epidemiological 
model may deduce a lower bound based on the probability that a quantitative,  orthogonal, 
random endmember, grid-stratfiable, orthogonal  LULC, prognosticative variable is larger 
than some constant times its expectation. The method would involve comparing the 
second moment of random variables to the square of the first moment. 

 
The 2nd moment of an ecogeoreferenecable, eco-epidemiological, seasonal, trailing 

vegetation, Precambrian rock, S. damnosum s.l. capture point,  hyperproductive, endemic foci 
may be optimally defined as a gemeterical property of an immature black fly habitat based on 
uncoalesced, moderate resolution, wavelength frequency irradiant incanopy, geoclassified, 
endmember LULCs distributed with an arbitrary axis.The second moment of an area is 
typically denoted with either 1 for an axis that lies in the plane of J for an axis perpendicular 
to the plane [24]. For a capture point, eco-epidemiological,black fly, geo-spectrotemporal or 
geo-spatiotemporal, forecast, vulnerability model the 2nd moment may be optimally 
calculable with a multiple integral over the capture point, eco-georeferenceable, oviposition 
geolocation.This integral may have its unit of dimensions when working with the 
International System of Units which is meters to the fourth (m4 ). The  first moment method 
is a simple application of Markov's inequality for integer-valued variables[24]. In probability 
theory, Markov's inequality  may render  an upper bound for the probability that a non-
negative function of a random uncoalesced, endmember, gridded, stratfiied, moderate 
resolution,  LULC , S. damnosum s.l., capture point, ovipsoition,  signature variable which 
may be greater than or equal to some positive constant. 
 

Markov’s inequality: for any nonnegative, geo-spectrotemporal or geo-
spatiotemporal, geosampled, S. damnosum s.l.,  explanatory, random, moderate resolution, 
endmember, LULC  variable X, may be  quantitated employing y t > 0, Pr[X ≥ t] ≤ E[X] t . 
For example, X may take on a geoclassifiable, grid-stratifiable, moderate resolution, 
geosampled,  sub-meter resolution , geoclassifiable, eigendecomposable, endmember LULC 
values x1 < x2 < . . . < xj = t < . . . < xn in an eco-epidemiological, forecast, vulnerability, 
orthogonal, oviposition,  S. damnosum s.l., risk  model. First, however, an arbovirologist or 
onchocerciasis researcher must prove the inequality in the grid-stratifiable, eigenvector, 
biosignature paradigm. By employing E[X] = Xn i=1 xi ∗ Pr[X = xi ] ≥ Xn i=j xi ∗ Pr[X = xi 
] ≥ Xn i=j t ∗ Pr[X = xi ] the equivalence to a more useful form, for s > 0 may tabulated  
whenst s may represent immature Similium, seasonal, larval count, iteratively interpolative, 
eigenvalues.  Then Pr[X ≥ s · E[X] ] ≤ 1 would be rendered in the forecasts for optimally 
targeting seasonal, hypeporductive foci. Alternatively,  let t = sE[X] in the S. damnosum s.l., 
oviposition,eco-epidemioloigical, entomological, parameter estimator, geoclassified, LULC 
dataset.Then by, inventing  a random optimizable, LULC variable and a moderate resolution, 
unbiased estimator distribution such that, Pr[X ≥ 1,whenst E[X] ] , a robust dataset  may be 
generated of eco-georeferenceable, hyperproductive, seasonal black fly foci  geolocations. 

However, not all uncorrelated, geo-spectrotemporal or geo-spatiotemporal  
geosampled, endmember, explanative, S. damnosum s.l., moderate resolution, geoclassifiable, 
LULC ovipositon   variables are independent. For example, if X is a continuous sub-mixel, 
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LULC random variable  uniformly distributed on [−1, 1] and Y = X2 in a seasonal, 
hyperproductive, eco-epidemiological, eigendecomposable, trailing vegetation, Precambrian 
rock, black fly, endmember model  whose covariates were geosampled in narrow African, 
riverine, tributary, agro-village, capture point, then X and Y would be  uncorrelated even 
though X could determine Y . In so doing, a particular seasonal, endmember, LULC, 
immature habitat, capture point   geosampled value of Y may be optimally rendered  by only 
one or two values of X. 

Depending on the context an eco-epidemiological, eco-georeferenecable seasonal, 
hypeproductive, capture point, immature, black fly, unmixed, optimally regresseable 
frequency, wavelength,moderate resolution,  mixel  samples may be independent and have 
the same probability distribution [in other words independently and identically distributed 
(i.i.d) would be a simplest representative of the capture point, white noise]. Eco-
epidemioligical, capture point LULC samples of a white noise signal may be sequential in 
time, or arranged along one or more spatial dimensions [1]. In digital image processing of 
eco-entomological, optimizable, grid-stratifiable, endmember, eigen-decmposable. LULC 
datasets, the mixels of a white noise image are typically arranged in a rectangular, orthgonal 
matrix and are assumed to be independent random variables with uniform probability 
distribution over some interval [3]. 

Most of the studies of inhomogeneous, uncoalesced, LULC, eco-entomological, 
vector arthropod, capture point, reference biosignature, canopy endmember, noise-induced 
phenomena in the literature assume that the noise source is Gaussian because of the 
possibility of obtaining some analytical results when working with Gaussian noises. In 
particular, if each discontinuous, eco-georeferenceable, Precambrian rock, trailing vegetation, 
seasonal, hyperproductive,  uncoalesced,  capture point, endmember, moderate resolution, 
geoclassifiable, S. damnosoum s.l., frequency, wavelength, LULC, capture point, foci sample 
has a normal distribution with zero mean, the signal would contain Gaussian white noise. The 
quantitation of latent endmember, non-Gaussian, propogagtional noises is rare in any geo-
spectrotemporal or geo-spatiotemporal, geosampled, eco-georeferenecable, eco-
epidemiological, capture point,  vector, arthropod-related, eco-entomological, forecast-
oriented, eigen-decomposable, inhomogeneously canopied, geometric, LULC reference  
biosignature, mainly because of the difficulties in handling them in cyberplatforms. 
Experimental sub-mixel, cartographic and geostatistical algorithmic evidence indicates that 
moderate resolution, grid-stratifiable, trailing vegetation, Precambrian rock, capture point, 
seasonal hypeproductive, S. damnosum s.l., oviposition-related phenomena noise sources, can 
be non-Gaussian [3]. "Non-gaussianity" in an  eco-georeferenecable,  seasonal, 
hyperproductive, eco-epidemiological, trailing vegetation, Precambrian rock, S. damnosum 
s.l., geo-spectrotemporally or geo-spatiotemporally geosampled in a  narrow, African,  river, 
tributary agro-village foci does not mean "non-existence of moments", rather it refers to the 
existence of non-symmetry and/or skewness/excess kurtosis in the residual explanatory 
dataset of eigendecomposable forecasts ( e.g., geolocations of seasonal black fly,  eco-
georeferenceable,  hypeproductive, foci based on an iteratively quantitatively interpolated, 
moderate resolution, oviposition, reference LULC, biosignature).  

 
Poissonian, sub-mixel, eco-entomological,  oviposition, S. damnosum s.l., capture 

point, seasonal, immature data counts[4] and sparsely corrupted, geosampled, immature 
habitat, endmember data[5] can induce non-playkurotic distribution[1].The methods for 
image and signal processing are different when different types of non-Gaussian noise are 
considered [www.esri.com].In   probability theory and statistics, the Poisson distribution is 
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a discrete probability distribution that expresses the probability of a given number of events  ( 
e.g., geosampling S. damnosum s.l. capture points) occurring in a fixed interval of time and/or 
space if these events occur with a known average rate and independently of the time since the 
last event [11]. The Poisson distribution can also be used for the number of events in other 
specified intervals such as distance, area or volume. 

 
Analyses of causal, uncoalesced, regressed, moderate reosolution, orthogonal 

synthetic, endmember, LULC quantitated effects  between in-canopied, trailing vegatation, 
Precambrian rock, S. damnosum s.l.,eco-epidemiological, capture point foci or between 
geosampled, categorical or continuous-valued predictor variables  of the immature habitat 
may require uasage of an autoregressive probabilistic paradigm or structural model with 
instaneous quantizable, LULC effects. Estimation of unmixed, Gaussian moderate resolution, 
wavelength frequencies within linear, structural, prognosticative, regression equation 
frameworks may have serious identifiability  problems including non-quantitability of 
spectroradiometeric, propogagtional  heteroskedastic uncertainites. In 
statistics, identifiability is a property which a model must satisfy in order for precise 
inference to be possible.  Hence a robust iteratively stochastic or detremintsic seasonal 
hypeporductive, trailing vegetation, Precambrian rock, S. damnosum s.l. immature habitat, 
capture point, may be identifiable if it is theoretically possible to learn the true LULC  values 
of the model's underlying parameters after obtaining an infinite number of geo-
spectrotemporal or geo-spatiotemrpoal observations from it. A non-Gaussian, endmember, 
LULC model may be optimally employable to differentiate unmixed, moderate resolution, 
wavelength, frequency, irradiance properties emitted from a black fly, hyperproductive, 
seasonal, foci. In so doing, an onchoncerciasis researcher or other experimenter may be able 
to combine non-Gaussian, geoclassifiable, LULC endmember models with other 
autorgressive probabilistic, wavelength, frequency  unmixing models to determine 
geolocations of hyperproduuctive foci in narrow, African, riverine tributaries. In effect this 
combination of model paradigms could be referred to as a structural, endmember, vector, 
autogression model. Such an instanteous, forecast, vulnerability model could render an 
identifiable iteratively qualitatively, eco-epidemiological,uncoalesced, interpolative, 
endmember, LULC bisignature, eco-georeferenecable, eco-epidemiological, forecast (e.g., 
geolocation of an capture point, black fly, seasonal, hyperproductive foci).  The non-Gaussian 
may reveal structural vector autoregression estimates without prior knowledge of network 
structures. An arbrovrirologist or other onchocerciasis experimenter may propose 
computationally efficient geometric, endmember eigen-decomposition algorithmic, 
orthogonal, iterative, biosignature, unmixing methods for estimating the model as well as 
methods to assess the significance of the causal  LULC influences . 
 

 Two classes of algorithms: expectation maximization (EM)-Type algorithms  may 
deal with a weighted Poissonian and an adaptive outlier pursuit for endmember image and 
signal reconstruction for optimally quantitating non-Gaussian, sparsely corrupted, trailing 
vegetation, Precambrian rock,seasonal, hyperproductive,  S. damnosum s.l., eco-
epidemiological, capture points. In statistics, an expectation–maximization (EM) algorithm is 
an iterative method for finding maximum likelihood or maximum a posteriori (MAP) 
estimates of parameters in statistical models, where the model depends on unobserved, 
diagnostic, latent explanators[11]. The EM procedure for quantiating eco-epidemiological, 
uncoalesced, eco-georeferenceable, capture point of geosampled  narrow, African riverine, 
tributary, agro-village, uncoalesced, moderate resolution, endmember, S. damnosum s.l., 
oviposition, wavelength frequencies would  consist of two alternating steps: first, the 
expectation (E) step, which would compute an expectation of the likelihood by including the 
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latent extracted, moderate resolution, sub-mixel,  inhomogeneously canopied, noisy, sub-
mixel, LULC variables as if they were observed; second, the maximization (M) step, would  
compute the Maxiumum Likehood Estimation (MLE) of the oviposition, black fly, eigen-
decomposable, grid-stratfiable, empirical, frequency, wavelength, parameterical orthogonal, 
LULC, paramterizable covariate estimator datasets by maximizing the expected likelihood 
found in the E step. In so doing, a reference  dataset of uncoalesced, wavelength. 
biosignature, ecogeoreferenceable,  imaged, seasonal, hyperproductive,  S. damnosum s.l., 
sub-mixel, LULC, feature attributes estimators  found in the M step may be parsimoniously  
employed for the next E step, and the iteration process may be  repeatable until convergence. 
These eigen-forecasted, unbiased, optimally regressable, grid-stratifiable, eco-
georeferenceable, endmember, LULC, black fly, seasonal, hyperproductive, oviposition, 
immature estimates may then be optimally employable as a respone variable to determine the 
distribution of the explanative, latent, discontinuous, canopy, wavelength, frequency, 
moderate resolution, endmembers in the next E step. The EM algorithm is used to find 
(locally) ML parameters of a statistical model in cases where the equations cannot be solved 
directly [4]. For example, in a time series,  mixture, an eco-epidemiological uncoalesced, 
endmember, optimizable dataset of moderate resolution, imaged, capture point, eco-
georeferenceable, trailing vegetation, Precambrian rock, discontinuously canopied, S. 
damnosum s.l. orthogonally, parameterizable, LULC, biosignature, interrogative, optimizable  
descriptors may be geo-spectrotemporally or geo-spatiotemporally identifiable  more simply 
by assuming that each capture point has a corresponding unobserved point. In so doing, any 
black fly, geosampled, geo-spectrotemporal, latent explanatory, variable may specify the 
precise endmember, LULC, component that each prognosticated, seasonal, hypeproductive 
foci  belongs to. 

Finding a  ML endmember, solution in an orthogonal,  uncoalesced, endmember, 
forecasting, eigen-decomposable, geo-spectrotemporal, geosampled, moderate resolution,  
eigenvector, S. damnosoum s.l., capture point, predictive, oviposition, would require 
seperating the trailing vegetation, Precambrian rock and turbid water  sub-mixel data in an 
unmixing paradigm which may require quantitating the derivatives of the likelihood function 
with respect to all the un-geosampled, uncoalesced, iteratively, quantitatively, interpolative, 
LULC,  oviposition, biosignature. The endmember dataset would require eigen-
decomposable LULC eigenvalues,their parameters and theire latent variables for optimally 
solving the resulting endmember, uncertainty, frequency  equations. In moderate resolution, 
discontinuously canopied, forecasting, vulnerability, vector, medical entomological, grid-
stratifiable, LULC, orthogonal, endmember, signature models with latent heteroskedastic, 
moderate resolution, wavelength, frequency, transmittance variables, this usually is not 
possible. Instead, the result is typically a set of interlocking equations in which the 
endmember LULC solution to the geosampled, S. damnosum s.l., wavelength, frequency,  
orthogonal, parameter estimator dataset  requires synthesization of the inhomogeneously 
canopied, diagnostic, sub-mixel eigenvalues of the regressed,  latent, variables and vice versa, 
but substituting one set of equations into the other  in the endmember vulnerability, forecast 
analyses  would render an unsolvable uncertainty equation. 

 In general there may be multiple maxima, but there is no guarantee that the global 
maximum will be found in a moderate resolution, imaged, trailing vegetation, Precambrian 
rock, S. damnosum s.l. inhomogeneously canopied, seasonal, hypeproductive, eco-
epidemiological, Precambrian rock, African, narrow, riverine tributary, ecosystem, 
oviposition, eco-epidemiological, seasonal, hyperproductive foci. Some quantitative 
endmember likelihoods also have singularities in them, (i.e. nonsensical maxima)[2]. For 
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example, one of the  targeting capture point, moderate resolution, grid-stratifiable, eco-
georeferenceable, LULC, biosignature endmember solutions that may be found by EM for a 
mixture of, discontinuous, trailing vegetation, Precambrian rock, S. damnosum s.l.,moderate 
resolution, immature, eco-epidemiological, forecast, vulnerability, probabilistic, geo-
spectrotemporal geosampled, uncoalesced, model estimators may involve setting one of the  
iteratively interpolative, sub-mixel extracted components to have zero variance and the mean 
parameter for the same habitat component to be equal to one of the capture point, frequency, 
wavelength prognosticators. Unfortunately, EM algorithm has several limitations for 
endmember LULC modeling moderate resolution unmixed capture point, S. damnosum s.l. 
immature habitat data such that as:(i) the number of the endmember discontinuous 
explanative clusters has to be pre-determined; (ii) the initial parameter estimators  of EM 
influences the performance of the algorithm;(iii) it does not work as well for the concave 
clusters[24]. Probabilistically autoregressively quantitating, uncoalesced, explicative, 
residual,time series, discrete signal, geo-spectrotemporal, moderate resolution, eco-
georeferenceable, discontinuously canopied, trailing vegetation, Precambrian rock, S. 
damnosum s.l., oviposition, trailing vegetation, narrow, riverine tributary, white noise in an 
covariance  matrix employing  optimizable, eigen-decomposable, agro-village, proxy, 
endmember, LULC biosignature signature geoclassifiable, variables for  orthogonally 
optimally iteratively, quantiatively,  interpolating discontinuously canopied, capture point, 
samples may  require regarding sequences of serially uncorrelated, diagnostic,endmember 
variables with zero mean and finite variance in an ArcGIS cyberenvironment. 

Depending on the context, a medical entomologist or ochocerciasis experimenter may 
require that an uncoalesced, endmember, LULC geo-spectrotemporal  or geo-spatiotemporal,  
geosampled, dataset of elucidatively optimizable, trailing vegetation, Precambrian rock, S. 
damnosum s.l., seasonal, hyperproductive, capture point,  oviposition, forecast-oriented, 
explanatorial,eco-georeferenceable, ,parameterizable, covariate coefficient, grid-stratifiable, 
regression values be independent and have the same probability distribution. In so doing, the 
i.i.d, moderate resolution, sub-mixel,wavelength, frequency, transmittance, emissivity 
transluscent,diagnostic covariance, LULC regressors would be the  simplest representative of 
the  immature  habitat, forecast, vulnerability, stochastic, iterative, discontinuous canopied, 
endmember,proxy biosignature, quantizable, residual, wavelength, frequency, white noise. In 
probability theory and statistics, a sequence or other collection of random variables is i.i.d. if 
each explanatorial orthogonal random variable has the same probability distribution as the 
others and all are mutually independent [http://mathworld.wolfram.com]. In particular, if 
each, orthogonal, eigen-decomposable, discontinuously canopied, moderate resolution, 
capture point, endmember, trailing vegetation, Precambrian rock,  hyperproductive, seasonal, 
S. damnosum s.l., geo-spectrotemporal, geo-sampled, moderate resolution optimally 
parameterizable, unmixed, capture point, explanatorial, frequency-related, wavelength,  
predictor, covariate, LULC coefficient has a normal distribution with zero mean, the signal 
would be classified as Gaussian white noise.  

An infinite-bandwidth white noise signal is a purely theoretical construction [2]. The 
bandwidth of white noise is limited in practice by the mechanism of non-continuous, 
orthogonal, synthetic, endmember, noise generation, by the transmission medium and by 
finite observation capabilities [3]. A random, moderate resolution, LULC, oviposition, 
endmember, inhomogeneously canopied, discontinuous signal emitted from an eco-
georeferenceable, hyperproductive, seasonal, trailing vegetation, Precambrian rock, S. 
damnosum s.l., capture point, oviposition, LULC site eco-cartographically  mosaciked into a 
geoclassified, LULC, grid-stratifiable, eco-georeferenceable  polygon in an ArcGIS 
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cyberenvironment may be be considered "white noise" if it is observed to have a flat 
spectrum over a range of orthogonally eigen-decomposable, wavelength frequencies. This 
diagnostic, bidirectional, irradiance endmember quantification would be relevant to  
endemic,vulnerability modelling the topographic and bathymetric geomorphological context 
of the discontinuously canopied, S. damnosum s.l. capture point, moderate resolution image. 
White noise draws its name from white light, although light that appears white generally does 
not have a flat spectral power density over the visible band [4].The term white noise may be 
also  employable in non-technical  discontinuous canopied, endmember,  LULC contexts, in 
the metaphoric sense of "random talk without meaningful sub-mixel explanatorial contents 
for example, for   optimally autoregressively quantitating an empirical, operational, eco-
gereferenceable, uncoalesced, siganture   dataset of moderate resolution, trailing vegetation, 
seasonally hyperproductive,narrow, African, agro-village, riverine tributary, trailing 
vegetation, Precambrian rock S. damnosum s.l., eco-epidemiological, capture point, geo-
spectrotemporal, oviposition wavelength frequencies as synthesized from  ArcGIS-derived,  
grid-stratifiable, geo-spatially geoclassifiable, LULC polygons. 

        In digital image processing, in ArcGIS, the mixels of a seasonal, hyperproductive, eco-
epidemiological, capture point,  trailing vegetation, Precambrian rock, S. damnosum s.l., 
oviposition, residual, moderate resolution,  white noise image would be typically arranged in 
a rectangular grid, and assumed to be independent orthogonal, explanatorial, random 
variables with uniform probability distribution over some interval. S. damnosum s.l., digital 
images are prone to a variety of types of endmember noise[1]. Noise is an error which is 
superimposed on top of a true signal (www.esri.com). Noise may be random or systematic in 
an eco-georferenecable, capture point, trailing vegetation, seasonal, hyperproductive,narrow, 
African, agro-village, riverine tributary, S. damnosum s.l., eco-epidemiological, geo-
spectrotemporal, oviposition, capture point, moderate resolution, breeding foci image. Noise 
in these images may be  the result of errors in the image acquisition process that result in 
eigen-decomposable, mixel values that do not reflect the true intensities of the geoclassified, 
trailing vegetation, capture point, endemic, black-fly, LULC, oviposition site on  moderate 
resolution partially shaded,  discontinuous, canopy (“gap” ) backgrounds.  

A Canopy Height Profile (CHP) procedure presented in Harding et al. (2001) for large 
footprint LiDAR data was tested in a closed canopy environment as a way of extracting 
vertical foliage profiles from LiDAR raw-waveform. In this study, an adaptation to small-
footprint signature LULC, moderate resolution data was shown, tested and validated in an 
Australian sparse canopy forest at plot- and site-level. Further, the methodology itself has 
been enhanced by implementing a endmember dataset-adjusted reflectance ratio calculation 
according to Armston et al. (2013) in the processing chain, and tested against a fixed ratio of 
0.5 estimated for the laser wavelength of 1550 nm. As a by-product of the methodology, 
effective leaf area index (LAIe) estimates were derived and compared to hemispherical 
photography values. To assess the influence of LiDAR aggregation area size on the estimates 
in a sparse canopy environment, LiDAR CHPs and LAIes were generated by aggregating 
waveforms to plot- and site-level footprints (plot/site-aggregated) as well as in 5 m grid-
stratified processes. LiDAR profiles were then compared to field biomass profiles generated 
based on field tree measurements. The correlation between field and LiDAR profiles was 
very high, with a mean R2 of 0.75 at plot-level and 0.86 at site-level for 55 plots and the 
corresponding 11 sites. Gridding had almost no impact on the correlation between LiDAR 
and field profiles (only marginally improvement), nor did the dataset-adjusted reflectance 
ratio. However, gridding and the dataset-adjusted reflectance ratio were found to improve the 
correlation between raw-waveform LiDAR and hemispherical photography LAIe estimates, 
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yielding the highest correlations of 0.61 at plot-level and of 0.83 at site-level. This proved the 
validity of the approach and superiority of dataset-adjusted reflectance ratio of Armston et al. 
(2013) over a fixed ratio of 0.5 for LAIe estimation, as well as showed the adequacy of small-
footprint LULC signature, wavelength, frequency  data for LAIe estimation in discontinuous 
canopy forests.A trailing vegetation, moderate resolution, capture point, moderate resolution, 
imaged, S. damnosum s.l., eco-epidemiological, diagnostic, endmember, forecastable, 
vulnerability, uncoalesced, proxy, LULC, inhomogeneously canopied, endmember 
biosignature may be an dependent variable in an  quantitatively, geo-
spectrotemporal,geosampled, stochatistic interpolator  constructed in an ArcGIS 
cyberenvironment.  Employing the gap probability of a discontinuous vegetation canopy, 
such as narrow, African, riverine forest, savanna, or agro-village, tributary shrubland, a 
robust, black fly, oviposition, seasonal, predictive risk moderate resolution, LULC, 
endmember signature model may be  optimally constructable in ArcGIS. If negative 
exponential attenuation of light within individual,  geo-spectrotemporal, geosampled 
immature, eco-georeferenceable, eco-epidemiological, capture point, trailing vegetation, 
Precambrian rock, Similium habitat canopies is assumed, then the  problem of modeling the 
gap probability must be resolved in the remotely retrieved, endmember LULC datasets prior 
to forecasting any orthogonal,  grid-stratifiable, African, riverine tributary geolocations for 
optimally field verifying ( i.e., ground truthing) unknown, hyperproductive, black fly, capture 
points, employing moderate resolution, satellite datasets.  The problem of estimating the 
distribution for quantitating Euclidean distances within various discontiuous canopy “hot 
spots” can be addressed in  geostatistical gridded algorithms (e.g.,  evidential, hierarchical, 
Bayes posterior predicted endmember  probability ) in  SAS/GIS . These geostatistically 
derived orthogonal localities may be where a photon emitted by the source of illumination 
may pass more efficiently that other, black fly, discontinuously canopied, seasonal, 
hyperproductive, capture point, geo-spectrotemporally geoclassifiable. iteratively, 
quantitatively, interpolative, moderate resolution, endmember, LULC, uncoalesced, 
wavelength frequencies .  

 
The diffuse, diagnostic, uncoalesced, discontinuously canopied, hyperproductive, 

immature,capture point, habitat endmember, bi-directional reflection of radiation emitted 
from an eco-georeferenceable, oviposition, seasonal hyperproductie,  trailing vegetation, 
Precambrian rock, narrow ,African, riverine tributary, trailing vegetation, Precambrian rock, 
S. damnosum s.l., eco-epidemiological, geo-spectrotemporal, geosampled, eco-
georeferenceable, moderate resolution,  LULC, eco-epidemiological, capture point, moderate 
resolution, discontinuously canopied. endmember,  proxy, signature, probabilistic, 
wavelength frequency  paridigm may have  a sharp maximum in the backward direction. This 
phenomenon is known as heiligenschein in meteorology, the opposition effect in astronomy, 
and the hot spot effect in aerial photography and optical remote sensing. These three effects 
are caused by the same bio-geophysical mechanisms, and hence are essentially equivalent. If 
an empricial dataset of fractionalized, inhomogeneously canopied seasonal, hyperproductive, 
black fly, capture point, moderate resolution, geoclassified, LULC,oviposition foci 
endmembers of the reflecting/scattering medium cast shadows, then the shadows cannot be 
seen looking along the incident rays since they would be screened by the particles 
themselves. With a change in the view direction a medical entomologist or an onchcerciasis 
experimenter may be able to recognize some geoclassifiable, oviposition, trailing 
discontinuous canopy shadows on moderate resolution, eco-georeferenceable, grid-
stratifiable, sub-mixel, LULC polygons in an ArcGIS cyberenvironment. Generally, the 
prolific, immature habitat, S. damnosum s.l., capture point radiance of the reflecting medium  
should decrease with increasing angle α between the view direction and incident rays 
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transmitted from the foci due to the decreased probability of the illuminative, orthogonal, 
eigen-decomposeable, moderate resolution, LULC eigenvectors.  This phenomenon would be 
easily computable in an eigenfunction decompositiom algorithm in AUTOREG using the 
mean radiance of the geo-spectrotemporal geosampled, uncoalesced, discontinuously, 
canopied endmember, wavelength, frequency, LULC, endmember reflection dataset. 

In  AUTOREG an eigenfunction of a linear operator D defined on some function 
space is any non-zero function f in that space that, when acted upon by D, is only multipliable 
by some scaling factor of an eigenvalue.( www.sas.edu). In linear algebra, an eigenvector or 
characteristic vector of a linear transformation T from a vector space V over a field F into 
itself is a non-zero vector that does not change its direction when that linear transformation is 
applied to it. In other words, if v is a vector in an eco-epidemiological,seasonal, 
hyperproductive,  inhomogeneously canopied,  orthogonal, moderate resolution, LULC, 
endmember eigenvector, trailing vegetation, Precambrian rock, S. damnosum s.l.,capture 
point,  quantitatively, uncoalesed, endmeber, wavelength, LULC biosignature,  iterative,  
stochastic, frequency interpolator  that is not the zero vector, then it is an eigenvalue of a 
linear transformation T, but only maybe if T(v) is a scalar multiple of v in the forecast, 
vulnerability, sub-mixel model. In mathematics, a zero element is one of several 
generalizations of the number zero to other algebraic structures [2].  

 Iteratively, diagnostically optimally interpolating a grid-stratifiable, eco-
epidmeiological, ecogeoreferenceable,  dataset of orthogonally eigen-decomposable, 
discontinuously canopied, trailing vegetation, Precambrian rock, S. damnosum s.l.,capture 
point,  fractionalized orthogonal endmembers rendered from an empirical geo-
spectrotemrpoal, geosampled dataset of hyperproductive, seasonal, eco-georefernceable, 
narrow, African, riverine tributary, trailing vegetation, eco-epidemiological,  capture point, 
proxy LULC biosignature is not difficult if the distribution of individual oviposition canopy 
sizes and shapes on moderate resolution geoclassified polygons  is known and the individual 
immature, habitat canopies are randomly distributed. If the canopies do intersect and/or 
overlap such that discontinuously canopied, foliage, endmember, LULC density remains 
constant within the overlap area, the mixel spectral extraction problem may be more difficult. 
An object-based diagnostic, geo-classification, approximation, unmixing algorithm in object 
based technology ( ENVI) may be employable    for  time series, sub-mixel mapping  
inhomogenous canopy cover of a eco-epidemiological, capture point, seasonal, 
hyperproductive,  trailing vegetation, Precambrian rock, S. damnosum s.l. immature, African, 
narrow, riverine tributary, capture point. 

 
Spectral Angle Mapper (SAM) is a geophysically-based geospectral geoclassification 

algorithm that employs an n-qD angle to match mixels to reference LULC spectra. The 
algorithm may determine the spectral similarity between two derivative, endmember,  trailing 
vegetation, Precambrian rock S. damnosum s.l.,  eco-epidemiological, capture point, LULC 
spectra by calculating the angle between the spectra and treating them as vectors in a space 
with dimensionality equal to the number of bands. This technique, when employed on 
calibrated  immature, black fly capture point, eco-epidemiological, oviposition, 
discontinuously canopied, moderate resolution, fractionalized, endmember, uncoalesced, 
geoclassifiable, immature habitat, bidirectional reflectance, LULC data, may be relatively 
sensitive to illumination and albedo effects. Endmember, orthogonal, geometric, S. 
damnosum s.l., capture point spectra employed by SAM can come from ASCII files or 
spectral libraries, or can be extracted directly from an image as ROI averaged spectra. SAM 
will compare the angle between the inhomogenous canopied endmember, moderate 
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resolution, grid-stratfiable, LULC, spectrum vector and each mixel vector in n-D space of the 
geo-specrotemporal, geosampled, hyperproductive, S. damnosum s.l., capture point.  

In the trailing vegetation, Precambrian rock, eco-georeferenceable, sub-mixel, S. 
damnosum s.l., capture point, eco-epidemiological, endmember LULC model, smaller angles 
would represent closer matches to the immature habitat reference spectrum. Uncoalesced, 
oviposition, geoclassified, LULC mixels further away than the specified maximum angle 
threshold in radians would not be geoclassifiable. SAM classification assumes reflectance  
edata(www.harrisgeospatial.com/Products). However, if  a medical entomologist or 
experimenter employs geo-spectrotemporally uncoalesced, moderate resolution, trailing 
vegetation, discontinuously canopied,  seasonally hyperproductive, S. damnosum s.l. capture 
point, immature habitat,  moderate resolution, LULC irradiance, wavelength, frequencies the 
error  would not be significant because the origin would still be near zero. Spectral 
Information Divergence (SID) is a spectral classification method that uses a divergence 
measure to match mixels to reference spectra. The smaller the divergence, the more likely the 
mixels are similar. Biosignature, landscape, capture point, S. damnosum s.l., grid-stratifiable, 
orthogonal mixels with a measurement greater than the specified maximum divergence 
threshold would not be geoclassifiable. Endmember spectra used by SID can come from 
ASCII files or spectral libraries, or can be extractable directly from an image as ROI average 
spectra. (https://www.harrisgeospatial.com/docs/spectralinformationdivergence.html) 

 A comparison of modeled gap probabilities with observed, moderate resolution, 
geoclassifiable,  LULC quantizable, discontinuous, canopy gap probabilities for remotely 
optimally prioritizing, eco-gereferenceable, hyperproductive, seasonal, S. damnosum s.l., 
capture point, trailing vegetation, turbid water, narrow, African, riverine tributary, agro-
village complex, endemic, oviposition sites overlaid onto  a moderate resolution geoclassified 
, gridded, stratified LULC polygons may show good agreement for zenith angles of 
illumination up to about 45". Above 45", the fit may worsen, presumably due to the the 
horizontal branch structure of the oviposition,  black fly, immature habitat canopy  which 
may be less attenuating as the illumination angle approaches the horizon. A medical 
entomologist or experimenter may derive simple indexes that are functions of   an 
uncoalesced empirical dataset of endmember, LULC, riverine ,tributary,  agro-village  
habitat, regressors specifically, leaf area index, leaf angle distribution, count density (number 
per square unit of area) and size (base radius and height) of the immature habitat 
canopies(which may be assumed to be either spherical or ellipsoidal). These indexes may be 
parsimoniously usable to assess quantitatively the difference between continuous and 
discontinuous, seasonal, hyperproductive, trailing vegetation, Precambrian rock, oviposition 
sites along discontinuously canopied, LULC geolocations.  Robustly iteratively 
quantitatively, geo-spectrotemporally interpolating   eco-georeferenceable, elucidative, 
geospatial, forecasting, vulnerability, time series  probabilistic, endmember, proxy LULC 
signatures in ArcGIS may reveal  robust, iterative stochastic interpolators endproducts   
thatmay  optimally target hyperproductive, immature, S. damnosum s.l., capture point, 
seasonal  habitats on a polgonized, gridded, stratified, geoclassified LULC,vulnerability, eco-
epidemiological, real-time  map, but sub-mixel,probabilistic noise must be quantized.  

 
An explanative, diagnostic, noise-robust, geospatial preprocessing module in ArcGIS 

may be used prior to spectral unmixing moderate resolution,  remotely sensed, hyperspectral 
narrow, African agro-village, riverine tributary  images. The method first would optimally 
derive a spatial homogeneity index which would be relatively insensitive to the noise present 
in the original, hyperspectral, S. damnosum s.l., capture point, immature habitat,eco-
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epidemiological  datasets. Then, it would fuse this index with a geospectral-based, diagnostic 
classification. In so doing, a set of pure endmeber LULC regions may be employable to guide 
the unmixing process. An experimental comparison of the proposed method with other 
geospatial-geospectral unmixing algorithmic approaches in an ArcGIS cyberenvironment 
may optimally use both synthetic and real hyperspectral explanatorial data collected by some 
moderate resolution (e.g.,  Rapid Eye 5m TM ) satellite dataset.  The LULC experiments may 
indicate that spectral unmixing of  an explanative, geo-spectrotemporally geosampled, 
hyerproductive, trailing vegetation, discontinuously canopied, seasonal, S. damnoum s.l. eco-
georeferenceable, immature, oviposition site on a geoclassifiable moderate resolution LULC, 
grid-stratified polygon    can benefit from the proposed pre-processing algorithmic approach 
in ArcGIS, in particular, when the noise level present in the original hyperspectral narrow, 
African agro-village, riverine tributary  scene is relatively high. 

Geospectral–geospatial preprocessing in ArcGIS using multihypothesis prediction  
may be proposed for improving accuracy of hyperspectral image geoclassification of an 
unmixed datasets of  hyerproductive, endmember, trailing vegetation, discontinuously 
canopied, seasonal, S. damnoum s.l. eco-georeferenceable, immature, LULC, oviposition 
sites on a geoclassified moderate resolution, grid-stratified polygons. Specifically, multiple 
geospatially geolocated, LULC oviposition, mixel vectors may be used as a hypothesis set 
from which a prediction for each hyerproductive, seasonal, immature habitat mixel vector of 
interest may be generated. Additionally, a spectral-band partitioning strategy based on inter-
band correlation coefficients may be proposed in an ArcGIS geodatbase cyberenvironment to 
improve the geo-representational power of the hypothesis set. To calculate an optimal 
explanatory, linear combination of the hypothesis endmember, moderate resolution,  LULC 
geo-spectrotemporal, elucidative grid-stratifiable, endmember signature predictions, a 
distance-weighted Tikhonov regularization to an illposed, least-squares optimization may be  
employable in ArcGIS  

In statistics, Tikhonov regularization is known as ridge regression, which may be  
usable for optimally diagnostically quantitating multiple, independent explanative, time 
series, constrained, linear inversions for predicting,seasonal,  hypeproductive, eco-
georeferenecable,capture point,   S. damnosum s.l. narrow, riverine tributary, trailing 
vegetation, Precambrian rock, ovispoition sites on geoclassified moderate resolution, grid-
stratified data. It may be  related to the Levenberg–Marquardt algorithm (LMA) for non-
linear, least-squares, computation problems. In mathematics, computing, the LMA, also 
known as the damped least-squares (DLS) method, is employed to solve non-linear least 
squares problems. These minimization problems arise especially in least squares curve 
fitting.The LMA is used in many software applications for solving generic curve-fitting 
problems. However, as for many fitting algorithms, the LMA finds only a local minimum, 
which is not necessarily the global minimum especially in an uncoalesced dataset of 
iteratively interpolative, moderate resolution, endmember,  capture point, discontinuously 
canopied, S. damnsoum s.l. trailing vegetation, geoclassified, LULC, orthogonal habitat, 
decomposeable wavelength frequencies. The LMA interpolates between the Gauss–Newton 
algorithm (GNA) and the method of gradient descent. The LMA is more robust than the 
GNA, which means that in many cases it finds a solution even if it starts very far off the final 
minimum [23]. For well-behaved functions and reasonable starting , black fly, ovisposition, 
LULC, geo-spectrotemporal, endmember parameters, the LMA tends to be a bit slower than 
the GNA. LMA can also be viewed as Gauss–Newton using a trust region approach [25].The 
resulting iteratively quantitatively iteratively interpolatable uncoalesced, biosignature  LULC 
predictions  of hyperproductive, seasonal, ecogeoreferenecable, trailing vegetation, S. 
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damnosum s.l.  oviposition sistes on a moderate resolution geoclassified, grid-stratified 
polygon may effectively integrate discontinuously canopied,geospectral and geospatial LULC 
information during geoclassification in lieu of the original mixel vectors. This processed 
hyperspectral image dataset would have less intraclass variability and more geospatial 
regularity as compared to the original uncoalesced, sub-mixel, LULC eco-epidemiological, 
endmember, ovispositiondataset. Geoclassification results for two, seasonal, hyperspectral 
imaged, eco-georeferenceable, S. damnosum s.l. optimizable, moderate resolution, 
endmember eigenvector datasets in ArcGIS  may demonstrate that the proposed method can 
enhance the geoclassification accuracy of both maximum-likelihood and support vector 
LULC geoclassifiers,especially under small, sample size, immature, capture point,  
constraints and noise corruption .  

There are some noise that can be introduced into an  eco-gereferenceable, geo-
spectrotemporally uncoalesced, trailing vegetation, discontinuously canopied, 
hyperproductive,narrow, African, agro-village, riverine tributaries seasonally hypeproductive, 
S. damnosum s.l., endemic, oviposition geolocation, moderate  resolution, LULC  scene, 
depending on how the moderate resolution,  image is created. For example, if the grid-
stratified, orthogonally polgonized, eco-georeferenceable, immature habitat image is acquired 
directly in a digital format, the mechanism for gathering the data (such as a CCD detector) 
can introduce noise.  

The CCD is a major piece of technology in digital imaging. In a CCD image sensor, 
mixels are represented by p-doped MOS capacitors. These capacitors are biased above the 
threshold for inversion when image acquisition begins, allowing the conversion of incoming 
photons into electron charges at the semiconductor-oxide interface; the CCD is then used to 
read out these charges. Although CCDs are not the only technology to allow for light 
detection, CCD image sensors are widely used in professional, medical, and scientific 
applications where high-quality image LULC data is required.  

Seasonal,  hyperproductive, narrow, African, riverine tributary, agro-village, S. 
damnosum s.l., endemic, oviposition, geo-spectrotemporally geoclassified on moderate 
resolution, grid-stratified, satellite data can exhibit  endmember noise which can be greatly 
reduced in an eco-georeferenceable, trailing vegetation, discontinuously canopied, 
uncoalesced, diagnostic, geoclassifiable, LULC, proxy, endmember, moderate resolution,  
biosignature, probabilistic signature, orthogonal, eigenvector paradigm in  an ArcGIS 
iteratively, quantaitive, interpolative  cyberenvironment by transmitting signals digitally 
instead of in analog form.  Since each piece of information is allowed only diagnostic, 
discrete values which are spaced farther apart than the contribution the noise linear filtering 
algorithms in ArcGIS can remove  remove certain types of LULC noise. Certain filters in 
ArcGIS such as averaging or Gaussian   filters, are appropriate for this purpose. Because each 
geosampled, geoclassified, moderate resolution, uncoalesced, seasonal,capture point, S. 
damnosum s.l., hypeproductive, geo-spectrotemporally extracted,  immature, habitat mixel 
gets set to the average of the mixels in its neighborhood,  precise geo-specifications in 
localational,  polygonial, gridded, quantized, endmember, LULC  variations may optimally 
reduce noise in  a capture point, trailing vegetation, discontinuously canopied, 
hyperproductive, narrow, African, agro-village, riverine tributary, vulnerability, proxy, eco-
georeferenceable,   endmember biosignature, probabilistic, stochastic or determintsic, 
iterative, quantitative, interpolator in ArcGIS. 
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The noise in Differential, GPS (DGPS)  coordinate time series is known to follow a 
power-law, explanative, endmember, geometric, noise model with different components(e.g., 
white noise, flicker noise, random-walk). A medical entomologist or experimenter may 
propose an iterative quantitative algorithm to estimate white noise statistics in an ArcGIS-
derived,  geo-spectrotemporal,  eco-georeferenceable, geo-spectrotemporal, geosampled, 
eeco-epidemiological, geo-spectrotemporal,  dataset of hyperproductive, S. damnosum s.l., 
seasonal, capture point, discontinuously canopied,  trailing vegation, endemic, LULC, grid-
stratified, oviposition site on a moderate resolution, geoclassified map constructed in 
ArcGIS.These cartographic outputs may be generated  through the eigen-decomposition  of 
the diagnostic,endmember, orthogonal, DGPS, coordinate, time series into a sequence of sub-
time series, diagnostic, explanatorial, eco-georeferenceable, LULC  variables employing the 
Empirical Mode Decomposition algorithm. The proposed algorithm may estimate the Hurst 
parameter for each sub-time series, which then would subsequently select the sub-time series, 
eco-epidemiologically related to the moderate resolution, S. damnosum s.l.,residual, white 
noise based on the Hurst parameter criterion.  

The Hurst exponent is employable as an optimal, wavelength, frequency, endmember, 
orthogonal, eigen-decomposable, LULC measure of long-term memory of time series in 
ArcGIS. It relates to the autocorrelations of the time series, and the rate at which these 
decrease as the lag between pairs of values (e.g.,tabulated, moderate resolution, wavelength, 
transmittance, endmember,  emissivity, frequency values emitted from a geoclassified, 
ecogeoreferenceable, geo-spectrotemporal, uncoalesced, seasonal, hyperproductive, S. 
damnsoum s.l, capture point, trailing vegetation, discontinuously canopied, LULC, 
oviposition site  overlaid onto a moderate resolution geoclassified, grid-stratified, wavelengh, 
frequency  polygon. Studies involving the Hurst exponent were originally developed in 
hydrology for the practical matter of determining optimum dam sizing for the Nile river's 
volatile rain and drought conditions that had been observed over a long period of time.  In 
fractal geometry, the generalized Hurst exponent has been denoted by H or Hq which is 
directly related to fractal dimension, D, and is a measure of a data series' "mild" or "wild" 
randomness[25]. The Hurst exponent is referred to as the "index of dependence" or "index of 
long-range dependence". It may quantify the relative tendency of a empirical,  heursitically 
optimizable eco-epidemiological dataset of unmixed, eco-georeferenceable, unbiased, 
moderate resolution, elucidative, iteratively quantitative, interpolative, S. damnosum s.l., 
orthogonal, endmember eigenvectors  neither to regress strongly to the mean or to 
geospatially  cluster in a direction. A value H in the range 0.5–1 would indicate an 
explanatorial, time series with long-term, latent, positive autocorrelation meaning both that a 
high explanatively eigen-decomposed, sub-mixel, eco-epidemiological, endmember, LULC 
value  rendered from the eco-georefernceable, geo-spectrotemporal, geosampled, capture 
point, S. damnosum s.l., immature habitat , time series which can be followed by another high 
decomposed  value. A value in the range 0 – 0.5 would indicate that a hyperproductive, 
orthogonal, eigen-decomposable, discontinuously canopied, immature,trailing vegation, 
narrow, African, riverine tributary, agro-village  capture point, oviposition, endmember, 
LULC site resides on a moderate resolution, geoclassified, grid-stratifiable  polygon along 
with high and low values in adjacent  sub-mixel  pairs, meaning that a single high value will 
probably be followed by a low value and that the value after that will tend to be high, with a 
tendency to switch between high and low sub-mixel values lasting a long time into the future. 
A value of H=0.5 can indicate a completely diagnostically, explanatively, geo-
spectrotemporally uncorrelated, seasonal, eco-georeferenceable, robustifiable, unbiased, 
immature habitat, LULC series. The endmember, proxy, LULC grid-stratifiable, 
polgonizable, biosignature values may be optimally applicable for remotely targeting an eco-



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

21 
Copyright © acascipub.com, all rights reserved.  

georefernceable, hyperproductive, seasonal, S. damnosum s.l. trailing vegetation, 
discontinuously canopied, immature, African agro-village, riverine tributary, geoclassified, 
capture point, geo-spectrotemporal, sub-mixel time series, for which the autocorrelations at 
small time lags can be positive or negative but where the absolute values of the 
autocorrelations decay exponentially quickly to zero. This would be in contrast to the 
typically power law decay for the 0.5 < H < 1 and 0 < H < 0.5 cases. In statistics, a power law 
is a functional relationship between quantities, where a relative change in one quantity results 
in a proportional relative change in the other quantity, independent of the initial size of those 
quantities: one quantity varies as a power of another [25].  

Log-log plots are way of graphically examining the tail of a power distribution using a 
random sample in ArcGIS. In science and engineering, a log–log graph or log–log plot is a 
two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal 
and vertical axes. In fact, many other functional forms appear approximately linear on the 
log–log scale, and simply evaluating the goodness of fit of a linear regression on logged data 
using the coefficient of determination (R2) may be invalid, as the assumptions of the linear 
regression model, such as Gaussian error, may not be satisfied; in addition, tests of fit of the 
log–log form may exhibit low statistical power, as these tests may have low likelihood of 
rejecting power laws in the presence of other true functional forms. This method consists of 
plotting the logarithm of an endmember LULC estimator based on the probability that a 
particular number of the distribution occurs versus the logarithm of that particular number. 
Usually, this LULC endmember estimator in a vector entomological, arthod, capture point, 
eco-epidemiological, forecast, vulnerability model is the proportion of times that the number 
occurs in an ArcGIS geo-spectrotemrpoal, geosampled dataset. If eco-georferenceable, 
seasonal, hypeproductive, S. damnosum s.l., immature  habitat, eco-epidemiological, capture 
points in a plot tend to "converge" to a straight line for large geo-spectrotemporally 
geosampled,sub-mixel  eigen-decomposable, orthogonal, LULC values in the x axis, then  a 
medical entomologist or experimenter can conclude that the black fly ovisposition 
pronosticated regression LULC distribution has a power-law tail in ArcGIS 

Profiles are line plots in which geo-spectrotemporally extracted mixels from an   
image can be compared to spectral libraries or other mixels. (e.g., Plot Properties.in  ENVI). 
The Spectral Profile plots the spectrum of all bands for a selected hypeproductive, S. 
damnosum s.l., immature, capture point, seasonal, hyperproductive habitat, geo-
spectrotemporally, explanatively  extracted moderate resolution mixel, for example. 
Derivative LULC, spectra can be extracted from any multispectral dataset 
[https://www.harrisgeospatial.com/docs/profiles.html]. The Series Profile would plot the 
endemic, ovipoistion,partially canopied, moderate resolution, geo-spectrotemporally 
extracted LULC mixels within a specified band of a spatiotemporal S. damnsoum s.l. series 
file (.series). All files comprising the geospatial elucidative, immature explanative, capture 
point, habitat series would occupy the geoclassified, polygonized, LULC areas and hence 
must possess regular bands and a regular grid.  

Profiles may be  optimally drawn based on an equally spaced geosampling of the 
series, with a default maximum index size of 100  empirical,heuristically optimizable, 
endmember,orthogonal, eco-epidemiological, moderate resolution, datasets and the eigen-
decomposed LULC  values can be modified with the Series Profile Maximum Index size 
preference. [https://www.harrisgeospatial.com/].Importantly, X/Y mixel coordinates in ENVI-
displayed spectra are one less than those displayed in an ENVI Classic Z profile. For 
example, a hyperproductive, eco-georefrenceable,  seasonal, eco-epidemiological, capture 
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point, trailing vegetation, S. damnosum s.l., narrow African, riverine tributary, agro-village, 
riverine tributary  discontinuously canopy gap mixel gelocation [e.g., X:165, Y:73] in ENVI 
may  yields the same spectrum as geolocation [X:166, Y:74] in a mixed model. he Spectral 
Profile plots the spectrum of all bands for the selected pixel(www.esri.con)  An arbovirologist 
or onchocerciasis researcher can extract spectra from any multispectral LULC , S. damnosum 
s.l. ovispoition, moderate resolution dataset employing  header information to scale the plot 
The geometric mixing model can  provide an alternate, intuitive means to understand spectral 
mixing. In such an empricial dataset mixed pixels of the capture points may be  visualized as 
points in n-D scatter plot (spectral) space, where n is the number of bands ( see Figure 1).. If 
only two capture point endmembers mix in 2D space, then the mixels will fall in a line. The 
pure endmembers will fall at the two ends of the mixing line.  

Figure 1. Quantiating  reslution endmember  scattering profiles structures where each   
uncoalesced,   wavelength profile, are simulated to a maximum using n-D visualizer  in a 
ENVI log–log plot.  

 

 
Cartographically optimally simulated,  differentially corrected global positioning 

systems (DGPS) coordinate, time series, S. damnsoum s.l. narrow, African, eco-
georeferenceable, trailing vegetation, discontinuously canopied, seasonal, hyperproductive,  
capture points, overlaid  onto  a moderate resolution, geoclassified narrow, African, riverine 
tributary, grid-stratified, LULC polygons  in ArcGIS,  may be employed to test  endmember 
noise filtering mechanisms and compare them  to a standard  in  a Maximum Likelihood 
(ML) estimator. The results may demonstrate that filtered proxy, moderate resolution, 
endmember, LULC endemic, oviposition, proxy signatures in ArcGIS have very low 
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computational complexities and may be more faster than traditional ML methods, at a cost of 
a slight  increase of the uncertainty (e.g., 5%) of the white noise amplitude in an explanative, 
geo-spectrotemporal, unmixing, endmember noise analyses conducted of an empirical, 
optimizable, geo-spectrotemporal, geosampled, diagnostic dataset of eco-georeferenceable, 
seasonally hyperproductive, uncoalesced, trailing vegetation, narrow African, agro-village 
tributary, discontinuously canopied,  iteratively, quantitatively interpolative, S. damnosum 
s.l., capture point, proxy, geoclassifed,moderate resolution,  LULC biosignatures. Reliable 
white noise statistics may be  useful for a range of fractionalized, orthogonal, endmember 
applications including improving the filtering of DGPS time series, checking the validity of 
estimated coseismic offsets and estimating, explanatorily  probabislistic uncertainties of site 
noise in a forecast, vulnerability, eco-epidemiological, moderate resolution, S. damnosum s.l. 
probabilistic, geo-spectrotemporal   paradigm. The low complexity and computational 
efficiency of the algorithm may greatly speed up the processing of geodetic, explicative, time 
series in a moderate resolution, eco-georeferenceable, S. damnosum s.l., moderate resolution 
geoclassifiable image in ArcGIS by employing an averaging filter and a median filter as to 
allow sub-mixel, diagnostic comparisons of the geolocational, hyperproductive, geoclassified, 
seasonal, discontinuously canopied, LULC change, geo-spectrotemporal results. These two 
types of filtering in ArcGIS both will set the value of the output mixel to the average of the 
mixel values in the neighborhood around the corresponding input, black-fly, capture point, 
habitat mixel. However, with median filtering, the value of an output, immature habitat, 
orthogonal, eigen-decomposeable, partially shaded, discontinuously canopied, LULC mixel 
may be optimally determined by the median of the neighborhood mixels, rather than the 
mean.  
 

The median is much less sensitive than the mean to extreme values (i.e., geospatial 
outliers)[25]. Median filtering may remove, orthogonally, explanatively eigen-decomposable, 
trailing vegetation, discontinuously canopied, hyperproductive, narrow, African, agro-village, 
riverine tributary, LULC, endmember outliers without reducing the sharpness of the S. 
damnosum s.l., capture point, hyperproductive  image. Median filtering is a specific case of 
order-statistic filtering, also known as rank filtering.The filtering may help  optimally define 
moderate resolution, endmember LULC signals spread over more complicated domains ( e.g., 
pre-flooded, narrow, African, riverine, tributary, agro-village complexes), of a eco-
georeferenceable, geoclassifiable, explanative, seasonal, capture point, trailing vegetation, 
discontinuously canopied, hyperproductive, S. damnosum s.l., narrow,African, agro-village, 
riverine tributary, oviposition, on moderate resolution, geo-spectrotemporally geoclassified 
grid- polygonized, stratified LULC  in ArcGIS.   

Three standard tori may be given for elucidatively optimally eigen-decomposing, 
diagnostic eco-gereferenceable, geo-spectrotemporally, uncoalesced,  iteratively quantiatively  
interpolative, hyperproductive,narrow, African, agro-village, riverine tributary, capture point,  
S. damnosum s.l., endmeic, oviposition geolocations in ArcGIS employing  moderate  
resolution images based on  geoclassified, discontinuously canopied, trailing vegetation, 
LULCs, employing image parametric equations: = , = ,and 
= with . In geometry, a torus (plural tori) is a surface of revolution generated by 

revolving a circle in 3-D space about an axis coplanar with the circle. If the axis of revolution 
does not touch the circle, the surface has a ring shape and is called a torus of revolution [25]. 
In so doing, explanatorial, parametric equations may express a set of endmember optimally 
orthogonally, decomposeable, sub-mixel, LULC quantities as explicit functions of a number 
of independent variables, (e.g., autoregression, orthogonal, wavelength, frequency 
parameters). For example, while the equation of an  eco-georeferenceable, seasonal, 
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hyperproductive, narrow African, agro-village, narrow, riverine tributary, infrequently 
canopied, S. damnosum s.l., eco-epidemiological, eco-georeferenceable, capture point  in 
Cartesian coordinates can be given by , one set of parametric equations for the  
immature habitat may be  given by = or - . . 

Note that endmember, orthgonal, parametric, grid-stratifiable, LULC representations 
are generally nonunique in ArcGIS, so the same geoclassified LULC, moderate resolution, 
proxy,  black fly, ovipoisition biosignature quantities may be optimally expressed by a 
number of different uncoalesced, iteratively interpolative, diagnostic, moderate resolution, 
geoclassifiable, explanative, parameterizations.These computations may invlve employing 
medium resolution,imaged trailing vegation, discontinuously canopied, hyperproductive,  S. 
damnosum s.l., capture point, moderate resolution, endmember in ArcGIS.  A single geo-
spectrotemporal, geosampled, unmixed, endmember, LULC, biosignature parameterizable, 
covariate estimator   may be optimally eco-geographically represented with the parameter , 
while the symbols  and  may be commonly employable  for parsimoniously robustifying  
parametric equations in other uncoalesced habitat discontinuously canopied obervations. 
Other mathematical diagnostic cyberenvironments may provide parametric equations to 
represent LULC curves and surfaces of an ecogeoreferenceable, hyperproductive, seasonal, S. 
damnosum s.l., endemic, ovipoisition site in a geoclassifiable,  moderate resolution, 
predictive, endemic, risk-related paradigm employing  the Wolfram Language 
commands[e.g.,  ParametricPlot[ x, y , t, t1, t2 ] and ParametricPlot3D[ x, y, z , u, u1, u2 , 
v, v1, v2 ]. Unsurprisingly, geoclassifiable, moderate resolution, hyperproductive,narrow, 

African, agro-village, riverine, S. damnosum s.l., endemic, seasonal, hyperproductive, eco-
georeferenceable, oviposition, moderate resolution, LULC images,  geolocations, 
geoclassified by way of parametric equation representations in an ArcGIS  geodatabase 
cyberenvironment may be optimally represented by parametric curves derived from 
geoclassfied LULC surfaces, respectively.  

Topologically, a torus for an explanative, eco-georeferenceable, geo-spectrotemporal, 
capture point, trailing vegetation, discontinuously canopied, hyperproductive, seasaonal, S. 
damnosum s.l., narrow,African, agro-village, riverine tributary, endemic, oviposition LULC 
site identifying employing  a moderate resolution, geo-spectrotemporally geoclassified, 
moderate resolution, endmember dataset would be  a closed surface optimally defined as the 
product of two circles: S1 × S1 in ArcGIS. These can be viewed as lying in C2 and is a subset 
of the 3-sphere S3 of radius √2. This topological torus is also often called the Clifford torus. 

In geometric topology, the Clifford torus is a special kind of torus sitting inside the 
unit 3-sphere S3 in R4, the Euclidean space of four dimensions. Or equivalently, it can be seen 
as a torus sitting inside C2 since C2 is topologically equivalent to R4 in ArcGIS. It is 
specifically the torus in S3 that is geometrically the cartesian product of two circles, each of 
radius sqrt (1/2)[25].In fact, S3 may be  filled out by a family of nested tori in ArcGIS in this 
manner with a  degenerate LULC, representing a capture point, discontinuously canopied,  
moderate resolution, S. damnosum s.l., immature hyperproductive, habitat, endemic foci, 
geoclassified, optimally eigen-decomposed, grid-stratified  orthogonal polygon. In so doing, 
fractionalized, proxy eco-georeferenceable, geoclassified, trailing vegetation, discontinuously 
canopied, S. damnosum s.l., proxy endmember, unmixed, LULC, biosignature variables may 
be geo-visualizable by S3 in ArcGIS as a fiber bundle over S2 (e.g., the Hopf bundle) 
especially in  a robust, forecast, vulnerability, iteratively, quantitative, interpolative, raster-
oriented,probabilistic paradigm 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

25 
Copyright © acascipub.com, all rights reserved.  

Another geometric interpretation of the Hopf fibration can be obtained by considering 
rotations of the 2-sphere in ordinary 3-dimensional geospace. The rotation group SO (3) has a 
double cover, the spin group Spin (3), diffeomorphic to the 3-sphere[25]. Thus, the spin 
group would access transitively on S2 by rotations in a time series, S. damnosum s.l., forecast 
vulnerability, endmember analyses. The stabilizer of a point is isomorphic to the circle group 
[www.esri.com]. It follows easily that the 3-sphere is a principal circle eco-geroeferenceable 
black-fly, immature habitat bundle over the 2-sphere would be the Hopf fibration.The Hopf 
fibration defines a fiber bundle, with bundle projection p[25]. This means that it has a "local 
product structure", in the sense that every capture point would have a 2-sphere with some 
neighborhood U whose inverse image in the 3-sphere can be identiable with the product of U 
and a circle: p−1(U) ≅ U × S1 in an ArcGIS cyberenvironment. Such a fibration is said to be 
locally trivial.For the Hopf fibration, it is enough to remove a single point m from S2 and the 
corresponding circle p−1(m) from S3; thus a medical entomologist or other onchocerciasis 
reascher may  take U = S2\{m} for a. S. damnosum s.l., seasonal, hyperproductive, endemic, 
geoclassifiable, LULC, geo-spectrotemporal, geosampled, probabilistic, proxy, uncoalesced,  
biosignature, vulnerability, forecast paradigm  and any discontinuously canopied, immature 
habitat point in S2 that has a neighborhood of the same form.  

In the mathematical field of topology, the Hopf fibration (also known as the Hopf 
bundle or Hopf map) describes a 3-sphere (a hypersphere in four-dimensional space) in terms 
of circles and an ordinary sphere. Technically, Hopf (1931)  found a many-to-one continuous 
function (or "map") from the 3-sphere onto the 2-sphere such that each distinct eco-
georeferenceable, LULC point ( e.g., hyperproductive, seasonal, S. damnosum s.l., trailing 
vegetation, discontinuously canopied,eco-epidemiological, capture point geosampled in a 
narrow,  African, riverine, tributary, agro-village complex) of the 2-sphere comes from a 
distinct circle of the 3-sphere Thus, the 3-sphere would be composed of fibers, where each 
fiber is a circle — one for each eco-georeferenceable, fractionalized, uncoalesced, iterative, 
interpolative, endmember, moderate resolution, biosignature unmixed LULC variable 
illustrating an  immature, trailing vegetation,intermittently canopied,  narrow, African, 
riverine tributary, ovipoistion site on a geoclassified moderate resolution, ArcGIS derived,   
LULC,  grid0 stratified polygon  of the 2-sphere, for example. This fiber bundle structure 
may be optimally denoted meaning that the fiber space S1 would be embedded in the total 
space S3 (the 3-sphere) in ArcGIS and p : S3 → S2 (Hopf's hypeproductive, S. damnosum s.l. 
seasonal oviposition, iteratively, quantitatively interpolative, immature productivity, forecast, 
vulnerability  map) projects S3 onto the base space S2 (i.e., the ordinary 2-sphere).  

The Hopf fibration, like any fiber bundle, has the important property that it is locally a 
product space. However it is not a trivial fiber bundle,( i.e., S3 is not globally a product of S2 
and S1 although locally it is indistinguishable from it). The first example discovered of 
a map (e.g., seasonal, hyperproductive, trailing vegetation, Precambrian rock,  S. damnosum 
s.l., capture point, endmember, LULC) from a higher-dimensional sphere to a lower-
dimensional sphere which is not null-homotopic. Its discovery was a shock to the 
mathematical community, since it was believed at the time that all such maps were null-
homotopic, by analogy with homology groups.The Hopf, black fly, moderate resolution, 
endmember, signature LULC map  arises in many contexts, and can be generalized 
to a map . For any S. damnosum s.l. capture point  in the sphere, 
its preimage  is a circle  in . There are several descriptions of the Hopf map, also 
called the Hopf fibration .As a submanifold of , the 3-
sphere is and the 2-sphere is 
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a submanifold of , The Hopf map takes points 
( , , , ) on a 3-sphere to points on a 2-sphere 
( , , ) = , = , = Every point on the 
2-sphere corresponds to a circle called the Hopf circle on the 3-sphere[16].  This has many 
implications for precisely, remotely, targeting hyperproductive, seasonal, eco-
georeferenceable, S. damnosoum s.l. capture point, eco-georeferenceable, narrow, riverine 
tributary, African, agro-village, pre-flooded, immature habitats. For example, the existence of 
a fiber bundle may reveal that the higher homotopy groups of spheres in ArcGIS  are not 
trivial  in general in a S. damnosum s.l., moderate resolution,  remotely sensed,  iteratively, 
quantiatively iteratively interpolative, forecast, vulnerability,  endmember, proxy,  LULC 
geo-spectrotemporal probabilistically, optimizable, biosignature, paradigm.  The fibers may 
also provide a basic example of a principal bundle, by optimally identifying the endmember 
fiber with the  capture point,  immature  habitat  overlaid onto a moderate resolution, 
geoclassified LULC in ArcGIS ( see Figure 2)  

Figure 2. The Hopf fibration geovisualized using a stereographic projection of S3 to R3 

in an ArcGIS cyberenvironment 

 

The explicative, dignostic,  LULC structure  described  in Figure 2 may optimally 
quantitate the relative topology from R3, which may be  homeomorphic to a topological torus 
in an iterative, quantitatively,  uncoalesced, stochastically or deterministically interpolative,  
S. damnosum s.l., eco-georeferenceable, moderate resolution, endmember, biosignature 
forecast,vulnerability model as long as it does not intersect its own axis. A particular 
homeomorphism may be provided in ArcGIS by stereographically projecting the topological 
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torus into R3 from the north pole of S3.  The torus can also be described as a quotient  in an 
moderate resolution, S. damnosum s.l.,endmember,  forecast vulnerability, probabistic, 
LULC, signature, orthogonal paradigm for optimally, remotely targeting, hypeproductive, 
seasonal ,eco-georeferenecable, immature  habitats  based on  the Cartesian plane under the 
identifications(x, y) ~ (x+1, y) ~ (x, y+1) in.SAS or R  Or, equivalently, as the quotient of the 
unit square by pasting the opposite edges together, explanatively, optimally, remotely 
describable as a fundamental, orthogonally geoclassifiable, grid-stratifiable, diagnostic,  
LULC  polygon ABA−1B−1. ArcGIS Cartesian coordinates may be real-time modelled by 
employing   coordinate space  (Rn) of the same dimension (www.esri.com). In one dimension, 
this is the real line; in two dimensions, it is the Cartesian plane; and in higher dimensions it is 
a coordinate space with three or more real number coordinates.  

Mathematicians denote the n-dimensional Euclidean space by En if they wish to 
emphasize its Euclidean nature, but (Rn) is used as well since the latter is assumed to have the 
standard Euclidean structure, and these two structures are not always distinguished. 
Euclidean spaces have finite dimension [25]. From  an ArcGIS viewpoint, there would only 
be essentially one Euclidean space of each dimension optimally in a moderate resolution, 
explanative, eco-georeferenceable, capture point, trailing vegetation, discontinuously 
canopied, hypeproductive, S. damnosum s.l., narrow, African, agro-village, riverine tributary, 
eco-geoerferenceable, LULC oviposition site on a moderate resolution optiamlly delineated, 
geoclassifiable, grid-stratifiable polygon. In so doing, the S. damnosum s.l. immature habitat, 
capture point sample Gaussian noise may be deciphered as sequential in time in an Euclidean 
space in ArcGIS.  

Employing ArcGIS (or GRASS or Mathematica) or  R's "raster" library (focalFilter ) 
can  create functions to negate propgational, Gaussian, white noise in a capture point, trailing 
vegetation, Precambrian rock, ovispoition,  S. damnosum s.l. immature habitat, endmember, 
proxy LULC, biosignature when constructing an iteratively qunatiatively interpolative, 
medium resolution,  probabilistic, orthogonal paradigm, dependent variable. Gaussian noise 
is statistical noise having a probability density function (PDF) equal to that of the normal 
distribution ( i.e., a diagnostically elucidatively geo-spectrotemporally orthogonally 
decomposable, Gaussian, S. damnosum s.l., continuous probabilty distribution). In probability 
theory, a PDF or density of a continuous random variable, is a function that describes the 
relative likelihood for  a nonnegative random variable  whose integral over the entire space is 
equal to 1[25]. The Gaussain bivariate normal distribution is the statistical distribution where 

the PDF is  

and   are based on the 
correlation of and [www.mathworld.com]. The PDF of a continuous distribution is 
optimally explanatively definable as the derivative of the (cumulative) distribution function , 

= = = so 

= = [http://mathworld.wolfram.com/]. A probability function satisfies 

and is constrained by the normalization condition, 

= [26]. An explanative, seasonally hyerproductive,  trailing 
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vegetation, discontinuously canopied, S. damnosum s.l.,  endemic LULC, moderate 
resolution, discontinuously canopied, oviposition, narrow, African, riverine, tributary 
geolocation  in a geo-spectrotemporally explicative, trailing vegetation, geoclassified, grid- 
stratified, polygonized, eco-georeferenceable,  LULC geolocation may be  optimally  eco-
cartographically illustratable in  an uncoalesced, iterative interpolative, proxy  biosignature, 
fractionalized  paradigm based on empirically autoregresseable, seasonal, immature, 
productivity, count value, endmember datasets. Orthogonal, explanatively, optimally eigen-
decomposed, diagnostically, quantitatively  fractionalized, sub-mixel, synthetic, proxy, 
geoclassifiable, uncoalesced, moderate resolution,  endmember LULC datasets of  proxy 
biosignature eigenvectors may precisely interpolate. hyperproductive, S. damnosum s.l., 
seasonal, immature habitats  in  a stochastic, iterative, gradient-based optimization, 
algorithmic, ArcGIS sub-mixel interpolator [e.g., 3- D, Invese distance matrix in Geospatial 
AnalystTM ]. In so doing,  trend surface models with known quantifiable, polynomial equation 
values of unknown, seasonal, explanative, eco-georeferenceable un-geosampled, prolific  
narrow, trailing vegetation, discontinuously canopied, African  agro-village, riverine 
tributary, endemic oviposition, capture point, moderate resolution,geoclassifiable, LULC  
sites may be optimally remotely detected   employing geoclassifiable, explanatorial, moderate 
resolution, imaged landscapes  within a ArcGIS,  rasterized paradigm. Exposition of  
optimally tabulated  LULC variability in seasonal,  hypeproductive, S. damnosum s.l., 
immature  habitat, discontinuously canopied, narrow, African riverine tributary, eco-
georeferenceable,  eco-epidemiological uncoalesced endmember, orthogonal datasets requires 
non-frequentist ArcGIS accounts of oviposition and LULC  processes for quantitating  eco-
geographically or non-ecogeographically, explanatively time series, geoclassifiable moderate 
resolution, wavelength, transmittance, emissivity frequencies for implementing 
onchocerciasis control strategies [22]. 

Javascript has evolved into a language capable of handling real-time, 3D graphics, via 
WebGL, and computationally intensive tasks such as image regression (e.g., linear, 
exponential, logarithmic, power or polynomial) for unconstrained optimization of interactive, 
geo-visualizable, metaheuristic, data-driven,  ArcGIS-derived, orthogonally eigen-
decomposable, moderate resolution, wavelength, frequency,  covariance weightages. Multiple 
ArcGIS algorithms exist for solving differential equations  employing a hierarchy of 
algorithmic  discretizations  (e.g., NumPy in Python library). A differential equation is a 
mathematical equation that relates some function with its derivatives[26]. In computer 
science and mathematical optimization, a metaheuristic is a higher-level procedure designed 
to find, generate, or select a partial search algorithm that may provide a sufficiently robust 
solution to an unconstrained,orthogonal   problem. Unconstrained optimization problems 
consider the problem of minimizing an objective function that depends on real variables with 
no restrictions on their values [25].  

Mathematically, letting x∈R n  x∈Rn be a real vector with n≥1  components and 
letting f:R n →R  be a smooth function in an iterative,  Bayesianized,  orthogonal, 
eigenvector, ArcGIS, elucidatively optimizable, endmember, fractionalized,  biosignature, 
moderate resolution,  S. damnosum s.l., endemic LULC, oviposition, capture point, 
uncoalesced  dataset of    unconstrained, quantitatively, eigen-decomposed,  trailing 
vegetation, capture point, hyperproductive, narrow African, agro-village, riverine, tributary, 
geolocations, geo-spectrotemporally  geoclassified on explanative LULCs may optimally  
reveal a  stochastic Gaussian distribution of unknown, un-geosampled, prolific eco-
georeferenceable,  habitats rendered from a stochastic probabilistic, diagnostic interpolator 
with minimal noise. Bayesian methods are characterized by the following concepts and 
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procedures:1)The use of random variables, or, more generally, unknown quantities to model 
all sources of uncertainty in statistical models including uncertainty resulting from lack of 
information (e.g., aleatoric and epistemic uncertainty).2)The need to determine the prior 
probability distribution taking into account the available (prior) information.3) The sequential 

use of the Bayes' formula:[e.g.,  ] as  more data 
becomes available on order  calculate the posterior distribution in order to quantitate next 
prior.  

Bayes' theorem calculates the renormalized pointwise product of the prior and the 
likelihood function, to produce the posterior probability distribution, which is the conditional 
distribution of the uncertain quantity given the data. In probability theory and statistics, 
Bayes' theorem (alternatively Bayes' law or Bayes' rule) describes the probability of an event, 
based on conditions that might be related to the event[http://mathworld.wolfram.com]. When 
applied, the probabilities involved in Bayes' theorem may have different probability 
interpretations. In one of these interpretations, the theorem is employable directly as part of a 
particular approach to statistical inference. With the Bayesian probability interpretation the 
theorem expresses how a subjective degree of belief should rationally change to account for 
evidence: this is Bayesian inference, which is fundamental to Bayesian statistics. However, 
Bayes' theorem has applications in a wide range of calculations involving probabilities, not 
just in iterative Bayesian inference for   orthogonal, eigenvector, ArcGIS-optimizable, 
endmember fractionalized,  LULC, biosignature datasets of    quantitatively, eigen-
decomposeable,  dicontinuously canopied, trailing vegetation, eco-epidemiological, capture 
point, hyperproductive, narrow African, agro-village, riverine, tributary, black-fly, capture 
point, seasonal geolocations,  eco-cartographically specified using  moderate resolution, geo-
spectrotemporal, sub-mixel, geoclassified LULCs. 

Gaussian process  (GP)is a statistical distribution Xt, t ∈ T, for which any finite linear 
combination of samples has a joint Gaussian distribution[25].  As such, the unconstrained 
optimization problem in a  discontinuously canopied, trailing vegetation, capture point, 
hyperproductive, narrow, African, agro-village, riverine, tributary, S. damnosum 
s.l.,oviposition, capture point, eco-georeferenceable, seasonal geolocations may be optimally 
definable as min x f(x) in an explanatively, diagnostic, moderate resolution,  uncoalesced, 
LULC endemic oviposiiton, inhomogeneoulsy canopied, seasonal biosignature, probabilistic 
paradigm constructed in any object-based, ArcGIS-oriented, geodatabase cyberenvironment. 
Further, any time series, diagnostic, explicative, linear functional applied to the sample 
function Xt in a moderate resolution, geospatialized, S. damnosum s.l., ArcGIS forecasting, 
vulnerability, endmember, orthogonal  paradigm may render normally distributed results  
based on autoregressed iteratively quantitatively interpolated, uncoalesced, proxy 
orthogonally, explanatorily eigen-decomposeable, biosignature LULC, eigenvectors rendered 
from a grid-stratified, moderate resolution, geoclassified polygon. 

  Notation-wise, a medical entomologist or experimenter could   write X ~ Gaussain 
processes( GP) [m,K],  in an ArcGIS cartographic predictive algorithm for quantitatively 
optimally iteratively, interpolating, seasonally forecastable, eco-georeferenceable, narrow, 
African, agro-village,  riverine, tributary, hyperproductive, discontinuously canopied, trailing 
vegetation, uncoalesced, S. damnosum s.l., optimizable, endmember, fractionalized,signature, 
clustering, diagnostic, expositorial  regressors representing targeted seasonally 
hyperproductive, oviposition sites on moderate resolution, topologically  geoclassifiable 
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LULCs (e.g., positive autorocrrelation) if the random function X is distributed as a GP with 
mean function m and covariance function K. When the input vector t is two- or multi-
dimensional, a Gaussian process might be also known as a Gaussian random field (GRF) 
[25].Current methods for, proxy, endmember LULC, signature, cluster estimation can be 
categorized as geometric, statistical, and sparse coding approaches [www.esri.com]. A GRF 
is a random field involving Gaussian  PDFs of the variables [26].   

One way of  constructing a GRF for an explanatorial, eco-georeferenceable, 
hyperproductive, discontinuously canopied, trailing vegetation, narrow, African, agro-village, 
riverine tributary, S. damnosum s.l., oviposition, capture point on a moderate resolution, 
geoclassifiable LULC robustly is by assuming that the field is the sum of a large number of 
plane, cylindrical or spherical waves with uniformly distributed random phase. This type of 
GRF is completely described by its power spectral density, and hence, through the Wiener-
Khinchin theorem, by its two-point autocorrelation function, which is related to the power 
spectral density through a Fourier transformation. In applied mathematics, the Wiener–
Khinchin theorem, also known as the Wiener–Khintchine theorem and sometimes as the 
Wiener–Khinchin–Einstein theorem or the Khinchin–Kolmogorov theorem, states that the 
autocorrelation function of a wide-sense-stationary random process has a spectral 
decomposition given by the power spectrum of that process (http://mathworld.wolfram.com). 
The Fourier transform of a function of time itself is a complex-valued function of frequency, 
whose absolute value represents the amount of that frequency present in the original function, 
and whose complex argument is the phase offset of the basic sinusoid in that frequency [25]. 
For details on the generation of Gaussian random fields using Matlab, see circulant 
embedding method for Gaussian random field. 

With regard to applications of GRFs, the initial conditions of physical cosmology 
generated by quantum mechanical fluctuations during cosmic inflation are thought to be a 
GRF with a nearly scale invariant spectrum. Suppose f(x) is the value of a GRF for a eco-
georeferenceable, discontinuously canopied, trailing vegetation, capture point, narrow, 
African, agro-village, riverine tributary, S. damnosum s.l., hyperproductive, oviposition  point 
on a goeclassifable, moderate resolution LULC x in some D-dimensional space. If a medical 
entomologist or experimenter makes a vector of the geo-spectrotemporally geosampled, 
optimally parameterizable, cateogorical  or continuous, probabilistically, geo-
spectrotemporal, signature quantized values of f at N habitat points, x1, ..., xN, in the D-
dimensional space, then the vector (f(x1), ..., f(xN)) may be distributed as a multivariate 
Gaussian. An important special case of a GRF is the Gaussian free field [24]. 

In probability theory and statistical mechanics, the Gaussian free field (GFF) is a 
Gaussian random field, a central model of random surfaces (random height functions). Jacob 
et al. [22] gives a mathematical survey of the GFF for parsimoniously autoreegressively 
quantitating an eco-georeferenceable, trailing vegetation, turbid water, hyperproductive, 
narrow, African, agro-village, riverine tributary, S. damnosum s.l., immature habitat, 5m, 
endmember, interpolative,LULC signature. Spatial process simulation   of the geo-
spectrotemporally geosampled, capture point, immature habitat employed stochastic 
geometry, spatial statistics and  random fields for simulating a Gaussian field over an 'm' 
times 'n' 5m grid  which was written in MathLab. The discrete version was defined on an 
ArcGIS graph as a lattice in d-dimensional Euclidean space. Euclidean -space, (i.e., 
Cartesian space or simply -space), is the space of all n-tuples of real numbers, ( , , ..., 

)(www.esri.com). -tuples are sometimes called points, although other nomenclature may 
be employeable for seasonal, geo-spectrotemporal, eco-georferenceable, uncoalesced, 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

31 
Copyright © acascipub.com, all rights reserved.  

iteratively , interpolative,  vector arthropod-related, predictive endmember, proxy, signature, 
stochastic, LULC modeling[22]. The totality of -space is commonly denoted , although 
older literature uses the symbol (or actually, its non-doublestruck variant  [25]. 

The d-dimensional GFF), also called the (Euclidean bosonic) massless free field, is a 
d-dimensional-time analog of Brownian motion[www,mathworl.wolfram.com]. Just as 
Brownian motion is the limit of the simple random walk (when time and space are 
appropriately scaled), the GFF is the limit of many incrementally varying random functions 
on d-dimensional grids. In Jacob et al. [22] the continuum version of an S. damnosum s.l. 
endmember, moderate resolution, probabilistic, biosignature paraidgm was optimally defined 
on Rd on a bounded subdomain of Rd. It was thought of as a natural generalization of one-
dimensional Brownian motion to d time (but still one space) dimensions; in particular, the 
one-dimensional continuum GFF was just the standard, one-dimensional, Brownian bridge  
on an interval. 

Similarly to Brownian motion, which is the scaling limit of a wide range of discrete 
random walk  ArcGIS models the continuum GFF is the scaling limit of not only the discrete 
GFF on lattices, but of many random height function models, such as the height function of 
uniform random planar domino tilings, [see Kenyon (2001)].The planar GFF is also the limit 
of the fluctuations of the characteristic polynomial of a random matrix model, the Ginibre 
ensemble, [see Rider & Virág (2007)].The structure of the discrete GFF is closely related to 
the behaviour of the simple random walk which is displayable on an ArcGIS graph[22]. For 
instance, the discrete GFF plays a key role in the proof by Ding, Lee and Peres (2012) for 
quantaizing  several conjectures about the cover time of graphs (e.g., the expected number of 
steps it takes for the random walk to visit all the vertices in an eco-georeferenceable, 
immature,  S. damnosum s.l. ovipoistion,  geo-spectrotemporally uncoalesced,  endmember, 
moderate resolution, LULC proxy biosignature,  iteratively, quantitatively, interpolative, 
probabilistic paradigm). 

One possible definition of a random vector  in an ecogeoreferenceable,  S. damnosum 
s.l. endmember, stochastic, probabilistic, iterative interpolator  for optimally remotely, 
targeting, unknown, un-geosampled,  geo-spectrotemporal, hypeproductive, partially 
canopied, trailing vegetation, seasonal, uncoalesced, oviposition sites on geoclassifiable, 
moderate resolution LULCs in ArcGIS may be  a k-variate normal distribution. In 
mathematics, a linear combination is an expression constructed from a set of terms by 
multiplying each term by a constant and adding the results (e.g. a linear combination of x and 
y would be any expression of the form ax + by, where a and b are constants. Every linear 
combination of k components has a univariate normal distribution [25]. The concept of linear 
combinations is central to linear algebra and related fields of mathematics 
[http://mathworld.wolfram.com]. Hence, probabilistically regressively quantitating 
explanatorial,  linear combinations in the context of a vector space over a field, with some 
generalizations in a a dataset of metaheuristically optimizable, seasonally forecastable, eco-
georeferenceable, narrow, African, agro-village,  riverine, tributary, hypeproductive, 
discontinuously canopied, trailing vegetation, uncoalesced, S. damnosum s.l., optimal, 
fractionalized, endmember,  clustering, uncoalesced, iteratively  interpolative, diagnostic 
regressors representing targeted seasonally hypeproductive, oviposition sites on moderate 
resolution, topologically  geoclassifiable LULCs. Its importance would also derive mainly 
from the multivariate central limit theorem. Where applicable, the central limit theorem 
dictates that at any such point could be quantitated employing the sum of these individual 
plane-wave contributions if they exhibit a Gaussian distribution. The multivariate normal 
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distribution is often used to describe, at least approximately, any set of (possibly) correlated 
real-valued random variables each of which clusters around a mean value . 

 A novel Gaussian process approximation to the posterior measure over paths for a 
general class of stochastic differential equations  may be optimally   constructed in ArcGIS 
employing multivariate, moderate resolution, geo-spectrotemporal, eco-georeferenceable, 
uncoalesced, geoclassifiable,  seasonal, LULC datasets of hyperproductive, trailing 
vegetation, immature, S. damnosum s.l., immature habitat, geospatial explanative 
observations geosampled in a narrow, African, riverine tributary, agro-village ecosystem. The 
method may be applicable to two simple problems: the Ornstein-Uhlenbeck process, of which 
the exact solution is known and can be compared to, and the double-well system, for which 
standard approaches such as the ensemble Kalman smoother commonly fail to provide a 
satisfactory result. Kalman filtering, also known as linear quadratic estimation (LQE), is an 
algorithm in ArcGIS that employs a series of endmember, uncoalesced, moderate resolution, 
geoclassifiable,  LULC measurements observed over time, containing statistical noise and 
other inaccuracies, and produces estimates of unknown variables that tend to be more precise 
than those based on a single measurement alone, by  employing Bayesian inference and 
estimating a joint probability distribution over  the predictor variables for each 
geospectrotemporally geosampled time frame.  

 
In mathematics, the Ornstein–Uhlenbeck process, is a stochastic process that, roughly 

speaking, describes the velocity of a massive Brownian particle under the influence of 
friction [www.mathworld.wolfram.com]. The process is stationary Gauss–Markov process 
(which means that it both a Gaussian and Markovian process), and is the only nontrivial 
process that satisfies conditions for allowing linear transformations of the space and time 
variables. Over time, the  uncoalesced, hyperproductive, discontinuously canopied, balck-fly. 
immature habitat, moderate resolution, uncoalesced, iteratively interpolative, explanatively 
diagnostic LULC, proxy biosignatureprocess may tend to geo-spectrotemporally drift towards 
a long-term mean: (i.e., mean-reverting). This process can be considered to be a modification 
of the random walk in continuous time, or Wiener process, in which  an uncoalesced, 
geosampled,   dataset of hyperproductive, capture point, trailing vegetation, narrow, African, 
S. damnosum s.l., endemic,  oviposition,  orthogonally decomposed, geoclassified, moderate 
resolution,  time series,  endmember signature, geoclassifiable LULC,  geo-spectrotemporal 
properties have been changed so that there is a tendency of the walk to move back towards a 
central geolocation (e.g., eco-epidemiological, trailing vegetation, partially canopied, turbid 
water, agro-village, narrow riverine tributary, eco-georeferenced, capture point), with a 
greater attraction when the process is further away from the center. In mathematics, the 
Wiener process is a continuous-time stochastic process  which is often called standard 
Brownian motion [26]. 

The Wiener process is one of the best known Lévy processes (càdlàg stochastic 
processes with stationary independent increments) and occurs frequently in economics, 
quantitative finance, and physics.The Wiener process also plays an important role both in 
pure and applied mathematics. In pure mathematics, the Wiener process gave rise to the study 
of continuous time martingales. A martingale is a sequence of random variables (i.e., a 
stochastic process) for which, at a particular time in the realized sequence, the expectation of 
the next value in the sequence is equal to the present observed value even given knowledge of 
all prior observed values[25]. It is a key process in terms of which more complicated 
stochastic processes can be described. As such, Brownian motion plays a vital role in 
stochastic calculus, diffusion processes and even potential theory. Unfortunately the process 
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has only been utilized in vary few contributions to ArcGIS or vector entomological, 
predictive mathematical modelling literature.   

Importantly, Weiner process is the driving process of Schramm–Loewner evolution.In 
probability theory, the Schramm–Loewner evolution with parameter κ, also known as 
stochastic Loewner evolution (SLEκ), is a family of random planar curves that have been 
proven to be the scaling limit of a variety of two-dimensional lattice models in statistical 
mechanics. Given a parameter κ and a domain in the complex plane U in a moderate 
resolution, S. damnosum s.l., endrmic, oviposition, probabilistic, moderate resolution, 
endmember LULC, signature paradigm would render a family of random curves in U, with κ 
controlling how much the curve turns in the habitat distribution data 

There are two main variants of SLE, chordal SLE which gives a family of random 
curves from two fixed eco-georeferenceable, boundary points, and radial SLE, which gives a 
family of random curves from a fixed boundary point to a fixed interior point. These curves 
are defined to satisfy conformal invariance and a domain Markov property. 

           Stochastic process has the Markov property if the conditional probability distribution 
of future states of the process (i.e., conditional on both past and present states) depends only 
upon the present state, not on the sequence of events that preceded it. A. In probability theory 
and statistics, given two jointly distributed random variables X and Y, the conditional 
probability distribution of Y given X is the probability distribution of Y when X is known to 
be a particular value; in some cases the conditional probabilities may be expressed as 
functions containing the unspecified value x of X as a parameter [25]. In case that both "X" 
and "Y"  are categorical variables like in  moderate resolution, S. damnosum s.l. seasonal, 
eco-epidemiological, forecast vulnerability, immature habitat, regression model  a conditional 
probability table is typically  employeable to represent the conditional probability in the 
diagnostic, residual forecasts (e.g., eco-georeferenceable, targeted, hypeproductive, capture 
point, S. damnosum s.l., endemic,  oviposition geolocation). The conditional distribution 
contrasts with the marginal distribution of a random variable, which is its distribution without 
reference to the value of the other variable ( http://mathworld.wolfram.com).  The term strong 
Markov property is similar to the Markov property, except that the meaning of "present" is 
optimally definable in terms of a random variable known as a stopping time. Both the terms 
"Markov property" and "strong Markov property" have been used in connection with a 
particular "memoryless" property of the exponential distribution [25]. 

According to Jacob et al. [22], an explicative Poissonized, processed, optimal, eco-
epidemiological,  forecast, vulnerability, geo-spectrotemporal, S. damnosum s.l., immature, 
habitat, fractionalized endmember, iteratively, interpolative, biosignature 
,probabilistic,paradigm can remotely target, seasonally hyperproductive, geo-
spectrotemporally uncoalesced, eco-georeferenced, capture point, oviposition sites on 
moderate resolution,  geoclassifed LULCs employing  iteratively interpolative diagnostic 
statistics. Possion is a particular case of the gamma distribution 
[http://mathworld.wolfram.com]. A gamma distribution is a general type of statistical 
distribution that is related to the beta distribution and arises naturally in processes for which 
the waiting times between Poisson distributed events are relevant [25]. It is the continuous 
analogue of the geometric distribution, and it has the key property of being memoryless. In 
probability, statistics and related fields, a Poisson point process or Poisson process (also 
called a Poisson random measure, Poisson random point field or Poisson point field) is a type 
of random mathematical object that consists of points randomly located on a mathematical 
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space[http://mathworld.wolfram.com]. The exponential distribution is not the same as the 
class of exponential families of distributions, which is a large class of probability 
distributions that includes the exponential distribution as one of its members, but also 
includes the normal distribution, binomial distribution, gamma distribution, Poisson, and 
many others which may be displayed in ArcGIS. In such paradigms the exponential 
distribution (a.k.a. negative exponential distribution)  would be  the probability distribution 
that would optimally describe the time between sampling events in an S. damnosum s.l., 
habitat, uncoalesced, moderate resolution, wavelength, trasnmittance, parameterizable, 
frequency, covariate estimator dataset [i.e. a process in which events occur continuously and 
independently at a constant average rate].   

    Interestingly, the Ornstein–Uhlenbeck process can also be considered as the 
continuous-time analogue of the discrete-time autoregressive [AR] (1) process in ArcGIS. An 
(AR) model is a representation of a type of random process; as such, it describes certain 
explanatorial, time-varying, multivariate, moderate resolution, geoclassifiable, LULC, 
explanatively, residually diagnostic, endmember, proxy signature, predictive, vulnerability, 
modelling exercises. The autoregressive model in ArcGIS specifies that the output variable 
which may depend linearly on its own previous values and on a stochastic term (an 
imperfectly predictable  geo-spectrotemporally geosampled, eco-georeferenceable, 
hyperproductive, immature, S. damnosum s.l., seasonal, oviposition eco-georeferenceable,  
moderate resolution, imaged geolocation, covariate term); thus, the model would in the form 
of a stochastic difference equation in ArcGIS.Together with the Moving-Average (MA) 
model, it is a special case and key component of the more general ARMA and ARIMA 
models of time series in ArcGIS, which may have a more complicated stochastic structure; it 
may have  a special case of the vector autoregressive model (VAR), which consists of a 
system of more than one stochastic difference equation.Contrary to the MA model, the AR 
model in ArcGIS is not always stationary as it may contain a unit root(www.esri.com). 

A unit root is a feature of processes that evolve through time that can cause problems 
in statistical inference involving time series, moderate resolution, bio-ecological 
explanative,LULC processes (e.g.,  probabilistic, endmember, proxy, signature paradigms 
representing uncoalesced, S. damnosum s.l. iterative, interpolative, forecasting vulnerability, 
oviposition estimators as a response (dependent variable). A linear stochastic process has a 
unit root if 1 is a root of the process's characteristic equation [25]. Such a process is non-
stationary, but does not always have a trend. If the other roots of the characteristic equation 
lie inside the unit circle in an explanative, metaheuristically optimizable, S. damnosum s.l., 
predictive, eco-epidemiological, moderate resolution,  risk model—that is, if the paradigm 
has a modulus (i.e., absolute value) less than one—then the first difference of the process will 
be stationary; otherwise, the process will need to be differenced multiple times to become 
stationary. Due to this characteristic, unit root processes are also called difference stationary 
[25]. Unit root processes may sometimes be confused with trend-stationary model processes; 
while they share many properties, they are different in many aspects. It is possible for a time 
series, trailing vegetation, turbid water, narrow, African, riverine, tributary, ecosystem, 
moderate resolution,  eco-epidemiological, forecast, vulnerability, endmember, LULC,proxy 
biosignature, discontinuously canopied, S. damnosum s.l., eco-georeferenceable,  habitat 
model to be non-stationary,  have no unit-root  yet be trend-stationary. In both unit root and 
trend-stationary processes, the mean can be growing or decreasing over time; however, in the 
presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory, the time 
series, optimally parameterizable, moderate resolution,  S. damnosum s.l., elucidative, 
endmember, uncoalesced LULC, proxy biosignature, uncoalesced, paramterizable covariates  
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will converge again towards the growing mean, which may not be affected by the shock) 
while unit-root processes may have a permanent impact on the mean (i.e. no convergence 
over time). If a root of the process's characteristic equation is larger than 1, then it is called an 
explosive process, even though such processes are often inaccurately called unit roots 
processes[25].The presence of a unit root in a seasonal,  hyerproductive, trailing vegetation, 
narrow, African, riverine tributray, agro-village, S. damnosum s.l., eco-georeferenced, 
oviposition, geoclassified capture point on a moderate resolution, ArcGIS-derived, LULC  
can be tested employing a unit root test. In statistics, a unit root test tests whether a time 
series, predictor variable is non-stationary and possesses a unit root where the null hypothesis 
is generally definable as the presence of a unit root and the alternative hypothesis is either 
stationarity, trend stationarity or explosive root depending on the test used [26]. 

      SAS/GIS software may reveal variational approximation is optimally feasible in a 
geo-spectrotemporal, moderate resolution, eco-georeferenceable, geospatial, explanative, 
diagnostic, hyperproductive, seasonal, trailing vegetation, turbid water, agro-village complex, 
S. damnosum s.l., endemic, oviposition, targeting, probabilistic paradigm. The results may be 
very promising as the variational approximate solution may outperform standard Gaussian 
process regression for non-Gaussian Markov processes. To every Markov process with a 
symmetric transition density, there corresponds two random fields over the state space: a 
Gaussian field (the free field) φ and the occupation field which describes the amount of time 
the object spends at each state [25]. A relation between these two explicative diagnostic, time 
series, random fields in a orthogonally decomposable, moderate resolution, eco-
georeferenceable,  seasonally hyperproductive, trailing vegetation,  S. damnosum s.l., 
oviposition, forecast, vulnerability, geoclassifiable LULC, proxy, endmember, signature 
model  may be  established which would be useful both for optimally quantitating, geo-
spectrotemporal, derivative, endmember,  Markovian processes. A Markov process can be 
thought of as 'memoryless': loosely speaking, a process satisfies the Markov property if one 
can make predictions for the future of the process based solely on its present state [25].  

Every Gauss–Markov process X(t) possesses the three following properties:1)If h(t) is a 
non-zero scalar function of t, then Z(t) = h(t)X(t) is also a Gauss–Markov process,2) If f(t) is 
a non-decreasing scalar function of t, then Z(t) = X(f(t)) is also a Gauss–Markov process and 
and, 3) if  there exists a non-zero scalar function h(t) and a non-decreasing scalar function f(t) 
such that X(t) = h(t)W(f(t)), where W(t) is the standard Wiener process. Any continuous  
stochastic process with the Markov property, e.g. the Wiener process. 

In applied mathematics, the Wiener process is used to represent the integral of a white 
noise Gaussian process, random vector (that is, a partially indeterminate process that 
produces vectors of real discrete explanatorial integers such as geo-spectrotemporally 
geosampled, S. damnosum s.l. seasonal, trailing vegetation, narrow, African, riverine 
tributary, agro-village, complex,  decomposed, immature habitat,  regression, wavelength, 
trasmittance, emissivity, uncoalesced, covariate coefficients) is said to be a white noise vector 
or white random vector if its components each have a probability distribution with zero mean 
and finite variance, and are statistically independent: that is, their joint probability 
distribution must be the product of the distributions of the individual components.  

A necessary (but, in general, not sufficient) condition for statistical independence of 
two, elucidative, trailing vegetation, eco-georeferenceable,  S. damnosum s.l. seasonal,  
immature habitat,  autoregressive, geo-spectrotemporal  variables,  geosampled in a narrow, 
African, riverine, agro-village, sparsely canopied, tributary is that they be statistically 
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uncorrelated; that is, their covariance is zero[22]. S such, the covariance matrix R of the 
components of a white noise vector w with n elements must be an n by n diagonal matrix, 
where each diagonal element Rii is the variance of component wi; and the correlation matrix 
must be the n by n identity matrix. In particular, if in addition to being independent every 
geo-spectrotemporally geosampled endmember LULC biosignature, uncoalesced, 
explicatively, geoclassified, moderate resolution, orthogonally decomposed, predctor variable 
( e.g., hyperproductive, S. damnosum s.l. partially canopied, seasonal, eco-georefernceable, 
narrow, African, agro-village, riverine tributary, immature, trailing vegetation, turbid water, 
capture point, discontinuously canopied covariate) in w also has a normal distribution with 
zero mean and the same variance, w is said to be a Gaussian white noise vector. In that case, 
the joint distribution of w is a multivariate normal distribution; the independence between the 
hyperproductive, capture point, endemic, oviposition, eco-georeferenceable, heursitically 
optimizable, predictor variables then implies that the distribution has spherical symmetry in 
n-dimensional space. Therefore, any orthogonal transformation of the vector will result in a 
Gaussian white random vector in the forecasting vulnerability model. In particular, under 
most types of discrete Fourier transform (DFT), such as FFT and Hartley, the transform W of 
w will be a Gaussian white noise vector, too; that is, the n Fourier coefficients of w will be 
independent Gaussian variables with zero mean and the same variance . 

In mathematics, the DFT converts a finite sequence of equally spaced samples of a 
function into the list of coefficients of a finite combination of complex sinusoids, ordered by 
their frequencies, that has those same sample values. It can be said to convert the sampled 
function from its original domain (often time or position along a line) to the frequency 
domain.The input samples are complex numbers (in practice, usually discrete variables 
(endmember, geosampled, S. damnosum s.l., uncoalesced, moderate resolution, waveband 
values), and the output coefficients are complex as well. The frequencies of the output 
sinusoids are integer multiples of a fundamental frequency, whose corresponding period is 
the length of the sampling interval. The combination of sinusoids obtained through the DFT 
is therefore periodic with that same period. The DFT differs from the discrete-time Fourier 
transform (DTFT) in that its input and output sequences are both finite; it is therefore said to 
be the Fourier analysis of finite-domain (or periodic) discrete-time functions. 

The DFT is the most important discrete transform, used to perform Fourier analysis in 
many practical applications. In digital signal processing, the function is any quantity or signal 
that varies over time, such as the pressure of a sound wave, a radio signal, or daily 
temperature readings, sampled over a finite time interval (often defined by a window 
function) [25].In image processing, the samples can be the values of mixels along a row or 
column of a raster image. The DFT is also used to efficiently solve partial differential 
equations, and to perform other operations such as convolutions or multiplying large discrete 
integers. The FFT is commonly used to transform an image between the spatial and 
frequency domain (www.esri.com). Unlike other domains such as Hough and Radon, the 
FFT method preserves all original data. Plus, FFT fully transforms images into the frequency 
domain, unlike time-frequency or wavelet transforms. The FFT  can decompose a trailing 
vegetation, hypeproductive,  discontinuously canopied, eco-georeferenced, S. damnosum s.l., 
immature, LULC, capture point, oviposition site on a moderate resolution geoclassified 
image into sines and cosines of varying amplitudes and phases, which  can reveals repeating 
endmember pattern  within a narrow African, riverine, tributray, agro-village ecosystem 
seasaonl  image.  
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The displacement between two seasonal, hyperpoductive, eco-georeferenced, S. 
damnosum s.l., habitat, proxy signature images may be determined by computing the ratioF1 
conj(F2)=[F1F2}; and then applying the inverse Fourier transform in ArcGIS. The result may 
be an impulse-like function, which may be approximately zero everywhere except at the 
displaceent that is necessary to optimally register moderate resolution, geoclassifiable, 
endmember, LULC images. Converting from rectangular coordinates to log-polar 
coordinates, shifts representing rotation and scaling can also determined to complete the 
georectification process of the images. A FFT-based algorithm has been successfully 
implemented in Interactive DataLanguage (IDL) and added as two user functions to an image 
processing software package—Environment for Visualizing Images (ENVI) interface. ENVI 
handles all pre- and post-processing works such as input/output, display, filter, analysis, and 
file management. (www.harrisgeospatial.com). 

 
 Nonhomogeneous, seasonal, moderate resolution, trailing vegetation, turbid water, 
narrow, African, agro-village, complex ecosystem, eco-georeferenceable, seasonally 
hyperproductive, discontinuously canopied,  S. damnosum s.l. immature habitat,  capture 
point geo-spectrotemporal, endmember, forecasting, endmember signature-oriented,  ordinary 
differential equations  may be solved  in Python. Python was introduced to the ArcGIS 
community at 9.0 and since then, it has been accepted as the scripting language of choice for 
ArcGIS users (www.esri.com). PyDSTool is platform independent, written primarily in 
Python with some underlying C and Fortran legacy code for fast solving. NumPy is the 
fundamental package for scientific computing with Python which contains among other 
things:a powerful N-dimensional array, object-oriented,  sophisticated, broadcasting, 
functions tools for integrating C/C++ and Fortran code useful for linear algebra, Fourier 
transform, and random number capabilities The SciPy library is one of the core packages that 
make up the SciPy stack. It provides many user-friendly and efficient numerical routines such 
as routines for numerical integration and optimization (http://scipy.org/scipylib/). PyDSTool 
is a sophisticated and integrated simulation and analysis environment for dynamical systems 
models of bio-geophysical systems (ODEs, DAEs, maps, and hybrid systems) such as 
fractionalized endmember iteratively interpolative, S. damnosum s.l., ecogeoreferenceable, 
capture points. The platform can make use extensive use of the numpy and scipy libraries. 
PyDSTool van may support symbolic math, optimization, phase plane analysis, continuation 
and bifurcation analysis, data analysis, and other tools for optimal, forecast vulnerability 
seasonal, S. damnosum s.l., endemic, transmission-oriented, regression  modeling  for 
remotely targeting, hyperproductive, narrow, African , riverine tributary, endemic, 
oviposition sites using a geo-spectrotemporally uncoalesced, moderate resolution, 
geoclassifiable,  proxy LULC, fractionalized endmember biosignature as a dependent varable 
in a stochastic iterative interpolator.  

        Suppose the general solution to the homogenous version is known,  in an elucidatively 
empirical Bayesian, iteratively interpolative, undetermined, explantive dataset of   
probabilistically quantitatively   geo-spectrotemporal,  eco-geoereferenceable, endmember, S. 
damnosum s.l. capture point, moderate resolution, sub-optimally parameterizable,  
geoclassified, orthogonally decomposed, seasonal LULC, optimizable, biosignature 
covariate.In such circumstances,  equations dy/dx=f(x,y).  may  be assumed to be  
homogeneous if the function f(x,y) is homogeneous, that is f (tx,ty)= f(x,y) for any geo-
spectrotemporal, geosampled, seasonally, explantive,  hyerproductive, eco-georeferenceable, 
S. damnosum s.l., oviposition, endemic,sites on a moderate resolution, geoclassified, ArcGIS-
derived, LULC, [ trailing vegetation, turbid water, discontinuously canopied, agro-village, 
flooded habitat). By substitution, a medical entomologist or experimenter may consider the 
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new functionz=y/x in PROC MODEL which would be equivalent to y-xz.The new 
differential equation satisfied by z would be x dz/dx+z=f(1,z) which is a separable equation. 
The solutions are the constant ones f(1,z) - z =0 and the non-constant ones would then be 

given by   In so doing,  moderate resolution,  wavelength   
transmittance emissivity,  variant and invariant, metaheursitcially  optimizable   parameters 
can be parsimoniously  tabulated to resolve residual frequency distribution  non-normalities  
in krigeable uncoalesced biased, prolific,immature black-fly,  habitat, frequency  estimators 
on geoclassified ArcGIS moderate  resolution LULC s ( e.g.,  partially canopied, trailing 
vegetation, agro-village, riverine tributray meandering corridor).  

The Bayesian approach to endmember regularization and model-comparison may be 
demonstrated by studying the inference problem of interpolating noisy, moderate resolution, 
S. damnosum s.l, orthogonally decomposed, eco-georeferenceable, seasonal,LULC, endemic, 
oviposition data in ArcGIS. The concepts and methods described may be applicable to many 
other data modeling problems. Regularizing constants may be set by examining the posterior 
probability distribution. Alternative regularizers (priors) and alternative basis sets amay be 
objectively compared by evaluating the evidence for them. “Occam's razor” may be 
automatically embodied by this process. One justification of Occam's razor is a direct result 
of basic probability theory which by  definition explicity states that all assumptions introduce 
possibilities for error; if an assumption does not improve the accuracy of a theory, its only 
effect is to increase the probability that the overall theory is wrong [Hawking, Stephen 
(2003). On the Shoulders of Giants. Running  Press. p. 731. ISBN 0-7624-1698-X. Retrieved 
2016-03-24]. The way in which Bayes infers the values of regularizing constants and noise 
levels may have  an elegant interpretation for constructing an  eco-georeferenced, trailing 
vegation, discontinuously  canopied, endemic, oviposition dataset of empricial , eco-
georferenecable, LULC, eco-epidemiological,capture points,  geo-spectrotemporally 
geosampled in  narrow,   African, riverine, tributary,agro-village ecosystems  in terms of the 
effective number of  parameters determined by the data for  targeting seasonal, 
hyperproductive,immature, seasonal,  habitats. 

In Bayesian statistics, one does not "test normality" per se, but rather computes the 
likelihood that the data come from a normal distribution with given parameters μ,σ (for all 
μ,σ), and compares that with the likelihood that the data come from other distributions under 
consideration, most simply using a Bayes factor (giving the relative likelihood of seeing the 
data given different models), or more finely taking a prior distribution on possible models 
and parameters and computing a posterior distribution given the computed likelihoods. 
Bayesian approach to interpolation of spatial processes can provide a general methodology 
for taking into account the uncertainty about geoclassifiable LULC parameters on subsequent 
predictions. Empirical Bayesian kriging (EBK) is a geostatistical interpolation method that 
automates the most difficult aspects of building a valid kriging model. 

  The basic idea of kriging is to predict the value of a function at a given point by 
computing a weighted average of the known values of the function in the neighborhood of the 
point. The method is mathematically closely related to regression analysis. Both theories 
derive a best linear unbiased estimator, based on assumptions on covariances, make use of 
Gauss-Markov theorem to prove independence of the estimate and error, and make use of 
very similar formulae. In statistics, the Gauss–Markov theorem, states that in a linear 
regression model in which the errors have expectation zero and are uncorrelated and have 
equal variances, the best linear unbiased estimator (BLUE) of the coefficients is given by the 
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ordinary least squares (OLS) estimator Even so, they are useful in different frameworks ( e.g., 
interpolating a geo-spectrotemporally, geospatially uncoalesced datset of moderate resolution 
S. damnosum s.l. endmembers).Kriging is made for estimation of a single realization of a 
random field, while regression models are based on multiple observations of a multivariate 
data set[25]. 

Kriging starts with a prior distribution over functions. This prior takes the form of a 
Gaussian process wherebysamples from a function will be normally distributed, andthe 
covariance between any two samples is the covariance function (or kernel) of the Gaussian 
process evaluated at the spatial location of two points. In a Gaussian process, every point in 
some continuous input space is associated with a normally distributed random variable 
(www.esri.com). A set of decomposed, values (e.g., interpolatable, moderate resolution, 
partially canopied, trailing vegetation, partially canopied, trailing vegetaion, turbid water, 
endmember eigenvectors)  is then observed, each value associated with a spatial location ( 
e.g., eco-georeferenceable, hyperproductive, S. damnosum s.l. habitat). Now, a new value can 
be predicted at any new spatial geolocation, by combining the Gaussian prior with a Gaussian 
likelihood function for each of the observed values. The resulting posterior distribution is also 
Gaussian, with a mean and covariance that can be simply computed from the observed values 
in ArcGIS or SAS, where the  variance, and the kernel matrix is derivable from the prior. In 
mathematics, and more specifically in linear algebra and functional analysis, the kernel (also 
known as null space or nullspace) of a linear map L : V → W between two vector spaces V 
and W, is the set of all elements v of V for which L(v) = 0, where 0 denotes the zero vector in 
W.  

 The kriging estimation of an orthogonally decomposed, trailing vegetation, 
discontinuously canopied,  S. damnsoum s.l.,  narrow, African, riverine tributary agro-village, 
immature habitat, moderate resolution, orthogonally decomposed, endmember,geoclassified, 
LULC, oviposition signature may also be seen as a spline in a reproducing kernel Hilbert 
space, with the reproducing kernel given by the covariance function. In In probability theory 
and statistics, covariance is a measure of how much two variables change together, and the 
covariance function, or kernel, describes the spatial covariance of a random variable process 
or field [25]. In functional analysis (a branch of mathematics), a reproducing kernel Hilbert 
space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear 
functional. Roughly speaking, this means that if two functions f and g in the RKHS are close 
in norm, i.e., ||f-g|| is small, then f and g are also pointwise close,( i.e., |f(x)-g(x)| is small for 
all x). The reverse need not be true. It is not entirely straightforward to construct a Hilbert 
space of functions which is not an RKHS [26]. Note that L2 spaces are not Hilbert spaces of 
functions (and hence not RKHSs), but rather Hilbert spaces of equivalence classes of 
functions (e.g., the functions f and g defined by f(x)=0 and g(x)=1 may be  equivalent in a 
forecast vulnerability, moderate resolution, hypeproductive, seasonal, eco-epidemiological, 
capture point, eco-georeferenceable, trailing vegetation, turbid water, narrow, African, 
riverine tributary, agro-village, partially canopied,   S. damnosum s.l.,  probabilistic, 
endmember paradigm based on  L2). A square-integrable function, also called a quadratically 
integrable function, is a real- or complex-valued measurable function for which the integral 
of the square of the absolute value is finite[http://mathworld.wolfram.com].  

Many differential equations can be solved exactly in the Wolfram Language using 
DSolve[eqn, y, x], and numerically using NDSolve[eqn, y, x, xmin, xmax ]. The Wolfram 
Language introduces a full Geographic Information System (GIS) which integrates the 
powerful new GeoGraphics function for map constuction. In so doing, the new Entity 
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framework can access the large corpus of geo-spectrotemporally geosampled, S. damnosum 
s.l. seasonal information in Wolfram|Alpha, and improve functionality for geodetic 
computations. An ordinary differential equation (frequently called an "ODE," "diff eq," or 
"diffy Q") as an equality involving a function and its derivatives. An ODE of order n is an 
equation of the form. In general, an n th-order ODE has n linearly independent solutions. 
Furthermore, any linear combination of linearly independent functions solutions would  also  
be a solution in a robust, S. damnosum s.l., predictor model for targeting seasonal, 
hyperproductive, trailing vegetation, discontinuously canopied,  immature, riverine agro-
village, tributary habitats  

 Simple theories exist for first-order (integrating factor) and second-order (Sturm-
Liouville theory)ODEs , and arbitrary ODEs with linear constant coefficients which can be 
solved when they are of certain factorable forms. Integral transforms such as the Laplace 
transform can also be used tosolve classes of linear ODEs. Sturm-Liouville equation 

Morse and Feshbach (1953, pp. 667-674) give canonical 
forms and solutions for second-order ordinary differential equations.  

 While there are many general techniques for analytically solving classes of ODEs for 
optimal, S. damnosum s.l., forecast, vulnerability-oriented,  fractionalized, endmember LULC 
biosignature, iterative, interpolative modeling the only practical solution technique for useage 
of such complicated equations in ArcGIS is to employ numerical methods. The most popular 
of these is the Runge-Kutta method, but many others have been developed, including the 
collocation method and Galerkin method. In numerical analysis, the Runge–Kutta methods 
are a family of implicit and explicit iterative methods, which includes the well-known routine 
called the Euler Methods, used in temporal discretization for the approximate solutions of 
ordinary differential equations[26].The Euler method is a first-order method, which means 
that the local error (error per step) is proportional to the square of the step size, and the global 
error (error at a given time) is proportional to the step size. The Euler method often serves as 
the basis to construct more complex methods, [ e.g., Predictor–corrector method. 
(http://mathworld.wolfram.com) Temporal discretization involves the integration of every 
term in different equations over a time step (Δt)] [25]. The spatial domain in a S. damnosum 
s.l., endmember, probabilsic paradigm may be discretized to produce a semi-discrete form. 

 Semi discrete discontinuous Galerkin methods andstage-exceeding-order, strong-
stability-preservingRunge–Kutta time discretizations may probabilistically quantitate 
moderate resolution, orthogonally decomposed, endmember S. damnosum s.l. propagational 
noise. the use of a special class of strong-stability-preserving (SSP) Runge–Kutta time 
discretization methods in ArcGIS in conjunction with discontinuous Galerkin (DG) finite 
element spatial discretizatons may aid in precision traghteing hypeproductive, seasonal, S. 
damnosum s.l. , oviposition, eco-epidemioloigical, eco-georferenceable, capture points, in 
narrow , African riverine , tributary ecosystems, The class of SSP methods investigated here 
would be  defined by the property that the number of stages s is greater than the order k of the 
method. From analysis, Courant–Friedrichs–Lewy (CFL) conditions for the linear (L2) 
stability of the methods defined using the s > k SSP schemes are obtained that 
are less restrictive than those of the ‘‘standard’’ so-called RKDG methods that use s = k SSP 
Runge–Kutta schemes. In mathematics, the CFL condition is a necessary condition for 
convergence while solving certain partial differential equations (usually hyperbolic PDEs) 
numerically by the method of finite differences[26]. The improvement in the CFL conditions 
for linear stability of the methods may more than offset the additional work introduced by the 
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increased number of stages. Given that the CFL conditions for linear stability in a robust, S. 
damnosum s.l., predictive, risk model are what must be respected in practice in order to 
maintain high-order accuracy in the residual forecasts targeting the prolific narrow African 
riverine tributary, partially canopied, trailing vegetated, immature habitats, the use of the s > 
k SSP schemes in ArcGIS may results in RKDG methods that are more efficientthan those 
previously defined. Furthermore, with the application of a slope limiter, the nonlinear 
explanative, stability properties of the forward Euler method and the DG spatial discretization 
in the S. damnosum s.l. oviposition, forecasting vulnerability, probabilistic paradigm may be 
preserved with these methods under less restrictive CFL conditions than those required for 
linear stability. Thus, more efficient RKDG methods that possess the same favorable 
accuracy and stability properties of the ‘‘standard’’ RKDG methods may obtained for the 
model. Numerical validation results may verify the CFL conditions for stability obtained 
from the S. damnosum s.l. immature habitat analysis and demonstrate the efficiency 
advantages of these new RKDG methods in ArcGIS. The resulting RKDG methods may 
provide  stable, high-order accurate,and highly parallelizable schemes that may easily handle 
complicated geometries and boundary conditions of moderate resolution imaged eco-
georferenced S. damnosum s.l. immature habitats. The theoretical and algorithmic aspects of 
these methods in ArcGIS may show several alternative model applications including, the 
compressible and incompressible Hamilton-Jacobi-like equations for predictinf 
hypeproductive habiatts of this vector arthropod. 

In mathematics, the Hamilton–Jacobi equation (HJE) is a necessary condition 
describing extremal geometry in generalizations of problems from the calculus of variations, 
and is a special case of the Hamilton–Jacobi–Bellman equation[26]. The Hamilton-Jacobi 
Equation is a first-order nonlinear partial differential equation of the form 
H(x,u x (x,α,t),t)+u t (x,α,t)=K(α,t)  with independent variables (x,t)∈R n ×R  and parameters 

α∈R n  .  The equations defined by  q  =  where and is fluxion 
notation and is the so-called Hamiltonian, are called Hamilton's equations. These equations 
frequently arise in problems of celestial mechanics. The vector form of these equations is 

=  and = [26]. Another formulation related to Hamilton's equation is 

 where is Lagrangian. [ http://mathworld.wolfram.com]. 

 It has wide applications in optics, mechanics, and semi-classical quantum theory. Its 
solutions determine infinite families of solutions of Hamilton's ordinary differential 
equations, which are the equations of motion of a mechanical system or an optical system in 
the ray approximation. In physics, it is a formulation of classical mechanics, equivalent to 
other formulations such as Newton's laws of motion. Lagrangian  mechanics and Hamiltonian 
mechanics. The Hamilton–Jacobi equation is particularly useful in identifying conserved 
quantities for mechanical systems, which may be possible even when the mechanical prblem 
itself cannot be solved completely. 

The Hamilton-Jacobi equation may be employed in order to derive analytical 
formulae for a motion of acapture point, trailing vegetation, narrow, African, agro-village 
complex, hypeproductive, seasaonl S. damnosum s.l., oviposition, eco-georferenceable, 
model in the central Newtonian M/r potential. The derived formulae can then be used to 
compare an approximate numerical solution against an analytical,( i.e., exact solution to the 
problem of geolocating, un-geosampled, prolific habitats in a narrow, African, riverine 
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tributray, agro-village complex). The problem may be easiest to describe in spherical 

coordinates, r, and in ArcGIS. In these coordinates the Hamiltonian would assume the 

following form:  where the gravitational constant G = 1, and 
the mass of the material point m = 1 too.  The Hamilton-Jacobi equation that corresponds to 

that Hamiltonian is [26].The method that is 
commonly use here is called the separation of variables. The Hamiltonian does not depend 

explicitly on time, t and angle Therefore, an optimal solution may be  sought for seasonal,  
S. damnosum s.l. model fitting in the following form: 

where C is a constant. Substituting this into the Hamilton-

Jacobi equation would yield . 
 

Multiplying this equation by 2 r2.in ArcGIS may allow rewriting this equation placing 
all terms that depend on on the left hand side and all terms that depend on r on the right 

hand side: Because expressions on both sides of 
this equation depend on different LULC variables, the equality can hold in the S. damnosum 
s.l. forecast, vulnerability probabilisc paradigm only if they are equal to the same constant, 

L2:  And this implies that: 

= and = These, in turn, are first order  ODE which can 
be readily integrated..into a moderate resolution S. damnosum s.l., stochastic  endmember 
signature interpolatior in ArcGIS. 

 
The solutions to an ODE satisfy existence and uniqueness properties. These can be 

formally established by Picard's existence theorem for certain classes of ODEs. Let a system 

of first-order ODE be given by  for , ..., and let the functions 
, where , ..., , all be defined in a domain of the -dimensional space 

of the variables , ..., , . Let these functions be continuous in and have continuous first 
partial derivatives for , ..., and , ..., in . Let be in . Then there 
exists a solution of (4) given by for (where ) 
satisfying the initial conditions  

 Furthermore, the solution is unique, so that if is a second 
solution of (◇) for satisfying (◇), then for . 
Because every th-order ODE can be expressed as a system of first-order ODEs, this 
theorem also applies to the single th-order ODE. An exact first-order ordinary differential 

equation is one of the form where An equation of the form 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

43 
Copyright © acascipub.com, all rights reserved.  

(◇) with is said to be nonexact. If in (◇), it has an -dependent 

integrating factor. If in (◇), it has an -dependent integrating factor. If 

in (◇), it has a -dependent integrating factor.  Other special first-order types 
include cross multiple equations homogeneous equations 

linear equations and separable equations  

 Special classes of second-order ordinary differential equations include (  
missing) and (  missing). A second-order linear homogeneous ODE 

 for which can be transformed to one with 
uncoalesced, moderate resolution, geoclassifiable, diagnostic, LULC, constant coefficients. 
The equation is called homogeneous if f(t)=0. Otherwise, it is called non-homogeneous 
[25].A second-order differential equation is accompanied by initial conditions or boundary 
conditions. Initial conditions are in the form y(t_0)=y_0 and y'(t_0)=y'_0. Boundary 
conditions might be of the form: y(t_0)=a and y(t_1)=b.For the initial value problem, the 
existence and uniqueness theorem states  
that if p(t), q(t) and f(t) are continuous on some interval (a,b) containing t_0,  
then there exists a unique solution y(t) to the ode in the whole interval (a,b). 

 The procedure for solving linear second-order ODE in an ArcGIS geodtabase 
cyberenvironment  has two steps  for finding  the general solution of the homogeneous 
problem: . According to the theory for linear differential equations, 
the general solution of the homogeneous problem is where C_1 and 
C_2 are constants and y_1 and y_2 are any two explanatively, linearly independent solutions 
to the homogeneous equation.  For finding a particular solution of the non-homogeneous 
problem in a S. damnosum s.l.model may require . The particular 
solution is any solution of the non-homogeneous problem and is denoted y_p(t).The general 
solution of the full non-homogeneous problem in the vector arthropod model may be 
conducted parsimoniously by . 

 The key point to note is that all possible solutions to a linear second-order ODE can 
be obtained from two linearly independent solutions to the  
homogeneous problem in a S. damnosum s.l.  forecast, vulnerability model  and any particular 
solution. Here is an example. Consider the ODE The homogeneous 
equation is . It can be shown that y_1=exp(-t) and y_2=exp(-2t) are 
solutions to the homogeneous equation. A particular solution of the non-homogeneous 
equation for the model may be exp(t). Hence,the general solution of the ODE would be 

where C_1 and C_2 are constants. 

 The following are examples of important  ODEs which may help target highly 
productive seasonal S. damnosum s.l., trailing vegetation, narrow African, riverine tributray, 
trailing vegetation, discontinously canopied,  Abel's differential equation 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

44 
Copyright © acascipub.com, all rights reserved.  

Airy differential equation 

,Anger differential equation ,Baer differential 
equations and 

Bernoulli differential equation 
Bessel differential equation Binomial 

differential equation Bôcher equation 

Briot-Bouquet 
equation Chebyshev differential equation ,Clairaut's 
differential equation ,Confluent hypergeometric differential equation 

,d'Alembert's equation Duffing differential equation 

,Eckart differential equation where . 
Emden-Fowler differential equation Euler differential equation 

Halm's differential equation Hermite 
differential equation Heun's differential equation 

where . is Hill's differential 

equation  

 Furthermore, geo-spectrotemporally uncoalesced datsets of moderate resolution, 
endmember eigenvectors from a hypergeometric, S. damnosum s.l., differential equation  

may be robustly constructed in ArcGIS.  Other  
differncial equations for targeting seasonally hypeproductive, eco-georeferenceable 
parameterizable oviposition, trailing vegetation, narrow African, agro-village, 
hypeproductive  S. damnosum s.l. sites on geoclassifiable  moderate resolution, LULCs ( e.g., 
partially canopied, trailing vegetation, narrow, riverine tributary, flooded habitats) include 
Jacobi differential equation    and the 
Laguerre differential equation Other  differential equations for aiding 
in remotely targeting hyperproductive, seasonal, eco-georferenceable, S. damnosum s.l. 
paramterizable  covariates include    

where  

may also be a Lane-Emden differential equation  Also Legendre 
differential equation , Linear constant coefficients 

 a Lommel differential equation 

,Löwner's differential equation Malmstén's 

differential equation ,Mathieu’s differential equation 
where ., and a,Modified spherical Bessel differential 
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equation where  andRayleigh differential 
equation  may be applicable to mapping geo-spectrotemporally 
geosampled, orthogonally decomposed endmembers of  eco-georefrenceable, 
hyperproductive, trailing vegetation, S. damnosum s.l. ovipoistion sites on moderate 
resolution, geoclassified LULCs.Systems with constant coefficients are of the form 

[26]. 

The electromagnetic spectrum is divided into a number of arbitrary wavebands 
depending on either the source of the photons (e.g., solar or terrestrial thermal radiation), or 
their interaction with living material (e.g., ultraviolet, visible, photosynthetically active, 
etc.)]. Coupling, non-frequentistic, explanatorily uncoalesced, quantitatively  interpolative, 
moderate resolution,  web-related, cartographic, iterative applications with elucidatively 
uncoalesced, eco-georeferenceable, discontinuously canopied, log-transformed, log-
normalized, illuminative, radation flux, descriptive, proxy endmember, fractionalized, 
signature covariates of seasonal  narrow, riverine, African, tributary, agro-village, capture 
point, habitat, suitability structures  within customizable, layered subclasses (e.g., 
esri.layers.GraphicsLayer) in ArcGIS (e.g., API for JavaScript)  may also aid in  optimally 
forecasting un-geosampled, seasonally hyperproductive, trailing vegetation, turbid water, 
partially shaded, S. damnosum s.l., oviposition geolocations. Distinct signatures without 
redundant endmembers and errors of moderate resolution, unmixed, land use land cover 
(LULC), wavelength, transmittance, frequency emissivities in a multivariate, stochastic 
interpolator can remotely distinguish a seasonally hyerprpoductive, S. damnosum s.l. trailing 
vegetation, narrow, African, riverine tributary, eco-georefernceable, capture point, 
ovipoistion site on a moderate resolution, expositorily uncoalesced, goclassified,   LULC 
signature  [see 22].   This would  allows construction of a very large variety of maps—in any 
cartographic projection and including the representation of results of arbitrary 
computations—with any type of geoclassifiable , moderate resolution, LULC dataset. 

 
A simulation algorithm may be proposed in ArcGIS (e.g, Geospatial AnalystTM )  to 

generate sample functions of a stationary, multivariate, stochastic process as devised from an 
uncoalesced, proxy, endmember, moderate resolution, signature dataset aggregated from  an 
eco-georeferenced, seasonally hyperproductive, trailing vegetation, turbid water, 
discontinously canopied, S. damnosum s.l., capture point, according to  a prescribed cross-
spectral density matrix. If the components of the vector process correspond to different, 
prolific, oviposition, landscape geolocations in  geospace, then the process would be  
nonhomogeneous in  any  geospace [ e.g., 5 kilometer (km) grid cell of  a moderate 
resolution, imaged,  narrow, African, riverine tributray, agro-village complex]. The ensemble 
cross-correlation matrix of the generated sample functions would be identical to the 
corresponding target (e.g., hyperproductive, explanative, capture point, ovipoistion site on a  
geoclassified, ArcGIS-derived,  LULC signature ). The simulation algorithm in ArcGIS could 
generate ergodic sample functions in the sense that the temporal cross-correlation matrix of 
each and every generated sample function would be identical to the corresponding target, 
when the length of the sample function is equal to one period. The generated sample 
functions would be periodic. The proposed ArcGIS  algorithm  may be  based on an 
extension of the  geo-spectrotemporal representation algorithmic method which may  be very 
efficient computationally since it could  take advantage  of specific  techniques   embedded in 
the geodatabase ( e.g., Fast Fourier transform). The generated sample functions would be 
Gaussian in the limit as the quantizable number of terms in the frequency discretization of the 
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cross-spectral density matrix in ArcGIS approaches infinity. An example involving 
simulation of turbulent, African, riverine tributray pathway fluctuations and seasaonal 
meaderings may be optimally cartographically presented in ArcGIS in order to demonstrate 
the capabilities and efficiency of the proposed algorithm for identifying unknown, un-
geosampled , iteratively interpolated,  hyperproductive,  trailing vegetation, eco-
georferenceable, S. damnosum s.l., narrow  agro-village complex sentinel sites  and capture 
points for  optimally developing and  implementing seasonal, onchocerciasis, control 
strategies.  
 

 Many seasonal, control applications require knowledge of the state vector at 
intermediate, eco-epidemiological, sample, time frames that are commonly initially 
unavailable. One way to approximate these land use land cover (LULC) intermediate states of  
endmember transitions  in an explanatively, orthogonally, quantitatively, decomposeable,  
uncoalesced, moderate resolution,  dataset of  eco-georeferenceable, hypeproductive, S. 
damnosum s.l. trailing vegetation, turbid water, infrequently canopied, oviposition, moderate 
resolution, proxy signatures optimally rendered from a, geoclassifiable, narrow, African, 
riverine tributary, agro-village LULC, ( e.g.,  partially canopied, trailing vegetation) forecast 
vulnerability map in ArcGIS may be  by performing a time series, deterministic  
interpolation.   

Deterministic interpolation techniques in ArcGIS  create surfaces from measured 
points( e.g., eco-georefereceable geo-coordinates of  seasonally hyperproductive, narrow, 
African riverine, tributary, oviposition sites on an geoclassified LULCs based on either the 
extent of similarity (inverse distance weighted) or the degree of smoothing (radial basis 
functions).Geostatistical interpolation techniques (kriging) utilize the statistical properties of 
the measured points(www.esri.com). Geostatistical techniques in ArcGIS can quantitate the 
spatial autocorrelation among measured, geo-spectrotemporally geosampled, parameterized,   
seasonally, hyperproductive, capture point, S. damnosum s.l., endmember, oviposition points 
while accounting for the configuration of the sample points around the ecogeoreferenced, 
oviposition, habitat  geolocations [22] 

         Deterministic interpolation techniques can be divided into two groups, global and local. 
Global techniques calculate predictions employing the entire dataset. Local techniques 
calculate predictions from the measured points within neighborhoods, which are smaller 
spatial areas within the larger study area. Geostatistical Analyst provides global polynomial 
as a global interpolator and inverse distance weighted, local polynomial, radial basis 
functions, kernel smoothing, and diffusion kernel as local interpolators (www.esri.com). 

         An iterative, ArcGIS-derived,  deterministic, explanatorial, geo-spectrotemporal 
interpolation can either force the resulting surface to pass through the geosampled, eco-
georeferenceable dataset of iterative, uncoalesced sub-mixel values or not. An interpolation 
technique that  optimally explanatorily  forecasts a  sub-mixel value that is identical to the 
measured value at a geosampled geolocation ( e.g., eco-georeferenceable,  turbid water, 
sparsely canopied, hyperproductive, S. damnosum s.l. oviposition site at an ArcGIS-
geoclassified, 1 kilometer (km) moderate resolution, gridded, irrigated, riceland, agro-village, 
riverine tributary, seasonally imaged,  LULC,  centroid geolocatio )  would be  known as an 
exact interpolator. An inexact interpolator predicts a value that is different from the measured 
value. The latter can be used to avoid sharp peaks or troughs in a seasonal, African, riverine 
tributray, agro-village output surface (e.g., agro-village tributary, discontinuously canopied, 
flooded, LULC). Inverse distance weighted and radial basis functions are exact interpolators, 
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while global polynomial, local polynomial, kernel interpolation with barriers, and diffusion 
interpolation with barriers are inexact(https://www.arcgis.com).However, deterministic 
interpolation techniques may fail to capture correct probability time series, distribution of 
intermediate seasonally geoclassified moderate resolution, partially canopied,  endmember 
LULC signatures. Brownian interpolation captures the correct joint distribution by sampling 
from a conditional Gaussian distribution. This sampling technique is referred to as a 
Brownian Bridge. 

A Brownian bridge is a stochastic process X={X t :t∈[0,1]} X={Xt:t∈[0,1]} with state 
space R  that satisfies the following properties:1)X 0 =0  and X 1 =0  (each with probability), 
2)X  is a Gaussian process,3)E(X t )=0  for t∈[0,1]  4)cov(X s ,X t )=min{s,t}−st  for 
s,t∈[0,1]: and, 5) probability 1, t↦X t  t↦Xt is continuous on [0,1]. According to Einstein, 
(1956) a Brownian bridge is a continuous Gaussian process with X 0 =X 1 =0 with mean and 
covariance functions respectively. There are several ways of constructing a Brownian bridge 
from a standard Brownian motion for an uncoalesced,  forecast vulnerability, iterative, 
interpolative, diagnostically  probabilistc,  moderate resolution, signature  paradigm for 
remotely targeting partially canopied, trailing vegetation, turbid water, eco-georeferenceable,  
seasonally hyperproductive, S. damnosum s.l., seasonal, oviposition geolocations on 
geoclassified LULCs. 

Brownian motion processZ={Z t :t∈[0,∞)} Z={Zt:t∈[0,∞)} is a continuous, 
explanative,  Gaussian process with Z 0 =0 Z0=0, E(Z t )=0 E(Zt)=0 for t∈[0,∞) t∈[0,∞) and 
cov(Z s ,Z t )=min{s,t} cov(Zs,Zt)=min{s,t} for s,t∈[0,∞) s,t∈[0,∞). Thus, suppose that 
Z={Z t :t∈[0,∞)} Z={Zt:t∈[0,∞)} is a standard Brownian motion in a forecast, vulnerability, 
geo-spectrotemporal, trailing vegation, turbid water, narrow African riverine, agro-village 
complex, probabilistic paradigm for trageting seasaonl, hypeproductive, S. damnosum 
s.l.,immature habitats, and X t =Z t −tZ 1  Xt=Zt−tZ1 for t∈[0,1] t∈[0,1] occurs . Then 
X={X t :t∈[0,1]} X={Xt:t∈[0,1]} is a Brownian bridge in the remotely sensed, predictive, 
optimizable, risk model. Note that X 0 =Z 0 =0  and  X 1 =Z 1 −Z 1 =0 . Linear combinations 
of the geosampled, eco-georeferenceable, uncoalesced, iteratively, interpolative, moderate 
resolution, decomposed, sub-mixel, signature, predictor variables in X would optimally 
reduce to linear combinations of the variables in Z  and hence would have normal 
distributions of the endmember, residual forecasts for targeting unknown, un-geosampled, 
hyperproductive, ovipoistion S.damnosum s.l., geolocations and their respective LULC sites.  
Thus, X   in a S. damnosum s.l. iterative, Bayesian, probabilistic, interpolative estimation 
matrix i would be a Gaussian process. Further .E(X t )=E(Z t )−tE(Z 1 )=0  may be  optimally 
parsimonioulsy quantitated and  solved  for t∈[0,1]  Additionally  
cov(X s ,X t )=cov(Z s −sZ 1 ,Z t −tZ 1 )=cov(Z s ,Z t )−tcov(Z s ,Z 1 )−scov(Z 1 ,Z t )+stcov
(Z 1 ,Z 1 )=min{s,t}−st−st+st cov(Xs,Xt)=cov(Zs−sZ1,Zt−tZ1)=cov(Zs,Zt)−tcov(Zs,Z1)−sco
v(Z1,Zt)+stcov(Z1,Z1)=min{s,t}−st−st+st for s,t∈[0,1] . Finally, t↦X t  t↦Xt would be 
continuous on [0,1]  in the eco-epidemiological, time series, explanatorial, S. damnosum s.l., 
predictive model.since t↦Z t  t↦Zt is continuous on [0,1] .  

 Jacob et al. [26] conducted an experiment consisting of running the Brownian bridge 
process Y={Y t :t∈[0,1]} , which was obtained from the standard Brownian motion process 
X={X t :t∈[0,1]} X={Xt:t∈[0,1]} by periodically conditioning a eco-georeferenceable, 
seasonal,  S. damnosum s.l.,  sample event as X(1)=0 X(1)=0. Using a  Phillips-Perron unit 
root A unit root is a feature of processes that evolve through time that can cause problems in 
statistical inference involving time series models.  The authors in Jacob et al. [3] quantitates 
the endmember non-Gaussain noise  in the moderate resolution  dataset of geo-
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spectrotemporally uncoalesced, S. damnosum s.l. trailing vegetation, narrow, riverine 
tributray, agro-village complex, eco-georeferenecable   signature varaibles.  The Phillips-
Perron cointeration test is non-parametric, (i.e. it does not require to  select the level of serial 
correlation). The authors uses the same estimation scheme as in DF test, but corrected the 
statistic to conduct for autocorrelations and heteroscedasticity (ii.e, HAC type 
corrections).which   was based on asymptotic theory. Fortunately the test did not require a 
priori information regarding the functional form of the geosampled S. damnosum s.l. sub-
mixel residuals 

            Jacob et al. [26]   quanatized the random walk process as   where the 
disturbances were serially correlated in   SAS (i.e., FORECAST procedure) with possible 
heteroscedasticity. Phillips and Perron (1988) proposed the unit root test of the OLS 
regression model, [24]. The authros then let  and let be the 
variance estimate of the regression  estimator , where  was the residual optimally 
forecasted unbiased explanator. .The authors estimate sthe asymptotic variance of by 

employing the truncation lag l. where , for , and 
.. A truncated sample can be thought of as being equivalent to an 

underlying sample with all values outside the bounds entirely omitted, with not even a count 
of those omitted being kept[24].. With statistical censoring, a note would be recorded 
documenting which bound (upper or lower) had been exceeded and the value of that bound.  

  Then the Phillips-Perron (defined here as ) tested the  zero mean case which was 

written which resdiaully  left the following limiting 

distribution: where B( )  was  a standard Brownian motion. Note that the 
realization from the stochastic process was distributed as and thus .  The 
authors deteremined that as ,  revealed that the limiting distribution was 
skewed to the left.  

 The authors in Jacob et al. [3] then let be the statistic for . The Phillips-Perron 

defined has  test iwas then written as  and its 

limiting distribution was optimally  derived as .  Each run,  on the path was 
shown on a distribution graph in   ArcGIS.The random variable of interest was the position 
Y t   at time t∈[0,1]  which was the normal distribution with mean 0 and standard deviation 
t(1−t)  in the eco-epidemiological,  trailing vegation, turbid water, narrow African riverine, 
agro-village complex, S. damnosoum s.l. probabilistic paradigm. On each run, the value of a 
geoclassified LULC variable was recorded in a table, where point (t,Y t ) (t,Yt) was shown as 
a red dot in a path graph in ArcGIS. The probability density function and moments, and the 
empirical density function and moments were shown in the distribution graph and in a 
distribution table. The parameter t varied with the input control. 

 ArcGIS Generates Brownian Bridge Movement Models and different home range 
estimates. Input files can be either .txt or ESRI shapefiles while outputs must be  .txt files 
(which can be later uploaded to GIS software) .Unfortunately  the pardigms works with 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

49 
Copyright © acascipub.com, all rights reserved.  

Cartesian system not  latitude-longitude geo-coordinates.  Home range estimators include 
exponential power, 1 mode Bivariate Normal, 2 Mode Bivariate Circle Mix, 2 Mode 
Bivariate Normal Mix and  Kernel (fixed and adaptive). ArcGIS allows comparison between 
two or more models using Information Theoretic Criteria (www.esri.com). ArcGIS also can   
use different smoothing parameters, including: Likelihood cross-validation (CVh), Least 
squares cross-validation (LSCVh)and optimal smoothing parameter (h_ref) . In so doing, 
user-specified value endmember S. damnosum s.l. trailing vegation, heyproductive, eco-
georference moderate resolution Output: .txt with X,Y coordinates and probability values of 
grid cells may be formally forecasted.Brownian Bridge Movement ModelInput requires: 
Easting (x) and Northing (Y) – in meters, for predicting location and location error ( 
www.esri.com). 

 
A Brownian bridge movement model (BBMM) is a relatively new concept that 

estimates the path ofan animal’s movement probabilistically from data recorded at brief 
intervals. A BBMM assumes that locations arenot independent, whereas the “classical” 
kernel-density estimator (KDE) assumes they are. Fischer et al. (2013) estimated BBMM 
home ranges for 11 Black Vultures (Coragyps atratus) and 7 Turkey Vultures (Cathartes 
aura) equipped with satellitetransmitters near Marine Corps Air Station Beaufort, South 
Carolina, from October 2006 to November 2008.The 95% BBMM home ranges (95% 
BBMM) of the two Black Vultures that traveled >100 km from the capturesite were 833 and 
2111 km2; of the nine that did not travel as far, 95% BBMM ranged from 33 to 778 km2 and 
averaged(± SE) 243 ± 76 km2. The majority of Turkey Vultures (n = 6) traveled >100 km 
from the capture site with95% BBMM ranging from 923 to 7058 km2 and averaging 3173 ± 
1109 km2. We also estimated KDE home ranges,using newer satellite technology for 
comparison with previous studies. Overall 95% KDE ranged from 17 to 16066km2 for the 
Black Vulture and 988 to 36257 km2 for the Turkey Vulture. The concept of  an animal’s 
home range hasevolved over time, as have home-range, explanative, estimators. With 
increasing use of satellite telemetry, application of BBMMcan greatly enhance our 
understanding of home ranges, migration routes, seasonal movements, and habitat-use LULC 
patterns of wild birds over large and often remote areas. 

For the Brownian bridge X X , the authors in Jacob et al. [3] noted in particular that 
X t   was normally distributed with mean 0 and variance t(1−t)  for t∈[0,1] for a robust 
moderate resolution. forecasting vulnerability, ArcGIS-derived probabilistic, endmember, 
S.damnosum s.l. signature paradigm. . Thus, the variance increased and then decreased on 
[0,1]  reaching a maximum of 1/4 at t=1/2 t. Of course, the variance was 0 at t=0  and t=1 , 
since X 0 =X 1 =0  was quanatiated deterministically. Opening the simulation of the 
Brownian bridge process, the authors noted  the change in the probability density function 
and moments in the uncoalesced, moderate resolution, iterative, hypeproductive, endmember, 
S. damnsoum s.l., trailing vegation, turbid water, eco-georferenceable, oviposition dataset. 
For various values of t , the authors ran the simulation 10,000 times and compared the 
emprical density function and moments to the true density function and momens.They then  
built a standard Brownian motion on the time interval [0,1] ] from the  Brownian bridge. In 
so doing, the multivariate, stochatic interpolated, prolific habitats along a   flooded riverine 
corridor in northern Uganda (Achwa basin) [see 22]. 

There may be another way to construct a Brownian bridge from a standard Brownian 
motion for targeting seasonally hyperproductive, unknown, un-geosampled, S. damnsoum s.l., 
trailing vegetation, turbid water, eco-georeferenceable, seasonal, explanative, oviposition  
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signature on geoclassified moderate resoltuion LULCs. Suppose that Z={Z t :t∈[0,∞)}  is a 
standard Brownian motion. A medical entomologist or experimenter may define X 1 =0  and 
X t =(1−t)Z(t1−t ),t∈[0,1) in ArcGIS. Then X={X t :t∈[0,1]}  would be  a Brownian bridge. 
Note that X 0 =Z 0 =0  by definition would occur  in this bridge .Linear combinations of 
geosampled, geo-spectrotemporal, uncoalesced, moderate reoslution, geoclassifiable  LULC 
variables geospatially asscoiated to a capture point, hypeproductive habitat  in X  may reduce 
to linear combinations of other endmember variables in Z  may reveal normal distributions in 
a multivariate, probabilistic, regression paradigm in ArcGIS. Thus, X  would be a Gaussian 
process.For t∈[0,1] ,E(X t )=(1−t)E[Z(t1−t )]=0 .If s,t∈[0,1)  with s<t  then s/(1−s)<t/(1−t)  so 
cov(X s ,X t )=cov[(1−s)Z(s1−s ),(1−t)Z(t1−t )]=(1−s)(1−t)s1−s =s(1−t).  In so doing, t↦X t   
may be  continuous with probability 1 on [0,1)  with probability 1, X t =(1−t)Z[t/(1−t)]→0  as 
t↑1  . 

When constructing a spectrotemporally geosampled, hyerproductive, capture point, S. 
damnsoum s.l.,regression , forecasting vulnerability, estimation model for 
the true random walk process (i.e., single mean case), the limiting distribution of the statistic 

 may be  written in FORECAST while the limiting 
distribution of the statistic  may be optimally rendered by 

.In so doing, the limiting distribution of the Phillips-Perron 
test for the random walk with drift process (i.e., trend case) may be  derived 

as where for and for , 

 in ArcGIS When several 
endmmeber variables are cointegrated, there exists a cointegrating 
vector such that is stationary and is a nonzero vector[24]. The residual based 
cointegration test may assume the following regression model: where 

, , and = ( , ,  In so doing,  a medcal entomologiist or 
experimenter may parsimoniously estimate the consistent cointegrating vector by employing  
regression if all  the endmember variables are difference stationary — that is, I(1). The 
Phillips-Ouliaris test performs the test for the null hypothesis of no cointegration 
(https://en.wikipedia.org/wiki/MathWorld). The estimated cointegrating vector for an 
iteratively interapolative S. damnsoum s.l. probabilistic, predictive, signature-oriented, 
decomposed paradigm for targeting seasonally hyperproductive, S. damnsoum s.l., African, 
riverine, agro-village ecosystem, oviposition geolocations on geoclassifiable LULCs (e.g., 
trailing vegetation, discontinuously canopied) may be optiamlly written in SAS/GIS 
cyberenvironment  employing .  

Further, suppose that X={X t :t∈[0,1]}  is a Brownian bridge. in a  geo-
spectrotemporal, eco-epidemiological, moderate resoltuion,  S. damnosum s.l. 
forecast,vulnerability model in SAS/GIS. Then by defining Z t =(1+t)X(t1+t ),t∈[0,∞) where 
Z={Z t :t∈[0,∞)}  a standard Brownian motion process  could be elaborated for a S. 
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damnosum s.l. habitat , risk model.Note that in this instance,  Z 0 =X 0 =0.  Linear 
combinations of the geo-spectrotemporal, geosampled, eco-georeferenceable, immature, 
decomposed, Similium habitat explanatorial, endmember variables in Z may reduce to linear 
combinations of the variables in X , and hence would have  have normal distributions. Thus, 
Z  would be  a Gaussian process where for t∈[0,∞)  , E(Z t )=(1+t)E[X(t1+t )]=0, If s,t∈[0,1]  
with s<t ,=thens/(1+s)<t/(1+t)  
socov(Z s ,Z t )=cov[(1+s)X(s1+s ),(1+t)X(t1+t )]=(1+s)(1+t)[s1+s −s1+s t1+t ]=s .Since 
t↦X t   again may be  continuous, t↦Z t   would also be  continuous in the remotely sensed 
probabilistic, paradigm. 

          Suppose that X={X t :t∈[0,∞)}  is a standard Brownian motion in a geo-
spectrotemporal,  S. damnosum s.l. moderate resolution, iteratively interpolatable, signature-
oriented,  geoclassifiable LULC, vulnerability, eco-epidemiological, forecast model. Then 
conditioned on X 1 =0  , would be the explicative process {X t :t∈[0,1]}  which then would 
be the  Brownian bridge process Part of the argument here would be based  based on 
properties of the multivariate normal distribution. The conditioned process would still be 
continuous and would still be a Gaussian process. In particular, suppose that s,t∈[0,1]  with 
s<t  in the forecasting equation in the S. damnosum s.l. model.  Then (X t ,X 1 )  would have 
a joint normal distribution with geosampled parameters specified by the mean and covariance 
functions of X . By standard computations, the conditional distribution of X t would be given 
by X 1 =0 which would be normal with mean 0 and variance t(1−t) . Similarly, the joint 
distribution of (X s ,X t ,X 1 ) would be  normal with parameters specified by the mean and 
covariance functions of X. Again, by standard computations, the conditional distribution of 
(X s ,X t )  in the S. damnosoum s.l. habitat model would be  given X 1 =0  would be  
bivariate normal with 0 means and with cov(X s ,X t ∣X 1 =0)=s(1−t). 

Perhaps the Brownian bridge may be optimally defined in terms a stochastic integral 
when constructing a eco-georeferenceable, explanatorial, diagnostic, forecast vulnerability 
endmember , moderate resolution prpobabilsic pardigmn for  targeting hyperproductive, eco-
georeferenceable S. damnsoum s.l., trailing vegetation, turbid water, partially, infrequently 
canopied, immature, seasoanl habitats in a narrow African, riverine , agro-village, tributary 
ecosystem, Stochastic calculus is a branch of mathematics that operates on stochastic 
processes. In so doing, a consistent theory of integration may be used to define integrals with 
respect to stochastic processes. In so doing, model systems that behave randomly may be 
quantitated. 

 The best-known stochastic process to which stochastic calculus is applied is the 
Wiener process which is used for modeling Brownian motion as described by Louis 
Bachelier in 1900 and by Albert Einstein in 1905 and other physical diffusion processes in 
space of particles subject to random forces. In pure mathematics, the Wiener process gave 
rise to the study of continuous time martingales. , a martingale is a sequence of random 
variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, 
the expectation of the next value in the sequence is equal to the present observed value even 
given knowledge of all prior observed values.A basic definition of a discrete-time martingale 
for a geo-spectrotemporally uncoalesced, eco-georeferenced, hyeprpoductive, immature , 
capture point  is a discrete-time stochastic process (i.e., a sequence of random variables) 
X1, X2, X3, ... that satisfies for any time n, Since the 1970s, the Wiener process has been 
widely applied in financial mathematics and economics to model the evolution in time of 
stock prices and bond interest rates )http://mathworld.wolfram.com/). A continuous-time, 
explanative, diagnostic, S. damnosum s.l. habitat , moderate resolution,  stochastic process 
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for with  may be constructed such that the increment is Gaussian 
with mean 0 and variance for any , where the  increments for nonoverlapping time 
intervals are independent.  

The issue of giving an explicit description of the flow of information concerning the 
time of sampled S. damnsoum s.l. habitats in narrow African riverine tributray ecosystems 
may be tackled by defining a bridge process starting from zero and conditioned to be equal to 
zero when the default occurs. I so doing some empirical facts on the behavior of seasonally 
hyperproductive oviposition sites on moderate resolution LULCs: when the bridge process is 
away from zero. However, when the information process is close to zero, in the S. damnosum 
s.l. forecasting vulnerability model  the risk of an imminent default is highre . In this sense 
the bridge process leaks information concerning the default before it occurs. Brownian 
bridges on stochastic intervals imay to provide the basic properties to quanatiate such 
processes.  
   

Brownian bridges can be constructed in QuantLib. QuantLib is an open-source 
software library which provides tools for software developers interested in financial 
instrument valuation and related subjects. QuantLib is written in C++. ++  is a general-
purpose programming language. It has imperative, object-oriented and generic programming 
features, while also providing facilities for low-level memory manipulation.  The QuantLib 
project is aimed at providing a comprehensive software framework for quantitative finance. 
QuantLib is a free/open-source library for modeling, trading, and risk management in real-
life.QuantLib is written in C++ with a clean object model, and is then exported to different 
languages such as C#, Objective Caml, Java, Perl, Python, GNU R, Ruby, and Scheme. An 
AAD-enabled version is also available. The reposit project facilitates deployment of object 
libraries to end user platforms and is used to generate QuantLibXL, an Excel addin for 
QuantLib, and QuantLibAddin, QuantLib addins for other platforms such as LibreOffice 
Calc. Bindings to other languages and porting to Gnumeric, Matlab/Octave, S-PLUS/R, 
Mathematica, COM/CORBA/SOAP architectures, FpML, are under consideration. QuantLib 
can be downloaded from http://quantlib.org/download.shtml; installation instructions are 
available at http://quantlib.org/install.shtml for most platforms.Documentation for the usage 
and the design of the QuantLib library is available from http://quantlib.org/docs.shtml ( See 
Table 1) .A list of changes for each past versions of the library can be browsed at 
http://quantlib.org/reference/history.html 

 

 

 

Table 1. Output a realization of a Brownian Bridge from QuantLib  

        
 
*/ 
 
#include <iostream> 
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#include <time.h> 
#include <boost/random/normal_distribution.hpp> 
#include <boost/random/mersenne_twister.hpp> 
#include <boost/random/variate_generator.hpp> 
 
 
#include <ql/quantlib.hpp> 
 
/// Prints the bridge, including the cumulative sum of the variations 
/// which is the actual path of the underlying 
void printBridge(const std::vector<double> &b) 
{ 
  double cumsum=0; 
  for(size_t i=0; i<b.size(); ++i) 
  { 
    cumsum+=b[i]; 
    std::cout<<i+1 
          <<"," 
          <<b[i] 
          <<"," 
          <<cumsum 
          <<std::endl; 
  } 
} 
 
 
void bbridgeout(void) 
{ 
  const size_t n=500; 
 
  QuantLib::BrownianBridge bridge(n); 
 
  std::vector<double> inp(n); 
 
  //  
  inp[0]=0.0; 
 
  // Generate the rest of the variates as standard Gaussian random 
  // values 
  boost::variate_generator<boost::mt19937, boost::normal_distribution<> > 
    generator(boost::mt19937(time(0)), 
           boost::normal_distribution<>()); 
 
  for(size_t i=1; i<inp.size(); ++i) 
    inp[i]=generator(); 
 
  std::vector<double> out(n); 
  bridge.transform(inp.begin(), 
                inp.end(), 
                out.begin()); 
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  printBridge(out); 
} 
 
int main(void) 
{ 
  bbridgeout(); 
 
  return 0;  

The expected value of the bridge is zero, with variance t(T − t), implying that the most  

uncertainty is in the middle of the bridge, with zero uncertainty at the nodes. The covariance 
of B(s) and B(t) is s(T − t) if s < t. The increments in a Brownian bridge are not independent. 
Covariance provides a measure of the strength of the correlation between two or more sets of 
random variates. The covariance for two random variates  and , each with sample size , is 
defined by the expectation 
value = = where  and  are the 

respective means, which can be written out explicitly as For 
uncorrelated variates, so the covariance is zero. 
However, if the variables are correlated in some way, then their covariance will benonzero. In 
fact, if , then  tends to increase as  increases, and if , then  tends 
to decrease as  increases. Note that while statistically independent variables are always 
uncorrelated, the converse is not necessarily true.The covariance is especially useful when 
looking at the variance of the sum of two random variates, 
since The covariance is symmetric by definition 
since Given  random variates denoted , ..., , the 
covariance  of  and  is defined 
by = = where  and  are 
the means of  and , respectively. The matrix  of the quantities  is 
called the covariance matrix[25]. 

A variance-covariance matrix is a square matrix that contains the variances and 
covariances associated with several variables. The diagonal elements of the matrix contain 
the variances of the variables and the off-diagonal elements contain the covariances between 
all possible pairs of variables. The variance-covariance matrix is symmetric because the 
covariance between X and Y is the same as the covariance between Y and X. Therefore, the 
covariance for each pair of variables is displayed twice in the matrix: the covariance between 
the ith and jth variables is displayed at positions (i, j) and (j, i). Many statistical applications 
calculate the variance-covariance matrix for the estimators of parameters in a statistical 
model. It is often used to calculate standard errors of estimators or functions of estimators. 
For example, s logistic S. damnosum s.l. forecast vulnerability regression model would create 
amatrix for the estimated uncoalesced, trailing vegetation, endmember covariate coefficients 
for robustly quanatiting  the variances of the geosampled, geo-spectrotemporal, 
explanative,coefficients and the covariances between all possible pairs of coefficients.  

A Brownian bridge, or a functional of a Brownian bridge may be constructed  for 
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creating a signature, moderate reosolution, decomposed trailing vegation, narrow Africanm, 
riverine tributary oviposition, eco-georefernced,  S. damnoum s.l.  model if performance is 
measured in the expected value sense. To describe a problem of this type, let X be a 
Brownian bridge with Xq = X\ =0, and define the value V= sup EXT. (1.1) 0<r<l in 
AUTOREG Here the supremum may be optimally  taken over all random times that are 
stopping times with respect to the filtration generated by X In a Brownian bridge process  for 
an interpolative,  interpolative, uncoalesced geo-spectrotemporal, moderate resolution, target 
reference signature on the other hand, not only is B(0) = 0 but B(1) = 0, mya be required in 
the forecast, vulneranility, endmember model  where processes would be "tied down" at t = 1 
as well. Just as a literal bridge is supported by pylons at both ends, a Brownian Bridge is 
required to satisfy conditions at both ends of the interval [0,1][26].  

Consider the random walk process  in a S. damnosum s.l. habitat, 
forecast, vulnerability probabilistic, distribution paradigm where the disturbances might be 
serially correlated with possible heteroscedasticity. Phillips and Perron (1988) proposed the 
unit root test of the regression model,  Let and let be the 
variance estimate of the estimator , where is the residual. A medical entomologist or 
experimenter may optimally estimate the asymptotic variance of by using the 

truncation lag l. where , for , and 
 in a Similium iteratively interpolative model, Then the Phillips-Perron 

(defined here as ) test (zero mean case) may be written 

which would reveal  the following limiting distribution: 

where B( ) is a standard Brownian motion. Note that the realization from the 
stochastic process would eb  distributed as and thus . Note that 

as , which may show that the limiting distribution is skewed to the left. 
Let be the  statistic for  in the mdoel The Phillips-Perron (defined here as ) test then 

could  written and its limiting distribution would eb 

derivable as  

Suppose we have generated a number of points W(0), W(1), W(2), W(3), etc. of a 
Wiener process path by computer simulation S. damnsoum s.l. model. It may be desireable to 
fill in additional points in the interval [0,1], that is to interpolate between the already 
generated points W(0) and W(1). The solution is to use a Brownian bridge that is required to 
go through the values W(0) and W(1). Let B be a standard Brownian motion in a S. 
damnosum s.l. model. A medical entomologist or experimenter may then define a Brownian 
bridge  b by b t =B t −tB 1  .The  standard Wiener process would satisfy W(0) = 0 and would  
therefore be "tied down" to the origin, may other  geosampled, S. damnsoum s.l trailing 
vegetation, African, narrow , riverine tributary, points ,may be less  interpolatively  restricted 
( see Figure 3). 

Figure 3. Browinan bride where expected value of the bridge is zero, with variance 
t(1 − t),  for quantiating uncertainty with zero uncertainty at the nodes. with a 
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covariance of B(s) and B(t) is s(1 − t) if s < t.  

   

     Brownian bridge is the result of Donsker's theorem in the area of empirical processes 
which  is also employed  in the Kolmogorov–Smirnov test in the area of statistical inference 
In statistics, the Kolmogorov–Smirnov test (K–S test or KS test) is a nonparametric test of the 
equality of continuous, one-dimensional probability distributions that can be used to compare 
a sample with a reference probability distribution (one-sample K–S test), or to compare two 
samples (two-sample K–S test)[24]. In probability theory, Donsker’s theorem (also known as 
Donsker’s invariance principle, or the functional central limit theorem), is a functional 
extension of the central limit theorem.  

         In probability theory, the central limit theorem (CLT) states that, given certain 
conditions, the arithmetic mean of a sufficiently large number of iterates of independent 
random variables, each with a well-defined (finite) expected value and finite variance, will be 
approximately normally distributed, regardless of the underlying distribution[24]. To 
illustrate what this means, suppose that a eco-georeferenced,  hypeproductive, S. damnsoum 
s.l., geoclassifiable,moderate resolution, ArcGIS-derived , LULC  sample is obtained 
containing a large number of ovipoistion observations, each observation being randomly 
generated in a way that does not depend on the values of the other observations, and that the 
arithmetic average of the observed values is computed. If this procedure is performed many 
times, the central limit theorem says that the computed values of the average will be 
distributed according to the normal distribution (commonly known as a "bell curve"). The 
central limit theorem has a number of variants [24]. In its common form, the decompose,, 
elucidative diagnostic, endmember, random variables must be identically distributed. In 
variants, convergence of the mean to the normal distribution also occurs for non-identical 
distributions or for non-independent observations, given that they comply with certain 
conditions. 
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 In more general usage, a central limit theorem is any of a set of weak-convergence 
theorems in probability theory. They all express the fact that a sum of many independent and 
identically distributed (i.i.d.) random variables, or alternatively, random variables with 
specific types of dependence, will tend to be distributed according to one of a small set of 
attractor distributions. When the variance of the S. damnsoum s.l., immature habitat, eco-
georeferenceable, expositorial i.i.d. variables is finite, the attractor distribution is the normal 
distribution. In contrast, the sum of a number of i.i.d. random variables with power law tail 
distributions decreasing as |x|−α−1 where 0 < α < 2 (and therefore having infinite variance) will 
tend to an alpha-stable distribution with stability parameter (or index of stability) of α as the 
number of variables grows 

 Let X1, X2, X3, . . . be a sequence of i.i.d. geo-spectrotemporal,  random variables 
with mean 0 and variance 1. Let Sn := ∑n i=1 Xi . The stochastic process S := (Sn)n∈N is 
known as a random walk. Define the diffusively rescaled random walk by W(n) (t) := S⌊nt⌋ √ 
n , t ∈ [0, 1]. The central limit theorem would then assert that W(n) (1) converges in 
distribution to a standard Gaussian random variable W(1) as n → ∞ . Donsker’s invariance 
principl extends this convergence to the whole function W(n) := (W(n) (t))t∈[0,1] . More 
precisely, in its modern form, Donsker’s invariance principle states that: As random variables 
taking values in the Skorokhod space D[0, 1] , the random function W(n) converges in 
distribution to a standard Brownian motion W := (W(t))t∈[0,1] as n → ∞. 1 

           The Skorokhod space D = D([0, 1] : R1) consists of functions x : [0, 1] ! R1 which 
admit limit x(t−) from the left at each point t ∈ (0, 1] and limit x(t+) from the right at each 
point t ∈ [0, 1). After regularization by taking the right-continuous version, such functions are 
often called “cadlag”, In mathematics, a càdlàg (French "continue à droite, limite à gauche"), 
RCLL (“right continuous with left limits”), or corlol ("continuous on (the) right, limit on 
(the) left") function is a function defined on the real numbers (or a subset of them) that is 
everywhere right-continuous and has left limits everywhere. Càdlàg functions are important 
in the study of stochastic processes that admit (or even require) jumps, unlike Brownian 
motion, which has continuous sample paths[25].  
 
 The Skorokhod space may  provide a natural andconvenient formalimalized for 
description of trajectories of stochastic processes admitting jumps in  a   seasonal , 
epidemiological dataset of eco-georeferenceable, uncoalesced, explanatorial, diagnostic, 
forecast vulnerability endmember , moderate resolution probabilistic , unbiased model 
estimaors for  targeting hyperproductive, trailing vegetation, turbid water, partially, 
infrequently canopied, S. damnosum s.l. immature habitats site  in  a narrow African 
tributary, ecosystem. .In particular: trajectories of Poisson process, L´evy 
processes,martingales and semimartingales, empirical distribution functions, trajectories of 
discretizations of stochastic processes may be robustly parsimoniously quantitated. The 
supremum norm would convert the Skorokhod space into a nonseparable Banach space, 
which may be disadvantageous in geolocalizing  seasaonlly,  eco-georferenceable,  prolific, 
capture, S. damnsoum s.l. canopied, immature, oviposition sites on geoclassifiable ArcGIS-
derived , moderate resolution LULCs(e.g., trailing vegetation, sparsely canopied, pre-flooded 
agro-village) 

In mathematics, more specifically in functional analysis, a Banach space is a complete 
normed vector space Let V be a complex vector space in a S. damnosum s.l. forecast, 
vulnerability model/. A norm on V is a function|| ・ || : V → R may satisfy the following 
three conditions:(i) ||v|| ≥ 0, ∀ v ∈ V, and ||v|| = 0 ⇔ v = 0;(ii) ||αv|| = |α| ||v||, ∀ v ∈ V, α ∈ 
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C;(iii) ||v + w|| ≤ ||v|| + ||w||, ∀ v,w ∈ V.A vector space equipped with a norm is called a 
normed vector space[25]. Then based on the Reverse triangle inequality, V  may be a normed 
vector space in the   a eco-georeferenceable, diagnostic, forecast vulnerability endmember , 
moderate resolution probabilistic, vector arthropod, probabilistic paridigm.In so doing,  ||v − 
w|| ≥ | ||v|| − ||w|| | , ∀ v,w ∈ V  may occur in the expsoitorial, diagnostic, normalized, residual 
wavelength, transmittance frequency forecasts for  for enabling optimal  targeting of  
hyperproductive, eco-georeferenceable, S. damnsoum s.l., trailing vegetation, turbid water, 
discontinuously canopied, immature, seasonal oviposition sites in narrow, African riverine, 
tributary compex ecosystems  Suppose a medical entomologist or experimenter  lets v,w ∈ V 
in the risk model. Then ||v − w|| ≥ ||v|| − ||w|| or ||v − w|| ≥ ||w|| − ||v|| and ||v|| = ||(v − w) + w|| ≤ 
||v − w|| + ||w|| may diagnostic, quanatiate, explanatorial, paramterizable covariates of these 
prolific habitats,Proof of the Reverse triangle inequality  suggests without loss of generality 

that ||x|| is no smaller than ||y||. Thus, it is imperative to show  in a 
iterative, forecast, vulnerability, S. damnosum s.l., probabilistic, seasoanl paradigm. .This 
follows directly from the triangle inequality itself  if  a medical entomologist or experimenter 
writes x as x=x-y+y and assumes that it isx=(x-y) + y. Taking norms and applying the triangle 

inequality then would render which implies 
(*). Moreove,for optimal synthesization of discontinuous elements of D in the vector 
arthropod paradigm,  simple and natural approximation procedures like discretizations  may 
be optimally  convergent uniformly.  

Let (M, d) be a metric space, in an elucidative, time series,   orthogonally 
decomposed, moderate resolution, geo-spectrotemporally uncoalesced, fractionalized, 
moderate resolution, signature, metaheursitically optimizable,epidemiological,optimizable,  
dataset of  S. damnosum s.l., quantitative,  endmember, interpolative, explanatorily,  
paramterizable, wavelength, trasnmittance signature, geoclassifiableLULC  frequencies  and 
let E ⊆ R. A function ƒ: E → M (a càdlàg function ).Then , for every t ∈ E, in the  , residual 
eco-epidemiological, eco-georeferenceable forecasts,  the left limit ƒ(t−) := lims↑t ƒ(s)  may 
exist and the right limit ƒ(t+) := lims↓t ƒ(s) may exist and equal ƒ(t). That is,the model output 
may reval  ƒ is right-continuous with left limits 

Certain path properties of a symmetric α-stable process X(t) = ∫Sh(t, s) dM(s), t ∈ T, 
may be  studied in terms of the kernel. in   geo-spectrotemrpoal, geosampled, moderate 
reasolution uncoalesced, S. damnossum  s.l., forecast, vulnerability, epidemiological,  
endmember, simulation model for targeting,  , hyerpproductive, trailing vegtaion, turbid 
water, African, narrow, agro-village complex, capture point, eco-georefereneceable 
oviposition LULC  sites, The function in an integral or integral transform 

 [www.mathworld.com].The existence of an appropriate modification 
of the kernel  may enable  a medical entomologist or experimenter  to employ  results from 
stable measures on Banach spaces in these predictive paradigms in SAS/GIS for precision, 
seasonal, habitat targeting prolific Simium capture points in a narrow riverine, tributary, 
African ecosystem agro-village complex. Bounds for the moments of the norm of sample 
paths may be optimally obtained in the diagnostic, model residual, explantive, forecasts. The 
yields would be definite bounds for the moments of a double α-stable integral. Also, 
necessary and sufficient conditions for the absolute continuity of sample paths in the model , 
endmember, moderate resolution, uncoalesed,proxy, endmember, signaturare variables may 
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be rendered . Along with the above stochastic integral representation of stable processes, the 
representation of stable random vectors due to R. LePage, M. Woodroofe, and J. Zinn (1981, 
Ann. Probab.9, 624–632)  may be optimally usable  to quantaite the relationship between 
these two geo-representations of simulated S. damnosum s.l., hypeproductive , eco-
georeferenced, seasaonal geolocations.    

Let Fn be the empirical distribution function of the sequence of independently 
distributed dataset of uncoalesced, geo-spectrotemporal, moderate resolution, 
hypeproductive, trailing vegation, partially shaded, narrow, African riverine tributray,  S. 
damnosum s.l. oviposition, capture point, eco-georferenceable,  random variables X1, X2, 
X3, . . . with distribution function Fn  . Defining the centered and scaled version of Fn by 
Gn(x) = √ n(Fn(x) − F(x)) indexed by x ∈ R may then aid in precision targeting geolocations 
of eco-georeferenceable , prolific seasonal habitats. By the classical central limit theorem, for 
fixed x, the random variable Gn(x) would convergs in distribution to a Gaussian (normal) 
random variable G(x) with zero mean and variance F(x)(1 − F(x)) as the sample size n grows. 
In probability theory, the central limit theorem (CLT) states that, given certain conditions, the 
arithmetic mean of a sufficiently large number of iterates of independent random variables, 
each with a well-defined expected value and well-defined variance, will be approximately 
normally distributed, regardless of the underlying distribution.The sequence of Gn(x), as 
random elements of the Skorokhod space D converges in distribution to a Gaussian process G 
with zero mean and covariancemay be  given by cov[G(s), G(t)] = E[G(s)G(t)] = min{F(s), 
F(t)}−F(s)F(t) in the probabilisc predictive pardigm. The process G(x) can be written as 
B(F(x)) where B is a standard Brownian bridge on the unit interval in SAS/GIS. Kolmogorov 
(1933) showed that when F is continuous, the supremum supt Gn(t) and supremum of 
absolute value, supt |Gn(t)| converges in distribution to the laws of the same functionals of 
the Brownian bridge B(t), see the Kolmogorov–Smirnov test. In 1949 Doob asked whether 
the convergence in distribution held for more general functionals, thus formulating a problem 
of weak convergence of random functions in a suitable function space. [25] Donsker stated 
and proved (not quite correctly)a general extension for the Doob-Kolmogorov heuristic 
approach. 

 Asymptotic theorems on the difference between the (empirical) distribution function 
calculated from a sample and the true distribution function governing the sampling process 
are well known. Simple proofs of an elementary nature have been obtained for the basic 
theorems of Komogorov and Smirnov by Feller, but even these proofs conceal to some 
extent, in their emphasis on elementary methodology, the naturalness of the results 
(qualitatively at least), and their mutual relations. Feller suggested that the author publish his 
own approach which does not have these disadvantages, although rather deep analysis would 
be necessary for its rigorous justification of these distributions in a geo-spectrotemparolly 
geosampled, itarative interpolative, diagnostic, proxy signture-related, iterative interpolative, 
uncoalesed, capture point, trailing vegation, narrow, African , riverine tributray, agro-village 
tributray S. damnosum s.l. seasonal, epidemiological model. The approach may therefore be 
presented at one critical point (e.g., hyeprpoductiove seasoanal, eco-georferenceable 
oviposition site on an ArcGIS geoclassified LULC)  as heuristic reasoning which leads to 
results in investigations of this kind, even though the easiest proofs may use entirely different 
methods. No calculations would be required to obtain the qualitative results, based on the 
existence of limiting distributions for large geo-spectrotemporally geosamped, optimizable 
datasets  of various measures of georferenced, Similium habitats and of the  qunatized 
discrepancy between empirical and true distribution functions psot regression. The numerical 
evaluation of these limiting distributions may require certain results concerning the Brownian 
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movement stochastic process and its relation to other Gaussian processes in the probabilistic 
oviposition paradigm.  
 
 In the original paper, Donsker proved that the convergence in law ofGn to the 
Brownian bridge holds for Uniform[0,1] distributions with respect to uniform convergence in 
t over the interval [0,1].[2] However Donsker’s formulation was not quite correct because of 
the problem of measurability of the functionals of discontinuous processes. In 1956 
Skorokhod and Kolmogorov defined a separable metric d, called the Skorokhod metric, on 
the space of cadlag functions on [0,1], such that convergence for d to a continuous function 
would be  equivalent to convergence for the sup norm, and showed that Gn converges in law 
in D[0, 1] to the Brownian bridge. Later Dudley reformulated Donsker’s result to avoid the 
problem of measurability and the need of the Skorokhod metric. Thus a medical entomologist 
or experimenter may prove that there exist Xi, independently uniform in [0,1] and a sequence 
of sample-continuous Brownian bridges Bn, such that ∥Gn − Bn∥∞ is measurable and 
converges in probability to 0. An improved version of this result, in SAS/GIS may provide 
more detail on the rate of convergence, is the Komlós–Major–Tusnády approximations in the 
geo-spectrotemporal, moderate resolution, iterative , quantitatively, explantive, capture point,  
S. damnosum s.l ., trailing vegtaion, narrow African, riverine, tributary ecosystem, 
oviposition model when precision targeting a uncoalesced, diagnostically interpolative  
unbiased, ArcGIS-derived,  LULC estimators of hypeproductive seasonal , eco-
georeferenceable habitats. In theory of probability, the Komlós–Major–Tusnády 
approximation (also known as the KMT approximation, the KMT embedding, or the 
Hungarian embedding) is an approximation of the empirical process by a Gaussian process 
constructed on the same probability space. 

 Any order-invariant function of a sequence of geospectrotemrporally uncoalesced,  
eco-geoeerferenceable modearte resolution, S. damnosum s.l., capture point , oviposition, 
explanatorial LULC diagnostic , iterative interpolative diagnostic, trailing vegation,  sparsely 
canopied, signature-related, fractionalized , discontinuous decomposed values may be 
expressed as a functional of the sample's empirical distribution function. In so doing, a very 
general approach to the theory of functions of sample values can be based on the empiric 
distribution function for targeting seasaonlly hypeproductive habitats in narrow African, 
riverine tributray , agro-village complex ecosystems. The KMT) approximation may provide 
a remarkable, mathematically tractable representation for the empiric distribution function of 
a random, eco-epidmiological, capture point, oviposition sample. Hence, one of the aims of 
the probabilistic, vector arthropod-related , forecast, vulnerability model construction 
processwould be  to optimally describe the KMT approximation, particularly as it relates to 
other forms of  uncoalesced, geoclassifiable, LULC approximations in  ArcGIS, and to 
survey some of its many applications.( e..g, iterative interpolation of a dataset of moderate 
resolution orthogonally, elucidatively, orthogonally decomposed, S. damnosum s.l. 
habitat,proxy LULC signature, eigenvectors in Geospatial Analyst TM). 

        An uncoalesced,  eco-geoereferenceable modearte resolution, S. damnosum s.l., capture 
point ,hypeproductive,  oviposition, site  on an ArcGIS-goclassifiable partially canopied, 
LULC diagnostic , iterative interpolative diagnostic, trailing vegetation, signature-related, 
fractionalized , discontinuous decomposed explanative, random  variable X may  be also 
described well by its distribution function FX. This is a real-valued function defined as FX(s) 
= P[X ≤ s] on R, where {X ≤ s } is the event of all experiments ω satisfying X(ω) ≤ s. The 
distribution function will not encode the internal structure of the random variable X; it does 
not reveal the structure of the probability space, for example. But the function FX would 
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allows the construction of a probability space in the predictive paradigm with exactly this 
distribution function. There are two important types of distributions, continuous distributions 
with a probability density function fX = F′X and discrete distributions for which F is 
piecewise constant[www.mathworld.com]. An example of a continuous distribution in a 
residiual forecast targeting a prolific, eco-georeferenceable, S. damnosum s.l. habitat may be   
the standard normal distribution, where fX(x) = e−x2/2/√2π. A medical entomologist or 
experimenter can characterize it as the distributionwith maximal entropy I(f) = 
−Rlog(f(x))f(x) dx among all distributions which may have zero mean and variance 1. An 
example of a discrete distributionis the Poisson distribution P[X = k] = e−λ λk k! on N = {0, 
1, 2, . . . } as in Jacob et al[22]. The authors in that contribution described a datset of geo-
spectrotemporally uncoalesced S. damnosusm s.l. hypeproductive, trailing vegetation, turbid, 
narrow, riverine, tributary, log-normalized, explanatorial, seasonal,geosampled, proxy 
signature,   random variables by their moment generating functions MX(t) = E[eXt] and  by 
their characteristic function φX(t) = E[eiXt]. The later models were construced in an ArcGIS 
cyberenvironment employimng the Fourier transform of the law μX = F′X which was a 
measure onthe real line R. 
 
 The law μX of the random variable is a probability measure on the real line satisfying 
μX((a, b]) = FX(b)−FX(a) (https://en.wikipedia.org/wiki/MathWorld). By the Lebesgue 
decomposition theorem, a medical entomologist or experimenter can decompose any measure 
μ into a discrete part μpp, an absolutely continuous part μac and a singular continuous part 
μsc. Random variables X for which μX is a discrete measure are called discrete random 
variables, random variables with a continuous law are called continuous random variables 
[25]. Traditionally, these two type of random variables are the most important ones for 
qunatiating probability spaces in forecast vulnerability paradigms. But singular continuous 
random variables appeartoo: in spectral theory, dynamical systems or fractal geometry. 
      

The Chebychev inequality P[|X − E[X]| ≥ c] ≤ Var[X] c2  may be  optimally 
employed for precsion targeting, hyperproductive, trailing vegetation, turbid water, narrow, 
African, riverine, tributary ecosystem,  oviposition sites on ArcGIS-derived, moderate 
resolution, multivariate LULCs  In probability theory, Chebyshev's inequality  guarantees 
that in any probability distribution, "nearly all" values are close to the mean—the precise 
statement being that no more than 1/k2 of the distribution's values can be more than k 
standard deviations away from the mean (or equivalently, at least 1−1/k2 of the distribution's 
values are within k standard deviations of the mean) [24]. A random, iteratively interpolative, 
explanative diagnostically, orthogonally decomposed, moderate resolution, endmember 
variable can be mixed discrete and continuous in a forecast vulnerability, geo-
spectrotemporal, S. damnosum s.l., wavelength, transmittance, frequency model [22]. 
Inequalities play an important role in probability theory [25]. A special case of the 
Chebychev-Markov inequality h(c) · P[X ≥ c] ≤ E[h(X)]  for  quantitating habitat   monotone 
nonnegative functions may be applicable when iteratively interpolating a S. damnosum s.l. 
uncoalesced, iteratively quantitatively, interpolative, moderate resolution, proxy signature. In 
mathematics, a monotonic function (or monotone function) is a function between ordered sets 
that preserves or reverses the given order. This concept first arose in calculus, and was later 
generalized to the more abstract setting of order theory. Other inequalities are the 
Jenseninequality E[h(X)] ≥ h(E[X]) for convex functions h, the Minkowski inequality ||X + Y 
||p ≤ ||X||p + ||Y ||p or the H¨older inequality ||XY ||1 ≤||X||p||Y ||q, 1/p + 1/q = 1 for random 
variables, X, Y , for which ||X||p =E[|X|p], ||Y ||q = E[|Y |q] are finite. Any inequality which 
appears in analysiscan be useful in the toolbox of probability theory [25]. 
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Independence is a central notion in probability theory. Two events A,B are called 
independent, if P[A ∩ B] = P[A] · P[B]. An arbitrary set ofevents Ai is called independent, if 
for any finite subset of them, the probability of their intersection is the product of their 
probabilities. Two σ-algebras A, B are called independent, if for any pair A ∈ A,B ∈ B, the 
events A,B are independent. Two random variables X, Y are independent, if they generate 
independent σ-algebras. It is enough to check that the events A = {X ∈ (a, b)} and B = {Y ∈ 
(c, d)} are independent for all intervals (a, b) and (c, d). A medical entomologist or 
experimenter should think of independent S. damnosum s.l. agro-village complex narrow 
riverine, tributary, eco-georeferenceable, immature habitat, random variables as two aspects 
of the field laboratory  which do not influence each other. Each event A = {a < X(ω) < b } 
would then be  independent of the event B = {c < Y (ω) < d }. While the distribution function 
FX+Y of the sum of two independent random variables is a convolution RR FX(t−s) dFY (s), 
themoment generating functions and characteristic functions satisfy the formulas  MX+Y (t) 
= MX(t)MY (t) and φX+Y (t) = φX(t)φY (t) (https://en.wikipedia.org/wiki/MathWorld).   
These identities makeMX, φX  may be valuable tools to compute the distribution of an 
arbitrary finite sum of independent random variables. For an uncoalesced, iterative, 
explanative, diagnostic, interpolative, moderate resolution, eco-georeferenceable, geo-
spectrotemporal, fractionalized endmember, seasonally hyperproductive, S. damnosum s.l. 
oviposition LULC site.  
  
             Independence can also be explained in a forecast, vulnerability, eco-
georeferenceable,  S. damnosum s.l. ,predictive, optimizable, geo-spectrotemporal, geospatial, 
proabilistic paradigm  employing conditional probability with respect to an event B of 
positive probability: the conditional probability P[A|B] = P[A ∩ B]/P[B] of A is the 
probability that A happens when we know that B takes place[25]. If B is independent of A in 
the oviposition, moderate resolution, uncolaesced, LULC model, then P[A|B] = P[A] but in 
general, the conditional probability  would be larger. The notion of conditional probability 
leads to the important notion of conditional expectation E[X|B] of a random variable X with 
respect to some sub-σ-algebra B of the σ algebra). A; it is a new random variable which is B-
measurable. (https://en.wikipedia.org/wiki/MathWorld). For B = A, it is the random variable 
itself, for the trivial algebra B = {∅, }, which may be optimally  obtainable by quantiating  
the usual expectation E[X] = E[X|{∅, }]. If B is generated by a finite partition B1, . . . ,Bn of  
of pairwise disjoint setsin the eco-epidemiological, S. damnosum s.l. habitat model, then 
E[X|B] is piecewise constant on the sets Bi and the value on Bi is the average value of X on 
Bi. If B is the σ-algebra of an independent random variable Y , then E[X|Y ] = E[X|B] = 
E[X].  
 
 In general, the conditional expectation with respect to B is a new random diagnostic, 
explanator obtained by averaging on the elements of B. One has E[X|Y ] = h(Y ) for some 
function h, extreme cases being E[X|1] = E[X],E[X|X] = X. An illustrative example is the 
situation where X(x, y) is a continuous function on the unit square with P = dxdyas a 
probability measure and where Y (x, y) = x. In that case, E[X|Y ] is a function of x alone, 
given by E[X|Y ](x) =R 10 f(x, y) dy. This  function may be an conditional integral in  an 
iterative , interpolative, moderate resolution, geo-spectrotemrpoal, S. damnosum s.l., 
forecasting vulnerability, epidemiological, probabilistic paradigm for targeting seasonally 
hyperproductive, S. damnosum s.l., trailing vegetation, eco-georeferenceable, oviposition 
sites on a ArcGIS geoclassified LULC in a narrow, African, riverine tributary ecosystems.A 
set {Xt}t∈T of random variables defines a stochastic process. The variablet ∈ T is a 
parameter called ”time”.  
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 Stochastic processes are to probabilitytheory what differential equations are to 
calculus. An example is afamily Xn of uncoalesced, geospectrotemrpoal, fractionalized 
endmeber eigenvectors rendered from an orthogonal decomposition of  a dataset of eco-
georeferenceable, S. damnosum s.l., diagnostic explanative, time series, trailing vegetation, 
narrow, African riverine, agro-village complex, elucidative, random variables which evolve 
with discrete time n ∈ N. Deterministic dynamical system theory branches into discrete time 
systems,the iteration of maps and continuous time systems, the theory of ordinaryand partial 
differential equations(https://en.wikipedia.org/wiki/MathWorld). Similarly, in probability 
theory, one distinguishesbetween discrete time stochastic processes and continuous 
timestochastic processes. A discrete time stochastic process is a sequence of randomvariables 
Xn with certain properties[25]. An important example is when Xn are independent, 
identically distributed S. damnosum s.l. random variables that eco-geographically represent 
hyppeorductive seasaonl geolocations. A continuoustime stochastic process in such a 
probabilistic, endmember, iterative interpolative paradigm may be  rendered by a family of S. 
damnosum s.l. random variables Xt, where t is real time. An example is a solution of a 
stochastic differential equation [SDE].With more general time like Zd or Rd random 
variables are called random fields which play a role in statistical physics. Unfortunately SDE 
they have not beed employed for any vector arthropod-related, forecast, vulnerability, 
iterative analyses for targeting prolific seasaonl, eco-georferenceable habitats. 

         The main flavours of stochastic calculus are the Itô calculus and its variational relative 
the Malliavin calculus. In probability theory and related fields, Malliavin calculus is a set of 
mathematical techniques and ideas that extend the mathematical field of calculus of 
variations from deterministic functions to stochastic processes ( e.g., iterative interpolation of 
fractionalized Rapid Eye TM visibl and NIR wavelength, transmittance , bidirectional 
frequencies from  LULC signature surfaces  ). For technical reasons the Itô integral is the 
most useful for general classes of processes but the related Stratonovich integral  is frequently 
useful in problem formulation (particularly in remote engineering disciplines.)  

In stochastic processes, the Stratonovich integral is a stochastic integral. The main 
benefit of the Stratonovich integral for Similim habitat, forecast, vulnerability modelling is 
that it obeys the usual chain rule and therefore does not require Itô's lemma. In some 
circumstances, integrals in the Stratonovich definition are easier to manipulate. In  
mathematics, Itô's lemma is an identity used in Itô calculus to find the differential of a time-
dependent function of a stochastic process which serves as the stochastic calculus counterpart 
of the chain rule http://mathworld.wolfram.com). Unlike the Itô calculus, Stratonovich 
integrals are defined such that the chain rule of ordinary calculus holds.In calculus, the chain 
rule is a formula for computing the derivative of the composition of two or more functions 
(e.g., , if f and g are  geo-spectrotemporal,  uncoalesced, seasonal, S. damnsoum s.l. 
hypeproductive, oviposition functions, then the chain rule would express the derivative of 
their composition f ∘ g  where the function maps x to f(g(x)) occurs  in terms of the 
derivatives of f and g and the product of functions). These intergrals can be heuristically 
derived by forming the Taylor series expansion of the function up to its second derivatives 
and retaining terms up to first order in the time increment and second order in the Wiener 
process increment. In pure mathematics, the Wiener process gave rise to the study of 
continuous time martingales. (^ Forum,"Variance of  integrated  Wiener process", 2009). A 
martingale is a sequence of random variables (i.e., a stochastic process) for which, at a 
particular time in the realized sequence, the expectation of the next value in the sequence is 
equal to the present observed value even given knowledge of all prior observed values ( 
www.sas.edu). 
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           Perhaps the most common situation in which these are encountered is as the solution 
to Stratonovich stochastic differential equations. A stochastic differential equation (SDE) is a 
differential equation in which one or more of the terms is a stochastic process, resulting in a 
solution which is also a stochastic process. SDEs are used to model various phenomena such 
as unstable stock prices or physical systems subject to thermal fluctuations. 
(http://mathworld.wolfram.com).  Typically, SDEs contain a variable which represents 
random white noise calculated as the derivative of Brownian motion or the Wiener process. 
However, other types of random behaviour are possible, such as jump processes. These 
processes may enable efficient targeting of eco-georeferenceable, geo-spectrotemporally 
uncoalesced, iteratively interpolative, explanatively, quantitative moderate resolution, trailing 
vegation, sparsely canopied, turbid, narrow, African  riverine, agro-village, seasaonally 
productivity S. damnosum s.l. data  to be expressed in a coordinate system invariant form, 
which would  be invaluable when developing stochastic calculus on manifolds other than Rn .  

         The dominated convergence theorem does not hold for the Stratonovich integral, 
consequently it is very difficult to prove results without re-expressing the integrals in Itô 
form. In measure theory, Lebesgue's dominated convergence theorem provides sufficient 
conditions under which almost everywhere convergence of a sequence of functions implies 
convergence in the L1 norm. Its power and utility are two of the primary theoretical 
advantages of Lebesgue integration over Riemann integration.In mathematics, the integral of 
a non-negative function of a single variable can be regarded, in the simplest case, as the area 
between the graph of that function and the x-axis. http://mathworld.wolfram.com).  The 
Lebesgue integral extends the integral to a larger class of functions. It also extends the 
domains on which these functions can be defined which may be applicable to remote 
targeting hypeproductive iterative interpolative, moderate resolution sparsely canopied, eco-
georeferenceable S. damnosum s.l. capture points. In the branch of mathematics known as 
real analysis, the Riemann integral, was the first rigorous definition of the integral of a 
function on an interval 

 Suppose that T  is a real-valued explanative, random,  geosampled, trailing 
vegetation, turbid water, eco-georeferenceable, partially canopied,  medium resolution, 
LULC, endmember, predictor variable  of a S. damnosum s.l. hyperproductive, trailing 
vegation, turbid water, oviposition sits geosampled in a narrow African, riverine tributary 
ecosystem  with an unknown distribution. Let F denote the distribution function of T  so that 
F(t)=P(T≤t)  for t∈R . The objective then would be to construct an unbiased estimator of F  
,so naturally the first step would be  to sample from the distribution of T  This would generate 
a sequence T=(T 1 ,T 2 ,…)  of independent riverine agro-village, predictor variables, each 
with the distribution of T and with distribution function F  . Think of T as a sequence of 
independent copies of T  . For n∈N +   and t∈R , the natural estimator of F(t)  would then be 
based on the first n  sample values is F n (t)=1n ∑ i=1 n 1(T i ≤t) which would be  simply the 
proportion of the first n  sample values that fall in the interval (−∞,t] . Appropriately enough, 
Fn   is known as the empirical distribution function corresponding to the sample of size 
n (www.mathworld.com). Note that (1(T 1 ≤t),1(T 2 ≤t),…)  would be  a sequence of 
independent, identically distributed indicator variables (and hence is a sequence of Bernoulli 
trials), and would  correspond to sampling from the distribution of 1(T≤t) in the probabilistic 
paradigm  . The estimator F n (t) would simply employ the sample mean of the first n  of 
these variables. The numerator would be a  number of the original geo-sampled, 
hypeproductive, capture point, eco-georeferenceable, geo-spectrotemporally uncoalesced, 
seasoanl, S. damnosum s.l., oviposition LULC variables with values such as (−∞,t] , which 
would then have a binomial distribution with parameters n  and F(t) . Like all sample means 
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from independent, identically distributed samples, F n (t)  may satisfy some basic and 
important properties of an interatively, quantitatively  interpolated, geo-spectrotemporally, 
geosampled, eco-georefernceable, uncoalesced, moderate resolution,  endmember signture of 
a hyperproductiuve, seasonally, imaged, S. damnsoum s.l., oviposition site, on a 
geoclassifiable, LULC geolocation.   

                 Suppose that T has the standard uniform distribution, that is, the continuous 
uniform distribution on the interval [0,1] in a  geo-spectrotemporal, forecasting, S. damnsoum 
s.l., vulnerability, probabilistic paradigm. In this case the distribution function would be  
simply F(t)=t  for t∈[0,1]  , and as such the sequence of stochastic processes 
X n ={X n (t):t∈[0,1]}  for n∈N +   , where X n (t)=n  √ [F n (t)−t]  may be quantitatble.As 
such, the process X n in the vector arthropod, eco-epidemiological, risk model would   have a  
mean function 0, variance function t↦t(1−t)  with a fixed t∈[0,1].  The distribution 
X n (t) would converge to the corresponding normal distribution as n→∞ .  Interestingly, the 
covariance function of X n   in the S. damnsoum s.l. signature interpolator would be the same 
as that of the Brownian bridge. In probability theory and statistics, the continuous uniform 
distribution or rectangular distribution is a family of symmetric probability distributions such 
that for each member of the family, all intervals of the same length on the distribution's 
support are equally probable (www. mathworld.com). The support would be optimally 
defined by two eco-georeferenceable,time series,  explanatory parameters, a and b, in the 
predictive, riverine habitat vulnerability paradigm which would be  its minimum and 
maximum values. The distribution would be abbreviated U(a,b). This support would eco-
georgraphically represent maximum entropy probability distribution for a random, 
explanatively geosampled Similium oviposition variate X under no constraint other than that it 
is contained in the distribution's support.   

If cov[X n (s),X n (t)]=min{s,t}−st  for s,t∈[0,1]   exists in a  geo-spectrotemporal, 
geospatial, S. damnsoum s.l. oviposition probabilistic, moderate resolution, iteratively 
interpolative, eco-epidemiological, trailing, vegetation, turbid water, discontinuously 
canopied,  forecast, vulnerability model. Then s≤t   would be revealed in the eco-
georeferenceable  residual,  time series explanatorial forecasts, From basic properties of 
covariance, the model would reveal cov[X n (s),X n (t)]=ncov[F n (s),F n (t)].Further, 
 cov(∑ i=1 n 1(T i ≤s),∑ j=1 n 1(T j ≤t))=1n ∑ i=1 n ∑ j=1 n cov[1(T i ≤s)1(T j ≤t)]. But if 
i≠j in the dataset of the epidemiological, geo-spectrotemporally geosampled, oviposition, 
seasonal explanators, then (T i ≤s)  and 1(T j ≤t)  would be  independent, and hence have 
covariance. On the other hand, if a moderate resolution, iterative interpolative explanative, 
moderate resolution, uncoalesced, signature of a hypeproductive, S. damnosum s.l., moderate 
resolution, imaged, immature, seasonal  habitat is employed as a dependent variable in a 
spatiotemporal, iterative, probabilistic, Bayesian iterative   matrix then 
cov[1(T i ≤s),1(T i ≤t)]=P(T i ≤s,T i ≤t)−P(T i ≤s)P(T i ≤t)=P(T i ≤s)−P(T i ≤s)P(T i ≤t)=s−st 
hence,cov[X n (s),X n (t)]=1n ∑ i=1 n cov[1(T i ≤s),1(T i ≤t)]=s−st  

       Bayesian statistics in WinBUGSio® and spatial filter eigenvectors from SAS/GIS® 
(http://ftp.sas.com) were employed  in Jacob et al. [2] for constructing a series of robust, 
endemic ,multivariate, explanatorial, transmission-oriented, field-operational , forecasting, 
agro-village capture point, seasonally hyperproductive S. damnosum s.l. , oviposition sites on 
moderate resolution, gridded, geo-spectrotemporal, moderate resolution,  predictive risk maps 
based on a Browinan bridge.  The authors developed a framework for a remote habitat-based 
surveillance system employing PROC NL MIXED, SAS/GIS, WinBUGSio and satellite-
derived, landscape-oriented, unbiased,  endemic, transmission-related, forecasting , 
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explanative, vulnerability  models.The authors decomposed the Wishart probability 
distribution of the sample covariance matrix by employing models generated in PROC NL 
MIXED and SAS/GIS into probability distributions of eigenvalues and eigenvectors in order 
to calculate multiple seasonal probabilistic, Bayesian, error estimation, orthogonal  matrices 
employing  a datset of eco-georeferenced, geo-spectrotemporally geosampled, uncoalesced, 
iteratively interpolative, hyperproductive, seasonal, moderate resolution, S. damnosum 
s.l.,endemic, transmission-oriented parameterized  covariates. Generalizations of the 
multivariate inverse gamma densities include Wishart distributions [www.sas.edu]. An 
important use of the Wishart distribution is as a conjugate prior for multivariate normal 
sampling [1]. In Jacob et al. [2] these models combined to generate a semiparametric spatial 
filtering eigenvector approach in AUTOREG to deal explicitlywith uncertainty in the eco-
georferenceable,   trailing vegation, partially canopied, turbid water, capture point, S. 
damnosum s.l., larval habitat, eco-epidemiological, forecast, vulnerability distribution, 
probabilistic paradigm by reducing the number of data parameters employing  spatially 
laggedautoregressive models and simultaneous autoregressive spatial models.  
 

Residual estimates from the off-diagonal elements of a covariance matrix were then 
generated from the spatial filter eigenevector analysis prior to support exporting the 
geosampled data into a Bayesian estimation matrix. For the fixed, S. damnosum s.l. 
regression parameters, a suitable choice the authors assumed was the diffuse prior, (i.e., p(γ) 
const.) but a weakly informative Gaussian prior was also employed. In so doing, second-
order Gaussian random walk prior allowed  enough flexibility in the iteration process  while 
penalizing abrupt changes in the function. The second-order random walk model is 
commonly used for smoothing data and for modelling response functions (www.sas.edu). In 
Jacob et al. [2] the algorithm computationally was efficient which the authors deemed to be 
due to the Markov properties of the joint (intrinsic) Gaussian density. 

The second order random walk (RW2) model is commonly used for smoothing data 
and for modelling response functions. It is computationally efficient due to the Markov 
properties of the joint (intrinsic) Gaussian density. For evenly spaced the RW2 model is well 
established, whereas for irregularly spaced geolocations (e.g., eco-georeferenceable, trailing 
vegetation, turbid water, S. damnosum s.l. African, riceland  agro-village, riverine, tributary 
habitat geolocations) there is no well established construction in the literature. By considering 
the RW2 model as the solution of a SDE, a discretely observed integrated Wiener process 
may derive the density preserving the Markov properties in an iterative interpolatve Bayesian 
inferencial paradigm by augmenting the state-space with the velocities. In so doing, a 
computationally more efficient RW2 S. damnosum s.l., moderate resolution, eco-
epidemiological, forecast, vulnerability  model for irregular hyperproductive oviposition 
geolocations using a Galerkin approximation to the solution of the SDE without the need of 
augmenting the state-space. In mathematics, in the area of numerical analysis, Galerkin 
methods are a class of methods for converting a continuous operator problem (such as a 
differential equation) to a discrete problem.   Numerical comparison with the exact solution 
may demonstrate that the error in the Galerkin approximation is small and negligible in 
optimizable, epidemiological, predictive risk model applications for targeting eco-
georeferenceable, hypeproductive S. damnosum s.l. immature, trailing vegation, turbid water, 
immature oviposition sites on geoclassified, moderate resolution LULCs.   

 Jacob et al. [2] employed WinBUGSio, an SAS macro program, which facilitates 
remote execution of WinBUGS from within SAS. This is an SAS macro, which does the data 
handling and input/output from WinBUGS® via SAS®. The program produced a column 
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format data file based on the geo-spatiotemporally geosampled eco-georeferenced,  clinically, 
field and remote specified S. damnosum s.l. riverine, tributray, agro-village irrigated riceland,  
larval habitat, multivariate, endemic, transmission-oriented, explanatory,paramterizable, time 
series, interpolatable, predictor,  covariate,  coefficient estimates and also wrote a list format 
data file for constants. The macro program then wrote a script file to the WinBUGS directory 
referencing the appropriate datafile, model file, init file, and log file names. The script then 
ran WinBUGS in batch mode which read in the node statistics block from the log file. 
Although there was a requirement to specify the input and output file names and directory 
path as well as the statistics to be monitored in WinBUGS, the code checked for optimal 
convergence diagnostics within the geodatabase cyberenvironment. The authors checked for 
non-normal distributed random errors in the regression equation. Methods for regressing geo-
spectrotemporal, geosampled, explanative, vector, arthropod-related, larval habitat, eco-
georeferenecable, data rely on the assumption of normality and the use of linear estimation 
methods (e.g., least squares) to make probabilistic inferences [2]. 

 
In the iterative, Bayesian, S. damnosum s.l. model, the authors considered the inverse-

Wishart distribution which is a proper conjugate prior for an unknown covariance matrix in a 
multivariate normal model. Some specific analytical results for the inverse-Wishart have been 
derived; for example, the marginal distribution of a diagonal block submatrix of draws from 
an inverse- Wishart distribution [www.sas.edu]. In statistics, the inverse Wishart distribution, 
also called the inverted Wishart distribution, is a probability distribution defined on real-
valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior in a S. 
damnsoum s.l. habitat model for the covariance matrix of a multivariate normal distribution 
[2]. 
 

Thereafter, the authors performed a non-smooth optimization by stabilizing the 
steepest descent in the riverine, tributary, risk model by exploiting gradient and subgradient 
information in the regressands. The authors then investigated the behaviour of quasi-Newton 
(i.e., variable metric) methods, specifically,the well-known Broyden-Fletcher-Goldfarb-
Shannon (BFGS) method, to minimize non-smooth functions, both convex and nonconvex in 
the S. damnosum s.l. riverine tributary, geo-spectrotemporally imaged,  larval habitat, 
epidemiological models.  

In numerical optimization, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
algorithm is an iterative method for solving unconstrained nonlinear optimization 
problems.The BFGS method approximates Newton's method, a class of hill-climbing 
optimization techniques that seeks a stationary point of a (preferably twice continuously 
differentiable) function. For such problems, a necessary condition for optimality is that the 
gradient be zero. Newton's method and the BFGS methods are not guaranteed to converge 
unless the function has a quadratic Taylor expansion near an optimum. These methods use 
both the first and second derivatives of the function. However, BFGS has proven to have 
good performance even for non-smooth optimizations.  

In quasi-Newton methods, the Hessian matrix of second derivatives does not need to 
be evaluated directly. Instead, the Hessian matrix is approximated using rank-one updates 
specified by gradient evaluations (or approximate gradient evaluations).Quasi-Newton 
methods are generalizations of the secant method to find the root of the first derivative for 
multidimensional problems. In multi-dimensional problems, the secant equation does not 
specify a unique solution, and quasi-Newton methods differ in how they constrain the 
solution. The BFGS method is one of the most popular members of this class.[2] Also in 
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common use is L-BFGS, which is a limited-memory version of BFGS that is particularly 
suited to problems with very large numbers of variables (e.g., >1000).  

In optimization, quasi Newton methods (a special case of variable metric methods) a 
real algorithms for finding local maxima and  minima of functions [www.mathworld.com]. 
Quasi-Newton methods are also a generalization of the secant method to find the root of the 
first derivative for multi-dimensional problem solving [www.sas.edu].In multiple dimensions, 
the secant equation is underdetermined for Quasi-Newton methods, which were used to find 
the stationary point of a function  in the S. damnosum s.l. habitat model when the gradient is 
0. Any locally Lipschitz non-smooth function f  was viewed as a limit of increasingly ill-
conditioned differentiable functions  in the geo-spectrotermpoal, moderate resolution, 
explanatory, time series, dependent, endemic, transmission-oriented,  forecast, vulnerability,  
S. damnosum s.l. eco-epidemiological, risk model via “mollifiers”,  
 

In mathematics, mollifiers (also known as approximations to the identity) are smooth 
functions with special properties, used for example in distribution theory to create sequences 
of smooth functions approximating nonsmooth (generalized) functions, via convolution. 
Intuitively, given a function which is rather irregular, by convolving it with a mollifier the 
function gets "mollified", that is, its sharp features are smoothed, while still remaining close 
to the original nonsmooth (generalized) function [1]. Unfortunately most of them may have 
noconsequence for asymptotic convergence behaviour when f is notdifferentiable at its 
minimizer. These are commonly seen in smooth functions with special properties employed 
in distribution theory to create sequences of smooth functions approximating non-smooth 
(i.e., generalized) functions, via convolution however, they have never been applied for 
seasonal, predictive, vector, arthropod-related, endemic, transmission-oriented, risk 
modeling. 
 

Lipschitz continuity is an important concept in mathematical analysis. In modern 
variational analysis, it has been generalized for set-valued mappings. Among many 
extensions, the pseudo-Lipschitzian property has been recognized as a natural and useful for 
determining the inverse of a piecewise affine function around a sample point. It is nowcalled 
by different names, such as the Aubin property or the Lipschitzlike property 
[www.mathworld.com]. The concept has been also used extensively in the study of 
sensitivity analysis of optimization problems and variational inequalities. The pseudo-
Lipschitzian property also plays an important role in developing generalized differentiation 
calculi for non-smooth functions and set-valued mappings. Accordingly, for a set-valued 
mapping rendered from a regressed georeferenced empirical dataset of seasonal, clinical,  
field and remote, geo-spectrotemporally  geosampled, explanatory, S. damnosum s.l., 
endemic transmission-oriented, parameterizable estimators employingF : Rm →→ Rn, for 
instance, the Aubin property around( − x, − y) ∈ gph F := {(x, y) ∈ Rm × Rn | y ∈ F(x)} may 
be efficiently. 
 

Considering multiple classes of error distributions in a geo-spectrotemporal,  
moderate resolution, S. damnosum s.l.,  larval habitat, immature capture point, eco-
epidemiological,  African narrow tributary, eco-georeferenceable, riverine, agro-village,  
larval habitat multivariate, seasonal, endemic transmission-oriented, predictive risk model 
may be  a useful alternative to the normal distribution: t-distributions, generalized error 
distributions, and Tukey’s contaminated normal distribution. It may be assumed that these 
probabilistic distributions are robust in the sense that any outliers in a seasonal geosampled S. 
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damnosum s.l. riverine larval habitat empirical ecological dataset logically would have less of 
an effect on the estimated mean (i.e., regression) function than on the residual forecasts 
targeting the statistically significant endemic transmission-oriented basednormal/non-normal 
distributions. At an intuitive non-mathematical level, the use of heavy tailed S. damnosum s.l. 
habitat distributions in a seasonal infectious disease model may allow for a small number of 
large error residuals to be quantitated.  
 

Further, it may be assumed that since a normal distribution would force the predicted 
residuals to be within a few standard deviations of the mean, the S. damnosum s.l. larval 
habitat outliers could adversely affect the estimated mean, biasing the estimate in a time 
series explanatory, clinical, field and remote specified risk-related endemic transmission-
oriented, predictive model by greatly inflating the estimated standard error of the mean. It 
also may be assumed that these outliers would cause loss of predictability power in the 
residually geo-spectrotemporally regressed derivatives increasing the width of confidence 
intervals in the risk model outputs. Therefore, PROC NL MIXED SAS/GIS, WinBUGSio, 
and  moderate resolution -derived regression-based, forecast, vulnerability , probabilistic 
paradigms can account for any multivariate predicted variability in a eco-georeferenced, 
seasonal, geosampled empirical dataset of clinical, field and remote, geo-spectrotemporally 
geosampled, explanatory covariate coefficients for statistically representing larval habitat 
productivity of S. damnosum s.l. in a riverine tributary, ecosystem agro-village, study site.  
 

Constructing robust, ecological-weighted, regression equations and global 
autocorrelation statistics to identify linear and non-linear based elucidative predictors 
associated to hyperproductive, seasonal, S.damnosum s.l., trailing vegation, turbid 
water,capture point, immature  habitats and the quantitate latent autocorrelation uncertainty 
coefficients in the model residual forecasts using a covariance matrix rendered from an 
eigenfunction decomposition spatial filter algorithm may reveal parameterizable covariates 
associated with  hypeproductive oviposition sites on geoclassifiable, moderate resolution 
LULCs. Further, generate inverse-Wishart priors within a Bayesian probabilistic estimation 
framework for forecasting regression-based distribution of multiple clinical, field and remote-
sampled endemic transmission-oriented, S. damnosum s.l. riverine, agro-village complex,  
unmixed, larval habitat explanatory, signature-related, iteratively interpolatable, covariate 
coefficients  geo-spectrotemporally geoampled in  an narrow riverine tributary African agro-
ecosystem  may forecast precisely unknown, un-geosampled,  hypeproductive, seasonal 
habitats.  
 

          Due to the usage of multivariate spectral channels in various wavelengths, an image 
mixed pixel (“mixel”) is actually a mixel vector, of which each expositorily  fractionalized, 
endmember component is a single mixel in an image (e.g., moderate resolution, seasonally, 
geo-spectrotemporally geosampled, discontinuously canopied, eco-georeferenceable, S. 
damnosum s.l., immature, capture point,oviposition site) acquired by a particular spectral 
channel. As a result, different elucidative, geoclassifiable, multi-resolutionary,geo-
spectrotemporal, endmember, seasonally explanative datset of   LULC substances (e.g.,  eco-
georefereneable, foliar height diversity) may accurately regressively delineate discontinuous, 
canopied, uncoalesced elements essential for iteratively interpolating seasonal, Similium, 
hyperproductive, oviposition signatures  at the landscape, riverine, tributary, agro-village  
scale. This scale can be also measured by explicatively iteratively, quantitatively interpolated, 
orthogonally decomposed, fractionalized, endmember signature in a single mixel vector. 
Such proxy, illuminative, bidirectionally reflective, optimally explanatorily geoclassifiable, 
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moderate resolution, LULC substances may appear either as sub-mixel, explanative, 
parameterizable, covariate weightage of a eco-georeferenceable, eco-epidemiological, study 
site, capture point scale or a form mixed by other proxy substances in a mixel vector. 
          
         Linear spectral mixture analysis is a common acceptable approach for optimizing 
hierarchically-oriented, frequentistic, algorithmic, geoclassification, sub-mixel  optimization 
routines in ArcGIS, for optimally defining unique signatures of pure ground components (i.e., 
endmembers) and  linear combinations of endmember materials (i.e, eigenvectors). In the 
simplest case, a radiance  endmember optimization problem consists of maximizing or 
minimizing a real function by systematically choosing fractionalized, orthogonal, spatial 
filter, endmember and  eigenvector,  input, wavelength, unmixed transmittance  values from 
within an empirically, optimally parameterizable,  dataset of  time series, frequentistic-
oriented, probabilistically regressable, moderate resolution,  expositively forecastable,  
uncoalesced, emissivity  values of a function. According to Jacob et al [22], geo-
spectrotemporally geoclassified seasonally prolific, eco-georeferenceable, S. damnosum s.l.,  
geospatially uncoalesced datsets of  capture point, time series, regressed, uncoalesced, LULC 
patterns vector libraries   is cartographically  illustratable via an eigenfunction decomposition  
algorithm employing a particular spatial correlation, weighted, grid matrix in ArcGIS ( e.g., 
Geostatistical Analyst TM).This data may be  projected   onto a orthogonal complement of a  
dominant baseline subspace. More generally, time series, explanatorial, LULC optimization 
in ArcGIS  can render  robust, unmixed,  regressively synthesiziable, sub-mixel, orthogonal, 
eigenvector values  for vulnerability mapping eco-georeferncable,  hyperproductive, seasonal, 
trailing vegetation, turbid water, partially shaded, S. damnosum s.l., immature, capture point, 
ecosystem complex, iterative interpolative, forecastable, objective functions given a defined 
domain, or a set of fractionalized  sub-mixel constraints. These geo-spectrotemporal,  
endmember data points could include a variety of different types of  unmixed, objective, 
proxy, eco-geophysiological, iteratively, quantitatively interpolative, time series, 
frequentistic, LULC signature, functions [ e.g., vertical foliage of discontinuous, forest 
canopy (i.e., gaps) during dry season,  nitrogen distribution in an irrigated, narrow, tributary, 
agro-village,  complex, peripheral, flooded habitat) which would be cartographically 
optimally delineated employing multiple, geoclasssifiable, stratified  polygons in ArcGIS.  
The method would consist of aggregating seasonal, eco-geographical, coordinates of, 
explanative, proxy, polgonized, endmember LULC, time series, stratifiable regions of a 
discontinuous, sparsely shaded, seasonal hyperproductive, optimally parameterizable, S. 
damnosum s.l., geo-spectrotemporal,  georeferenceable, capture point, in ArcGIS based on an 
eigenanalyses employing  moderate resolution-derived, fractionalized,  Euclideanized, sub-
mixel, distance-related, categorical variables. Fractionalized orthogonalized, explanative 
endmembers can be identified by maximizing a simplex volume, or finding maximal 
distances in subsequent subspace projections, while unmixing may consider a simple 
projection problem in the riverine tributary, vulnerability probabilistic paradigm. Since many 
of these algorithms may be written in terms of distance geometry in ArcGIS,  where mutual 
distances are the properties of interest instead of Euclidean coordinates, an unmixing chain 
may be optimistically quantitated   using robustly, parsimoniously uncoalesced, iteratively 
interpolative, discontinuous, sparsely shaded, geo-spectrotemporal,  partially canopied,  
distance metrics. In so doing, preprocessing steps such as nonlinear, dimensionality reduction 
or data whitening, and several nonlinear unmixing models such as the Hapke and bilinear 
models,  may be optimally constructed in ArcGIS employing a subset of proxy, 
orthogonalized, explanatively geoclassifiable, eco-georeferenecable, LULC signature, spatial 
filters for expressing  surface spatial structural discontinuity variables in partially canopied, 
trailing vegetation,  seasonally, hypeproductive, narrow, African, riverine tributary, agro-
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village complex, capture point, oviposition site vulnerability, forecast models, which may be 
deemed  mappable at different spatial scales. If so, transformations may be conducted in data 
spaces  where the endmember data may optimally depicit simulations of hyperprobabilistic, 
hyperendemic geolocations of eco-georeferenceable, iteratively interpolated, seasonal, 
hyperproductive habitats,  positively autocorrelated along a riverine tributary corridor 
employing abundance and distrubtion collection points in ArcGIS  based on time series, 
immature, productivity, count data, predictor variables with a corresponding metric ( i.e., 
Morans i coefficient). 

    Different metrics in geometry-based, moderate resolution, immature, S. damnosum s.l., 
capture point, geo-spectrotemporal algorithmic extraction processes in ArcGIS   may 
demonstrate the results for some well-known metrics, such as the Mahalanobis distance. 
Further, for intimate mixing, a polynomial, post-nonlinear, model estimators and graph-
geodesic distance, endmember measurements may be regressively or cartograpically 
quantitated from a field-operational, eco-epidemiological, empirical dataset of eco-
georeferenceable, uncoalesced, moderate resolution, parameterizable, wavelength 
transmittance, endmember frequencies.  

        The Mahalanobis distance is a measure of the distance between a point P and a 
distribution D which is a multi-dimensional generalization of the idea of measuring how 
many standard deviations away P is from the mean of D. This distance is zero if P is at the 
mean of D, and grows as P moves away from the mean: along each principal component axis, 
it measures the number of standard deviations from P to the mean of D. If each of these axes 
is rescaled to have unit variance, then Mahalanobis distances computed  of  seasonally 
hypeproductive, eco-georeferenceable geolocations of  multiple, iteratively interpolative, eco-
epidemiological, capture point, S. damnosum s.l. oviposition, geo-spectrotemporal, 
geoclassifiable, LULC sites in a geo-classifiable, ArcGIS, stratifiable, moderate resolution, 
polygon may correspond to standard Euclidean distance in the transformed space (Figure 4). 
Mahalanobis distance is unitless and scale-invariant, and takes into account the correlations 
of the data set ( www.esri.com). The canonical Mahalanobis distance is defined as the 
empirical multivariate location and scatter, respectively[26]. This defination excludes the 
intercept. For Gaussian distributed S. damnosum s.l. habitat data, the distance of an 
observation to the mode of the distribution can be computed using its Mahalanobis 
distance: where and are the habitat geolocation 
and the covariance of the underlying Gaussian distribution.In practice, and are replaced 
by some estimates. The usual covariance maximum likelihood estimate is very sensitive to 
the presence of outliers in the data set and therefor, the corresponding Mahalanobis distances 
are. In statistics, an outlier is an observation point that is distant from other observations.[1][2] 
An outlier may be due to variability in the measurement or it may indicate experimental 
error; the latter are sometimes excluded from the data set[25]. Outliers can occur by chance in 
any distribution, but they often indicate either measurement error or that the population has a 
heavy-tailed distribution One would better have to use a robust estimator of covariance to 
guarantee that the estimation is resistant to “erroneous” observations in the data set and that 
the associated Mahalanobis distances accurately reflect the true organisation of the 
observations.The relation between the Mahalanobis distance and the hat matrix may  be  

quantized as:  under certain assumptions, where 
the distribution of th ML  estimator  of a vector of  S. damnsoum s.l. moderate resolution 
LULC parameters  can be approximated by a multivariate normal distribution with mean  and 
covariance matrix . In this model the log-likelihood of one capture point observation from the 
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sample, evaluated at the true parameter  would be  the gradient   where  the vector of first 
derivatives of the log-likelihood is unknown .Because  the habitat variable is unknown, also 
this covariance matrix is unknown.. Under these assumptions we also have that the 
information equality holds, so thatwhere the Hessian matrix  is the matrix of second-order 
partial derivatives of the log-likelihood function.( see Figure 4) 

Figure 4 A flexible ArcGIS processing chain, within a Hessian matrix  of  proper  
Mahalanobis distance functions  

     

 

           For multivariate, explicity diagnosable, fractionalized, moderate resolution, geo-
spectrotemporal,eco-georefernceable, empirical, hyperproductive, S. damnosum s.l. 
oviposition, eco-epidemiological, seasonal, capture point, uncoalesced, proxy signature  
endmember datasets, the classical, nonrobust, estimate of a geolocation of interest ( e.g., 
seasonally hyperproductive, trailing vegetation, turbid water, discontinuously canopied,  
riverine tributary, agro-village, flooded  habitat) would be  the vector mean which in ArcGIS 
could be  simply tabulated as the explanative  vector whose ith component is the mean of the 
ith geosampled, explanatorial,  iterative, quantitative interpolative, variable. The classical, 
nonrobust estimate of scatter for a forecast vulnerability, moderate resolution, wavelength, 
emissivity, frequency, probabilistic, S. damnosum s.l.   paradigm may be  the covariance 
matrix. In  a seasonal, vector arthropod-related, eco-epidemiological, risk  analyses, a 
covariance matrix (also known as dispersion matrix or variance–covariance matrix) would be 
a matrix whose element in the i, j position ( e.g., habitat capture point, covariate and  
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endmember, uncoalesced probabilistic regressable, coefficient value)  would be  the 
covariance between the i th and j th elements of a random vector. An uncoalesced,  trailing 
vegation, turbid water, partially canopied, hyperproductive, seasonal, eco-georeferenceable  
multivariate, S. damnsoum s.l. oviposition, capture point, sub-mixel, random variable or 
random vector may be revealed as a list of mathematical variables in ArcGIS whose value is 
unknown, either because the value has not yet occurred or because there is imperfect 
knowledge of its value. These individual riverine, explanatorial, endmember, oviposition, 
seasonal, habitat variables in a random vector could be grouped together in ArcGIS since 
there would be correlations among them  Correlation is any of a broad class of statistical 
relationships involving dependence, though in common usage it most often refers to the 
extent to which two variables have a linear relationship with each other[25]. These sub-mixel 
habitat estimators may represent different properties of an individual statistical unit in a S. 
damnosum s.l., oviposition, targeting model. For example, while a given Similium oviposition 
LULC site has an ArcGIS quantifiable,  specific canopy  age and  height, the representation 
of any eco-georeferenceable, hyerproductive, seasonal habitat may be revealed employing a 
regression equation whereby a within  group random vector could be a response variable. 
Normally each element of a random vector is a real number [25]. Random vectors are often 
employed as the underlying implementation of various types of aggregate, random, geo-
spectrotemporal, LULC variables within ArcGIS cyberenvironments , (e.g. a random matrix, 
random tree, random sequence, stochastic process, etc) 

       An outlier in a forecast, vulnerability, seasonal, moderate resolution, geo-
spectrotemporal, S. damnosum s.l., hyperproductive, oviposition, explanatorial, diagnostic,  
probabilistic endmember, paradigm,  may be optimally definable  observation whose 
Mahalanobis distance from  is greater than some cutoff value generated in ArcGIS. In 
statistics, an outlier is an observation point that is distant from other observations [25]. An 
outlier in a forecast, S. damnosum s.l. eco-epidemiological, eco-georefrenceable, geo-
spectrotemporal, vulnerability   model may be  may be due to variability in the measurement 
or it may indicate experimental error; the latter are sometimes excluded from the data set [22] 
Outliers  in  empiricial, vector, arthropod-related, entomological,  forecasting datasets  can 
occur by chance in any distribution, but they often indicate either measurement error or that 
the population has a heavy-tailed distribution. In the former case  an expeimenter or medical 
entomologist may wish to discard the residual predicted regressands  or use statistics that are 
robust to outliers, while in the latter case the targeted hyperproductive,  eco-georeferenceable,  
prolific, seasonal,  ovipoisition sites on geoclassifiable, moderate resolution, stratified LULCs 
can indicate that the distribution has high skewness. According to Jacob et al. [22]any 
assumption of a normal distribution would be violated. If assumptions are violated in a 
forecasting,  trailing vegation, seasonally  hyyperproductive, eco-georeferenceable, agro-
village,  S. damnosum s.l. seasonal capture point,  regresssion equation then the model 
findings will be misspecified (e.g., in a Possionian probabilistic paradigm if the varaince in 
not equivalent to the mean).  A frequent cause of outliers is a mixture of two distributions, 
which may be two distinct sub-populations, or may indicate 'correct trial' versus 
'measurement error'; this is modeled by a mixture model. 

     In most  larger samplings of data, some data points will be further away from the sample 
mean than what is deemed reasonable [24]. This can be due to incidental systematic error or 
flaws in the theory that generated an assumed family of probability distributions, or it may be 
that some observations (remotely targeted, hyperproductive, S. damnosum s.l., seasonal, 
prolific, oviposition sites on geoclassifiable LULCs)   are far from the center of the data. 
Outlier points can therefore indicate faulty data, erroneous procedures, or areas where a 
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certain theory might not be valid in a  riverine, narrow, tributary trailing vegetation, turbid 
water, partially or dense canopied, seasaonal hyperproductive S. damnosoum s.l. habitat. 
However, in large samples, a small number of outliers is to be expected (and not due to any 
anomalous condition) [25]. 

         As in the univariate case, both classical estimators are sensitive to outliers in seasonal 
Simiulum habitat, geosampled, eco-georeferenceable, empirical datasets. Consequently, 
medical entomologists and experimenters may create robust estimates (prolific, seasonal, 
iteratively, quantitatively interpolated, S. damnosum s.l., ovipoisition sites on geoclassifiable 
LULCs employing the center and the scatter (covariance) matrix.   

  Tradtionally difference between a scatter matrix and the covariance may be   
probabilistically regressively quantited in an ArcGIS cyberenvironment.  Some distributions, 
such as elliptical, time series, S. damnosum s.l. geo-spectrotemporally uncoalesced, 
iteratively interpolative, endmember distributions, may not have a covariance matrix but most 
definitively will always have a "scatter" matrix ( see Jacob et al. [22]. Thus, the covariance 
and scatter matrix may not coincide in a regression cartographic geodatabase.  The scatter 
matrix is a function of a sample set that estimates the covariance matrix [25]. There are 
distributions for which the covariance is undefinable ( e.g., a kriged,  S. damnosum s.l. 
trailing vegation, turbid water, moderate resolution, habitat, proxy LULC signature) , but if 
an experimenter or medical entomologist  restricts  him or herself  to some finite set of 
sample, explanatorial, diagnostic, normalized, eco-georeferenceable, hyperproductive, 
riverine, tributary, ovipoistion, capture point,  geospatial, geoclassifiable, moderate 
resolution, stratifiable, expositorial, LULC  data points,  these Universal Transverse Mercator 
(UTM) points and other imaging  geocoordinates may mechanically form the scatter matrix 
based on an estimate of the  the mean of a 1-variable distribution by taking the average of a 
sample. The Universal Transverse Mercator (UTM) and Universal Polar Stereographic (UPS) 
coordinate systems both use a metric-based cartesian grid laid out on a conformally projected 
surface to locate positions on the surface of the Earth which is not a single map projection but 
a series of sixty, each covering 6-degree bands of longitude( www.esri.com) In so doing, the 
two matrices may coincide in ArcGIS (assuming the covariance is definable.  

      In probability theory, the law of large numbers (LLN) is a theorem that describes the 
result of performing the same experiment a large number of times. According to the law, the 
average of the results obtained from a large number of trials should be close to the expected 
value, and will tend to become closer as more trials are performed. The LLN is important for 
geo-spectrotemporal, predictive, endmember modelling, uncoalesced, moderate resolution, 
iteratively interpolative  signatures of eco-georeferenceable, explanatorial,  trailing 
vegetation, narrow, riverine tributary, S. damnosum, s.l., unbiased model estimators  as it  
would  stablize long-term results for the averages of some random geosampling seasonal 
events. For example, while a hyperproductive, capture point, oviposition, LULC site may 
lose some immature productivity throughout an eco-epidemiological, sample frame its  
immature values  will tend towards a predictable percentage over a large number geosampled 
habitats. It is important to remember that the LLN only applies (as the name indicates) when 
a large number of observations are considered [25]. There is no principle that a small number 
of capture point, S. damnosum s.l., habitat observations will coincide with the expected value 
or that a streak of one geosampled oviposition, capture point value will immediately be 
"balanced" by the other values (e.g., gambler's fallacy). A form of the law of large numbers 
would thus explicity state that under certain conditions (which  may be stronger in the S. 
damnosum s.l. habitat forecast vulnertability paradigm than  just the existence of the 
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covariance matrix) the limit for large n would be explantively quantitatable as the  scatter 
matrix approaches the covariance matrix in ArcGIS .  

For robustifiable estimation of an uncoalesced, explanative, geo-spectrotemporal, 
moderate resolution, endmember dataset of eco-georeferenceable, trailing vegetation, turbid 
water, partially canopied, hyperproductive, S. damnosum s.l. ovipoisition, capture point, 
parameterizable, wavelength, transmittance frequencies,   a Minimum Covariance 
Determinant (MCD) in ArcGIS may be algorithmically employable. The main idea of this 
matrix is due to Rousseeuw (1985), but the algorithm that is commonly used for predictive 
endmember modeling was developed by Rousseeuw and Van Driessen (1999). The MCD 
algorithm  for a forecast, vulnerability,sub-mixel, probabilistic paradigm for  cartographically 
and regressively  revealing geolocations of eco-georeferenceable seasonal, S. damnosum s.l., 
hyperproductive, oviposition sites on geoclassifiable, moderate resolution  LULC would 
work by sampling h observations from the data over and over again, where h is typically in 
the range n/2 < h < 3n/4. The "winning" subset would be the h points whose covariance 
matrix has the smallest determinant. Points far from the center of this subset would be 
optimally excluded in the sub-mixel geo-spectrotemporal analyses in ArcGIS and the center 
and scatter of the remaining points would be parsimoniously employed as the robust 
estimates of  the prolific geolocations and scatter.  Recently, Hubert, Rousseeuw, and 
Verdonck (2010) have published a deterministic algorithm for the MCD. The SAS/IML 
language includes the MCD function for robust estimation of multivariate location and scatter 

The ROBUSTREG procedure can also compute MCD estimates. Usually, the 
ROBUSTREG procedure is used as a regression procedure, but you can also use it to obtain 
the MCD estimates by "inventing" a response variable. The MCD estimates are produced for 
the explanatory variables, so the choice of a response variable is unimportant [www.sas.edu]. 
In contrast, the ROBUSTREG procedure uses the MCD algorithm to identify influential 
observations in the space of explanatory (that is, X) variables   These are also called high-
leverage points. They are observations that are far from the center of the X variables. High-
leverage points of seasonally hyperporoductive S. damnosum s.l., oviposition, capture points 
are very influential in ordinary least squares regression, and that is why it is important to 
identify them. s are the robust distances[22]. The "leverage" variable is an indicator variable 
that tells you which observations are far from the center of the explanatory variables [25]. 
There may be are multivariate, explanatively diagnostic, elucidatively uncoalesced, moderate 
resolution, inconspicuous, LULC "outliers" in the space of the X variables in a forecast, 
vulnerability, S. damnosum s.l., probabilistic, targeting , geo-spectrotemporal, paradigm 
although they may  not be necessarily outliers for the response (Y) variable. 

 Elucidatively uncoalesced, proxy geo-spectrotemporal, signature-oriented, 
expositively fractionalized, radiance, synthetic orthogonal, eigenvectors may also be 
employable as optimal unbiased, eco-physiological, bio-geophysical georeference markers in 
forecasting vulnerability time series paradigms constructed  in ArcGIS (e.g., Geostatistical 
Analyst TM). Both discrete-return and non-diffuse,  moderate resolution, metaheuristically, 
expositorily optimizable  waveforms may also  be  quantitatively employable to identify 
unknown, un-geosampled,   narrow, tributary, hyperproductive, seasonal, S. damnosum s.l., 
immature capture points in an  African, agro-village, riverine ecosystem, empirical, eco-
georeferenceable, regressed dataset of iteratively explanatorily, interpolatable, uncoalesced, 
hyperproductive, habitat proxy, LULC signature covariates. Whilest so doing, the algorithm 
would retrieve the fractionalized, endmember, discontinuous,  photosynthetic and non-
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photosynthetic elements of the oviposition, capture point including canopy height, biomass, 
vertical distribution of leaves and branches, canopy closure, Leaf Area Index (LAI)  canopy 
height profile and vertical foliar diversity. Leaf area index is a dimensionless quantity that 
characterizes plant canopies which is  definable in ArcGIS  as the one-sided green leaf area 
per unit ground surface area (LAI = leaf area / ground area, m2 / m2) in broadleaf canopies. 
(www.esri.com). Employing  multiple and partial,time series, regression analyses in ArcGIS 
(e.g., Geostatistical Analyst TM) employing an eigenfunction decomposition, orthogonal, 
spatial filter algorithm, thereafter, the moderate resolution, endmember variables  may be 
manipulated in geospace  so as  to take  into account latent autocorrelation coefficients  which  
can reveal wavelength, transmittance, clustering, moderate resolution,coefficient emissivity, 
frequencies at a “hot spot”( hyperproductive, seasonal, agro-village, narrow, riverine 
tributary,  S. damnsoum s.l. oviposition, moderate resolution, imaged LULC site). 
Autocorrelation in filters and in the regression residuals can be used as stopping rules to 
define which filters will be used in an endmember probabilistic analyses[24].  
 
         A Rapid Eye TM  unbiased, seasonal, geo-spectrotemporal, vertical, canopy height, 
diagnostic, sub-mixel,  profile model was constructed in a ArcGIS cyberenvironment in  
Jacob et et al. [22] for obtaining a footprint of a eco-georeferenceable, hyperproductive, 
seasonal, S. damnosum s.l., eco-georferenceable,  capture point in  a geosampled,  narrow 
tributary, African agro-village, ecosystem complex (Chutes Dienkoa) in Burkina Faso. 
Initially, the geosampled data was tested in a closed canopy environment as a way of 
optimally extracting robustifiable, iteratively interpolative, explicative, eco-georeferenceable, 
seasonal, vertical foliage profiles from Rapid Eye TM raw-waveform. The  small-footprint, 
uncoalesced,  interpolated data was validated in an neighboring,  sparsely shaded, 
discontinuously canopied,  immature, capture point, hyperproductive, habitat plot employing  
estimates rendered from a stochastic iterative interpolator [e.g., Ordinary krige-based 
algorithm) in Geospatial Analyst TM which revealed a optimum rate (92.1%) in  field-
verification  (“ground truthing”) exercises.The methodology itself  was enhanced by 
implementing a  dataset-adjusted, reflectance, ratio calculation in ArcGIS which allowed a  
capture point signal,  to be calibrated against a fixed,  mixel, geo-spectrotemporally extracted  
up to a wavelength of 1,250 nm. As a by-product of the methodology, effective, quantifiable, 
decomposed, LAI estimates were optimally derived and compared to hemispherically 
reterived, discontinuous, canopied values. 

 
 The canopy height profile procedure presented in Jacob et al. [22] for the geo-

spectrotemporally uncoalesced, footprint Rapid Eye TM data was tested in a canopy 
environment as a way of extracting vertical foliage profiles from raw-waveform of the 
datasets. An adaptation of this method to small-footprint data was validated in a sparse 
canopy forest, plot and agro-village riverine tributary site in Burkina Faso and northern 
Uganda. The methodology itself was enhanced by implementing a dataset-adjusted 
reflectance ratio calculation according in the processing chain, and tested against a fixed ratio 
of 0.5 estimated for the Rapid Eye wavelength data (nm). As a by-product of the 
methodology, effective LAI estimates were derived and compared to hemispherical, shade 
canopied, decomposed, endmember values. To assess the influence of the Rapid EyeTM 

aggregation area size based on the  remotely diagnosed estimates in the sparse canopy, 
riverine, seasaonl, LULC agroecosystem environment, multiple LAIs were generated in 
ArcGIS by aggregating waveforms to plot- and site-level footprints (e.g., Similium habitat 
plot/site-aggregated) as well as in 5m processed grids. Rapid EyeTM profiles were then 
compared to field biomass profiles generated based on field canopy discontinuous gap 
measurements. The correlation between field and Rapid Eye TM profiles was very high, with a 
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mean R2 of 0.77 at plot-level and 0.81 at site-level for 52 S. damnosum s.l. trailing vegetation, 
Precambrian rock, turbid water, riverine plots. Gridding had impact on the correlation 
between Rapid Eye TM field elucidative profiles and on the optimally quantitated, adjusted, 
reflectance ratio. Gridding and the dataset-adjusted, reflectance ratio were found to improve 
the correlation between raw-waveform  Rapid EyeTM and hemispherical LAI estimates, 
yielding the highest correlations of 0.64 at plot-level and of 0.87 at  the oviposition site-level. 
This proved the validity of the approach and superiority of endmember dataset-adjusted 
reflectance ratio over a fixed ratio of 0.5 for LAI estimation for revealing the adequacy of 
iteratively, quantitatively, interpolating, uncoalesced, small-footprint, Rapid Eye TM  
signatures for LAI and LULC estimation in explicative, discontinuously canopied, narrow, 
African,  riverine tributaries for remotely targeting, hyperproductive, trailing vegetation, 
sparsely canopied, eco-georeferenceable, S. damnosum s.l. seasonal geolocations. Treatment 
of habitat pertubations should be based on abundance and distribution of immature, 
seasonally quanatitaive, productivity counts [25].     

 

 To assess the influence of the Rapid Eye TM aggregation, seasonal, hypeproductive, 
explanatorial, capture point, LULC area size on the probabilistically regressable estimates 
geosampled in a  sparse, narrow tributary, African, agro-village complex, geo-
spectrotemporally geosampled, moderate resolution,  eco-epidemiological, elucidatively 
decomposed dataset of discontinuously canopied, height profiles and LAIs generated by 
aggregating waveforms to immature habitat- and site-level  may metaheuristically optimally 
render 5m, eco-georeferenceable, proxy, LULC footprints (habitat/site-aggregated) in 5 km 
processed, ArcGIS, stratified, geo-spectrotemporally weighted, grid matrix. Rapid Eye TM 
profiles may then be then comparablable to iteratively quantitatively, explanatorily 
geospectrotemporally  interpolative, uncoalesced, field biomass profiles optimally generated 
based on unbiased, signature-related, moderate resolution, ArcGIS-derived, decomposed, 
wavelength, radiance measurements. The correlation between field and Rapid Eye TM profiles 
may be very high, with a mean for seasonally hypeproductive, discontinuous, immature, 
infrequently canopied, sparsely shaded, hyperproductive, seasonal, eco-georeferenceable, 
immature habitats  and  corresponding validation sites. Gridding and employing a dataset-
adjusted reflectance canopy ratio may improve the correlation between raw-waveform, Rapid 
EyeTM and hemispherical LAI estimates in ArcGIS.  The residual regression tabulations may 
optimally yield elucidative, time series correlations at the eco-georeferenceable, capture 
point-level with a computatable mean for  robustly parsimoniously iteratively, quantitatively 
interpolating uncoalesced, explanatorily  forecastable geo-spectrotemporally, vertical 
canopied, hyperproductive, immature, narrow riverine tributary, agro-ecosystem  habitat, 
LULC signatures. The validity of the approach and its regressability may reveal  superiority 
of Rapid Eye TM fractionalized, endmember dataset-adjusted reflectance ratio  over a mixel 
fixed ratio for LAI estimation which may  unveiled the adequacy of 5m, proxy, Rapid Eye  
signal  for LAI estimation  for optimally identifying, sub-mixel, discontinuous canopied,  
sparsely shaded, trailing vegetation, eco-georefernceable,  turbid water, geo-
spectrotemporally explanative, hyperproductive, seasonal,  S. damnosum s.l., immature  
habitat, geospatial aggregations in narrow tributary, African, agro-village, ecosystem 
complexes. 

        Spectral unmixing is an important technique for hyperspectral data exploitation, in 
which a mixed spectral signature is decomposed into a collection of spectrally pure 
constituent, derivative spectra which may represent   a set of correspondent fractions,or 
abundances, that indicate the proportion of each endmemberpresent in the mixture[25]. Over 
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the last years, several algorithmshave been developed for automatic or semiautomatic 
endmember extraction. Some available approaches assume that the input dataset contains at 
least one pure spectral signature for each distinct material  ( e.g., decoposed endmember of a 
moderate resolution, seasonal ecogeoreferenceable, trailing vegetation, hyperproductive, S. 
damnosum s.l., partially canopied, turbid water, agro-village complex, narrow tributray, 
oviposition LULC site)  and further conduct a search for the most geo-spectrally pure 
signatures in the high-dimensional space spanned by the hyperspectral data. Among these 
approaches, those aimed at maximizing the volume of the simplex that can be formed using 
available signatures have found wide acceptance in literature. However, the presence of 
spectrally pure constituents is unlikely in remotely sensed hyperspectral scenes due to spatial 
resolution, mixing phenomena, and other considerations (e.g., looding of a hyperproductive, 
riverine, S. damnosum s.l. habitat). In order to address this issue, other available algorithms 
have been developed to generate virtualendmembers (not necessarily present among the input 
data samples)  by finding the simplex with minimum volume that encloses all available 
observations.  Jacob et al. [3] discussed maximum-volumeversus minimum-volume enclosing 
solutions and further develop a novel algorithm in the latter category which incorporated the 
fractional abundance, sub-mixel estimation as an internal step of the endmember searching 
process (i.e., it did not require an external method to produce endmember fractional 
abundances). The authros so for aiding in iteratively quantitatively, geo-spectrotmporally 
interpolating an uncoalesced, 5m, S. damnosum s.l..  trailing vegetation, Precambrian rock, 
turbid water,   LULC signature . The method was based on iteratively enclosing the geo-
spectrotemporally geosampled, endmber observations in a lower dimensional space and 
removing observations that were most likely not to be enclosed by the simplex of the 
endmembers to be estimated. The performance of the algorithm was investigated and 
compared to that of other algorithms (with and without the pure mixel assumption)employing 
synthetic and  moderate resolution data sets collected by Rapid Eye TM imaging instruments   

 
Many algorithms have been developed in Linear Spectral Mixing Algoirthms 

(LSMA), for conducting, decomposeable, sub-mixel, explanatively fractionalized, time 
series, radiance analysis and sub-mixel geo-classification. However, a constrained LSMA 
may actually produce better results than unconstrained LSMA especially in a probabilistically 
regressable, time series, dependent, decomposeable  datasets of eco-georeferenceable, 
empirically uncoalesced,  moderate resolution, discontinuously canopied, iteratively, 
fractionalized endmember  abundance and signature estimations rendered from  a seasonally, 
hyperproductive, trailing vegetation, turbid water, sparsely shaded, discontinuously canopied, 
narrow tributary, African agro-village complex,  geo-spectrotemporally geosampled, S. 
damnosum s.l. capture point. The LSMA is generally preferred and implemented in 
unconstrained spectral unmixing paradigms [24]. This is because the constrained LSMA 
cannot be solved analytically and must rely on numerical solutions, compared to the 
unconstrained LSMA that has closed-form solutions, such as least squares based LSMA 
approaches, signal-to-noise ratio (SNR)-based orthogonal subspace projection (OSP), and 
Mahalanobis distance-based Gaussain maximum likelihood estimation (GMLE). These 
approaches for optimally obtaining unconstrained, diagnostic, metaheuristically explicatively, 
eco-georeferenceable, moderate resolution, trailing vegetation, turbid water, discontinuously 
canopied, narrow tributary, African complex ecosystem, seasonal, S.damnsoum s.l capture 
points, may employ second-order, sub-mixel, decompositional, statistics-based techniques in 
ArcGIS and arrive at the same matched filter. Consequently, they can be considered least 
square error (LSE)-based approaches.However, individually the LSE may not necessarily be 
the optimal criterion to measure classification error in a seasonal, S. damnosum s.l. forecast 
vulnerabilityparadigm.   
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The method of least squares is a standard approach in regression analysis to the 
approximate solution of overdetermined systems,( i.e., sets of equations in which there are 
more equations than unknowns). "Least squares" means that the overall solution minimizes 
the sum of the squares of the errors made in the results of every single equation.The most 
important application is in data fitting. The best fit in the least-squares sense can minimize 
the sum of squared residuals, a residual being the difference between an observed S. 
damnosum s.l. decomposed endmember value and the fitted value provided by a model [25].  

     It may be  interesting to employ the squared residuals  in a forecast, vulnerability, 
diagnostic, geo-spectrotemrpoal,   eco-georeferenceable, explanatorial, geospatial, seasonally 
hypeproductive, trailing vegetation, turbid water, capture point, S. damnosum s.l. model 
instead of the absolute residuals in OLS estimation of a datset of empirically , orthogonally 
decomposed , moderate resolution, endmember, wavelength, transmittance emissivity 
frequencies.Actually in the definition of standard deviation, it may not be necessitated to 
square the difference from the mean to get the mean (E) and take the square root back at the 
end.  It may be more strategic to quantitate the absolute value of the difference instead in a S. 
damnosum s.l. capture point model and tabulate  the expected value (mean) of those time 
series, habitat endmember regressands that show the variation of the geosampled habitat data. 
The number is going to be different from square method (i.e., the absolute-value method will 
be smaller), but it may still show the spread of the decomposed S. damnosum .sl. oviposition 
data.  

The definition of standard deviation: σ=E[(X−μ) 2 σ=E[(X−μ)2][25]. It may be more 
important for an explicative, iterative, quantitative, interpolative, orthogonally decomposed, 
moderate resolution, S. damnosum s.l.  LULC signature, forecast, vulnerability probabistic 
paradigm  to diagnostically elucidatively  quantiate the absolute value instead in the residual 
endmember , epidemiological forecasts which may be a good measurement rendered from 
σ=E[|X−μ|] σ=E[|X−μ|].The  idea  would be firstly to use the square of the error values, so 
that  forecasts below the fitted line (which are then negative), would still have to be able to be 
added up to the positive errors. Otherwise, there would be an error of 0 simply because a 
huge positive error would cancel with a huge negative error. 

So why square the oviposition LULC estimate  instead of just taking the absolute 
value in a moderate resolution, iteratively interpolative, S. damnosum s.l., capture point 
signature model the extra penalty for higher errors  would be easily quantizable ( e.g., instead 
of 2 being 2 times the error of 1, it would  4 times the error of 1 when it is  squared). In a 
way, the measurement proposed is widely used in case of error (model quality) analysis -- 
then it is called MAE, "mean absolute error". 

The MAE measures the average magnitude of the errors in a set of forecasts, without 
considering their direction. It measures accuracy for continuous variables. The equation is 
given in the library references. Expressed in words, the MAE is the average over the 
verification sample of the absolute values of the differences between forecast and the 
corresponding observation. The MAE is a linear score which means that all the individual 
differences are weighted equally in the average.  

The RMSE is a quadratic scoring rule which measures the average magnitude of the 
probabilistic error ( progagational non-normal, non-homoskedastic paramters)  in a iteratively 
quantitatively, explanatively interpolative, uncoalesced, geo-spectrotemporal, S. damnosum 
s.l., forecast vulnerability endmeber signature, probabilic, decomposeable algorithmic 
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paradigm. The equation for the RMSE is given in both of the references. Expressing the 
formula in words, the difference between forecast and corresponding observed values are 
each squared and then averaged over the sample. Finally, the square root of the average is 
taken. Since the errors are squared before they are averaged, the RMSE gives a relatively 
high weight to large errors. This means the RMSE is most useful when large errors are 
particularly undesirable.The MAE and the RMSE can be used together to diagnose the 
variation in the errors in a set of forecasts. The RMSE will always be larger or equal to the 
MAE; the greater difference between them, the greater the variance in the individual errors in 
the sample. If the RMSE=MAE, then all the errors are of the same magnitude Both the MAE 
and RMSE can range from 0 to ∞. They are negatively-oriented scores: Lower values are 
better. 

 Unfortunately, when a moderate resolution, S. damnosum s.l., vulnerability, 
endmember, probabilistic paradigm has substantial uncertainties in the independent variable 
(the x variable), then simple regression and least squares methods may  have problems in 
forecasting seasonally hyperproductive ovipositions golocation LULC sites ; in such cases, 
the methodology required for fitting errors-in-variables models may be considered instead of 
that for least squares in SAS.Least squares problems fall into two categories: linear or 
ordinary least squares and non-linear least squares, depending on whether or not the residuals 
are linear in all unknowns[25]. The linear least-squares problem occurs in statistical 
regression analysis; it has a closed-form solution. The non-linear problem is usually solved 
by iterative refinement; at each  iteration the system is approximated by a linear one, and thus 
the core calculation is similar in both cases.  

      Polynomial least squares in PROC GLM may describe the variance in a prediction of the 
dependent variable in an S. damnosoum s.l. eco-epidemiological, moderate resolution model 
as a function of the independent variable and the deviations from the fitted curve. Polynomial 
model such as y = b0 + b1x + b2x2 + e appears curved when y is plotted against x. It is, 
however, not a nonlinear model. In order to geo-visualize an endmember dataset of geo-
spectrotemporally uncoalesced, modertate resolution, geosampled, unbiased, S. damnosum 
s.l., hypeproductive, oviposition estimators , an experimenter may quanatiate  derivatives of y 
with respect to the parameters b0, b1, and b2: dy/db0 = 1, dy/db1 = x, dy/db2 = x2 None of 
these derivatives would depend on a model parameter.  

         In contrast, an expeimenter may consider the log-logistic model y = d + (a - d)/(1 + 
exp{b log(x/g)}) + e Take derivatives with respect to d, for example: dy/dd = 1 - 1/(1 + exp{b 
log(x/g)}). In probability and statistics, the log-logistic distribution (known as the Fisk 
distribution in economics) is a continuous probability distribution for a non-negative random 
variable. It is commonly used in survival analysis as a parametric model for events whose 
rate increases initially and decreases later, for example blindness rates from onchocerciasis 
following diagnosis or treatment. It has also been used in hydrology to model stream flow 
and precipitation, and in economics as a simple model of the distribution of wealth or 
income. Thus, a geo-spectrotemporal, uncoalesced, regressed endmember, iterative,  log-
logistic distribution of explanatively  hypeproudtcive seasoanl S. damnosum s.l., oviposition, 
LULC, moderate resolution , agro-village complex sites  is the probability distribution of a 
random variable whose logarithm has a logistic distribution. It would be similar in shape to 
the log-normal distribution but has heavier tails. Unlike the log-normal, its cumulative 
distribution function can be written in closed form. In probability theory and statistics, the 
cumulative distribution function (CDF) of a real-valued random variable X, or just 
distribution function of X, evaluated at x, is the probability that X will take a value less than 
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or equal to x[25].   When the observations come from an exponential family and mild 
conditions are satisfied, least-squares estimates and maximum-likelihood estimates are 
identical [3]. The method of least squares can also be derived as a method of moments 
estimator..  

 A new and alternative approach to LSMA, called Fisher’s LSMA (FLSMA) in 
ArcGIS extends the well-known pure-mixel-based Fisher’s linear discriminant analysis to 
LSMA. Interestingly, what can be done for the LSMA can be also developed for the FLSMA 
in ArcGIS. Of particular interest are two types of constraints imposed on the LSMA, target 
signature-constrained LSMA and target abundance-constrained LSMA, which may be 
retrievable in parallel for the FLSMA. Hence, a feature-vector constrained FLSMA (FVC-
FLSMA) or a abundance-constrained, FLSMA (AC-FLSMA), respectively may unbiasedly 
develop a metaheuristically optimizable, eco-georeferenceable, iteratively interpolative, 
explicatively geoclassifiable, narrow riverine, tributary, African, agro-village complex, eco-
georeferenceable,  S. damnosum s.l., hyperproductive, capture point, proxy, moderate 
resolution, LULC signature for robustly identifying unknown un-geosampled, 
seasonal,trailing vegation, turbid water, sparsely shaded, infrequently, discontinuously 
canopied, capture points parsimoniously in a stochastic or deterministic,  iterative 
interpolator.  Further, since Fisher’s ratio employed by the FLSMA is a more appropriate 
classification criterion than the LSE or SNR used for the LSMA, the FVC-FLSMA may 
improve classical least squares based LSMA and SNR-based OSP in a dataset of sub-mixel, 
moderate resolution, quantitative, S. damnosum s.l., immature  habitat, proxy LULC eco-
geophysiological, bio-geophysical, orthogonally decomposable, metaheuristic, probabilistic 
signature, geo-classifiers. Similarly, the AC-FLSMA may also improve abundance-
constrained, least squares based LSMA for optimally extraploating   uncoalesceable proxy, 
LULC, iteratively interpolative, endmember, moderate resolution, decomposable, signature,  
abundance fractions. 
 

Given an empirically probabilistically regressable, optimizable, fractionalized, 
moderate resolution, endmember dataset of explicatively eco-georeferenceable, mixed, 
multispectral or hyperspectral vectors, FVC-FLSMA may metheursitically optimally estimate 
the number of reference, seasonally hyperproductive,eco-georeferenceable,  trailing 
vegetation, turbid water, infrequently shaded, discontinuously canopied, narrow tributary, 
African. riverine, agro-village complex, S. damnosum s.l., immature, capture point, 
substances (i.e., endmembers), their spectral proxy, LULC signatures, and their 
orthogonalized, spatial filter, eigenvector, abundance fractions. The LSMA assumes that an 
image pixel [i.e., digital number (DN)] is linearly mixed by materials with relative abundance 
fractions present in the image [24]. In order for an FVC LSMA to optimally uncoalesce a 
discontinuous dataset of   expositively fractionalized, eco-geophysiological,  eco-
georeferenceable, explicative, bio-physical, moderate resolution, infrequently canopied, 
sparsely shaded, expositively fractionalized, endmember, trailing vegetation, turbid water, 
geo-spectrotemporal endogenous regressors for optimally identifying unknown, un-
geosampled, iteratively interpolative, seasonal, hyperproductive, narrow, African, riverine 
tributary, agro-village complex, geoclassifiable, parameterizable,S. damnosum s.l., capture 
points,  using  proxy, LULC signature wavelength eigenevectors,  two constraints must be 
imposed by the decompositonal algorithm: the abundance sum-to-one constraint and the 
abundance nonnegativity constraint.  
 

An empirical, metaheursitically optimizable, geo-spectrotemporally probabilistically 
autoregressable eco-georeferenceable, optimizable eco-georeferenceable,  uncoalesced 
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dataset of explicatively orthogonally fractionalizable, constant-sum constrained,  unmixed,  
non-arbitrarily, pre-determined, proxy, LULC signature, covariance weightages in ArcGIS 
may allow a disjoint partitioning of a sub-mixel fractionalized  subset  to robustly eco-
cartographically delineate, moderate, spatial resolution, geosampled, S. damnosum s.l.,  
iteratively lagged, static and dynamic, web–based explanators (e.g., Euclideanized distance 
from a  hyperproductive, partially canopied, eco-epidemiological, capture point to a 
hyperendemic, narrow, riverine  tributary, agro-village, complex centroid). Static web pages 
are view only without animation or interactivity(www.esri.com). These elucidatively 
regressively, optimally mappable, forecastable, vulnerability-oriented, fractionalized, 
parameterizable, endmember regressors, and their unmixed graphical, wavelength frequency-
oriented,  moderate resolution, irradiance, covariate coefficients may be subsumed by global 
maximum likelihood (ML) estimators over one or more  diffuse, multiscattered, 
transmittance, eigenvector emissivities  whence eco-cartographically  illustrating 
multinomial, discontinuous, geo-spectrotemporalized,  geosampled,  moderate resolution, 
imaged, uncoalesced, S. damnosum s.l.,  capture point, proxy LULC, iteratively interpolative 
signatures.  When several roots to the likelihood equation exist, the root corresponding to the 
global maximizer of the likelihood is generally retainable, but this procedure supposes that all 
possible roots are identifiable linear predictor functions [24].  

 
         Since, in many cases, the global maximizer is the only consistent root in a 
discontinuous datatset of  empirically geo-spectrotemporally, metaheursitically optimizable, 
infrequently canopied, trailing vegation, turbid water, hypeproductive, capture point, S. 
damnosum s.l.,  explicatively binomialized, optimizable, time series, datasets of  
geoclassifiable, explanatively uncoalesced, moderate resolution, proxy LULC signature,  
radiance, endmember regressors for  exemplifying  eco-georeferenceable, conditional 
probability distributions from expostively  fractionalized, 2-D, times series,  illuminatively 
forecastable, wavelength, vulnerability paridigms, first sum-to-one constraint may not 
efficiently decorrelate disproportionately heterogeneous, sparsely shaded, explicative, 
intermittently canopied, covariance weightages rendered from quantiatively uncoalesceable, 
diffuse, wavelength, frequency-oriented, tranmittance emissivities. In statistics, binomial 
regression is a technique in which the response (often referred to as Y) is the result of a series 
of Bernoulli trials, or a series of one of two possible disjoint outcomes (traditionally denoted 
"success" or 1, and "failure" or 0)[24]. In probability and statistics, a Bernoulli process is a 
finite or infinite sequence of binarizable explicative random variables, so it is a discrete-time 
stochastic process that takes only two values, canonically 0 and 1.  

 
Whilest the standard method to  moderate resolution geo-spectrotemporally, optimally  

extractable, weighted  Least Square, non-orthogonalizable,  expositively fractionalized, 
unmixed trailing vegetation, turbid water, sparsely shaded, eco-georeferenceable,  non-
parameterizable, S. damnsoum s.l., capture point, moderate resolution, wavelength, 
frequency-oriented, transmittance, emissivity  estimates  have very appealing theoretical and 
numerical properties, rendered fractionalized, radiance endmember estimates are often 
unstable in the presence of extreme observations (i.e., geospatial outliers)  which are rather 
common in  eco-epidemiological, forecast vulnerability  analyses of  hyperproductive, 
seasonal, imature habitats of this  black-fly species. One approach to deal with such extreme 
covariate radiance, observations is the application of robust or resistant unbiased, estimators 
in ArcGIS, like Least Quantile of Squares estimators. Unfortunately, for many such 
alternative approaches, the estimation is much more difficult than in the Least Squares case, 
as the objective function in a proxy LULC, biosignature forecasting, vulnerability, paradigm  
often contain  diffuse  sparsely shaded,  discontinuously canopied, trailing vegation,   
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convex/concave, explicative,   sub-mixel, reflectance  variables  which has subsequently 
many local optim.  

When a moderate resolution, wavelength, frequency-oriented, unmixed trailing 
vegation, turbid water, sparsely shaded, eco-georeferenceable, non-parameterizable, S. 
damnsoum s.l., capture point, transmittance, emissivity function to be optimized is 
continuous, it may be possible to employ calculus to find local optima. In applied 
mathematics and computer science, a local optimum of an optimization problem is a solution 
that is optimal (either maximal or minimal) within a neighboring set of candidate solutions 
(http://mathworld.wolfram.com/html). In mathematics, a function is a relation between a set 
of inputs and a set of permissible outputs with the property that each input is related to 
exactly one output( e.g., the function that relates each real number x to its square x2) [24]. 

 Hence, in an elucidative, eco-georeferenceable, seasonally hyperproductive, trailing 
vegetation, turbid water, explanative, S. damnosum s.l., immature, capture point, 
fractionalized,  uncoalesced,  forecasting,vulnerability analysis, moderate resolution, 
optimally imaged,  geo-spectrotemporally proxy LULC signature, geoclassifiable, 
endmember datasets   may optimally identify  unknown, un-geosampled, infrequently shaded, 
discontinuously canopied,  immature habitats when the footprint is iteratively quantitatively 
interpolated in narrow tributary, African, riverine, agro-village complexes. The maxima and 
minima (the respective plurals of maximum and minimum) of a function, known collectively 
as extrema (the plural of extremum), are the largest and smallest value of the function, either 
within a given range (the local or relative extrema) or on the entire domain of a function (the 
global or absolute extrema) [24].  

In contrast to a global optimum, which is the optimal solution amongst all possible 
solutions, not just those in a particular geospatialized neighborhood of elucidative 
orthogonally decomposed,fractionalized, endmember values (e.g., positively autocorrelated, 
geo-spectrotemporal,  geosampled, S. damnosum s.l.,  iteratively lagged, static and dynamic, 
web–based narrow, African, riverine tributary, agro-village complex, trailing vegation, turbid 
water, discontinuous,  concave, sparsely shaded,  canopied,fractionalized iteratively 
interpolated endmember explanators).  If the first derivative exists in a metaheursitic, 
forecasting vulnerability paradigm everywhere  it can be equated to zero; if the function has 
an unbounded domain, for a point (e.g., seasonally explicatively, geosampled, S. damnosum 
s.l., immature, hypeproductive, narrow tributary, a African, agro-village complex ecosystem 
seasonal, immature habitat, capture point). In mathematical analysis and related areas of 
mathematics, a set is called bounded, if it is, in a certain sense, of finite size; conversely, a set 
which is not bounded is unbounded [24]. A second derivative test  can also provide a 
sufficient condition for the capture point to be differentially geometerically geoclassified as 
local maxima and maximum or local minima.  

In calculus, a derivative test uses the derivatives of a function to locate the critical 
points of a function and determine whether each point is a local maximum, a local minimum, 
or a saddle point [24]. Derivative tests may also give information about the 
concavity/convexity of a function for optimally identifying a dataset of iteratively quantiative 
geo-spectrotemporally uncoalesced, moderate reosolution, interpolative, proxy, LULC 
signature, fractionalized, endmember eigenvectors representing a seasonal, eco-
georeferenceable, hyperproductive, capture point, trailing vegetation, turbid water, 
infrequently S. damnosum s.l., immature, habitat. A function of a single variable  is concave 
if every line segment joining two points on its graph does not lie above the graph at any 
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point. Symmetrically, a function of a single variable is convex if every line segment joining 
two points on its graph does not lie below the graph at any point [24]. 

Local search  or hill climbing methods for solving optimization problems start from 
an initial configuration and repeatedly moves to an improving geo-spatializable, eco-
georeferenceable, neighboring configuration. In computer science, hillclimbing is a 
metaheuristic method for solving computationally hard optimization problems. Local search 
can be used on problems that can be formulated as finding a solution maximizing a criterion 
among a number of  candidate  solutions[24]. Hill climbing is good for finding a local 
optimum (i.e., a proxy, geo-spectrotemporal,  geoclassifiable,uncoalesced, iteratively 
interpolative proxy, LULC, signature solution, S. damnosum s.l. that can forecast a 
neighbouring  eco-georeferenceable, configuration of capture point, immature habitats) but it 
may not necessarily guarantee to find the best possible solution (i.e., the global non-seasonal 
optimum) out of all possible solutions in the search space. Regardless, in convex/concave 
discontinuous, sporadic, moderate resolution, canopy, endmember, uncoalesced, wavelength, 
frequency-oriented, transmittance emissivity problems, hill-climbing may be optimal. 
Examples of algorithms that solve convex/concave, explanative, discontinuously canopied, 
bidirectional optimizable, quantization problems include  include the simplex algorithm for 
linear programming and binary search in the  hill-climbing algorithm[24].The characteristic 
that only local optima are guaranteed can be cured by using restarts (repeated local search), or 
more complex schemes based on iterations, like iterated local search, on memory, like 
reactive search optimization and tabu search, or memory-less stochastic modifications, like 
simulated annealing in a Local search algorithm.Local search algorithms are widely applied 
to numerous hard computational problems, including problems from computer science 
(particularly artificial intelligence), mathematics, operations research, engineering, and 
bioinformatics. Examples of local search algorithms are WalkSAT and the 2-opt algorithm 
[http://www.ncsa.illinois.edu/].  

A trajectory in search space may be  created for an eco-georeferenceable,  S. 
damnosum s.l., seasoanl hypeproductive, narrow tributary, African, agro-village complex, 
trailing vegetation, discontinuous, infrequently canopied, hypeporductive, turbid water, 
sparsely shaded, seasoanl,   S. damnosum s.l., eco-georeferenceable, capture points in an  
ArcGIS-derived,  forecast, vulnerability  map employing  an initial eco-georeferenceable, 
explanative point (e.g., uncoalesced elevated, geo-spectral, wavelength intensity index)  to a 
local optimum. The search space may be subdivided into basins of specific wavelength 
attractions, in ArcGIS each consisting of proxy,  LULC, endmember, iteratively, 
quantitatively  interpolated, uncoalesced, signature,  moderate resolution, capture points 
which may have a given local optimum as the final point of the local search, wavelength, 
frequency-oriented,  emissivity trajectory. A local optimum can be isolated surrounded by 
non-locally-optimal points or part of a plateau (e.g.,  a geolocally optimal region of a pre-
flooded, eco-georeferenceable, narrow tributary,  agro-village, African, ecosystem complex 
with more than one S. damnosum s.l.,  seasonal, capture  point of equal decompositional 
endmember or orthogonalized spatial filter eigenvector value).If the problem to be solved has 
all locally metahueristic, seasonal, hyperproductive, eco-georeferenceable, capture points 
with the same geospectral values of the function to be optimized, local search effectively 
solves the global problem: finding a local optimum delivers a globally optimal solution[24]. 
The locality of the optimum, S. damnosum s.l., forecasting, vulnerability paradigm may be 
dependent on the neighborhood narrow tributary, African, agro-village, ecosystem complex, 
geo-spectrotemporal, geospatial, structure as defined by the local search method that is used 
for optimizing the function. 
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Subsequently quantitating local optima may deliver moderate resolution 
discontinuous fractionalized endmember and eigenvector  optimal solutions  for unbiasing, 
non-explicative, non-parameterizable, sub-mixel, non-residual, regressional, non-
metaheursitically optimizable, uncoalesceable,noisy,  S. damnosum s.l., capture point,  eco-
epidmiological residual, wavelength, frequency-oriented, forecasts which  may subsequently 
ideally render quantitative, expostively fractionalized, geo-spectrotemporal, capture point, 
space–time, explicit, unobserved, random, orthogonalizable, irradance, transmittance, 
emissivity estimators. Further, their contributions would firmly non-nullify robustification of 
canopy porosity rasters and the per-mixel supervised classification  geolocations regions 
narrow, riverine  tributary, agro-village, complex, moderate resolution geo-predictive  maps) 
of any irradiance, transmittance, frequency-oriented, misspecified, decomposed, radiance 
covariate coefficients. Explanatively geoclasssifiable, moderate resolution, discontinuous, 
infrequently canopied, sparsely unquantitated iteratively, interpolative, mixed,  proxy, LULC, 
randomized,  geo-spectrotemporally, geoclassifiable, LULC biosignature, disturbance terms 
in sub-mixel moderate resolution, eco-geophysiological or bio-physical,cateogorical varables 
may generate, flux-weighted, input regressand endmembers, which can render markedly 
varying inferences from  normalized, eigenvector, data streams.  

 
Jacob et al. [22]  analyzed explicative, discontinuity in an emprically probabilistically 

regressed, eco-georferenceable,  dataset of  geoclassifiable, S. damnosum s.l., capture point, 
canopy gap areas, main orientation, gap shape-complexity index and a quantitative 
assessment index using  the matching with reference gaps in Poissonized polygons for 
estimating elucidatively, iteratively intepolated geo-spectrotemporally, uncoalesced, 
moderate reosolution,(Rapid Eye TM visible and NIR data)  for identiyfing seasonally 
hyperproductive,, sparsely shaded, trailing vegetation, turbid water, standardizable , geo-
spectrotemporal, proxy, LULC biosignature beta coefficients igeosampled in a narrow, 
African, riverine tributary, agro-village complex, in  northern Uganda (Achwa riverine 
basin). In statistics, Poisson regression is a form of regression analysis used to model count 
data and contingency tables. Poisson regression assumes the response variable Y has a 
Poisson distribution, and assumes the logarithm of its expected value can be modeled by a 
linear combination of unknown parameters [24]. During the regression exercise, 
discontinuous, infrequently canopied sub-mixel, was homogenized so that the variances of 
dependent and independent variables were 1. A Logistic regression Pseudo R2  was also 
rendered which  tended to be underinflated as compared with Poissionized outcome since in 
the latter actual count variables were employed as regressands whilest  the explicatively   
dichotomous model employed log-transmformed, binarized, dependent variables.  

Expostorily fractionalized, metaheuristically optimizable, explanatively eco-
georeferenceable 5m, wavelength, tranmsittance, frequency-oriented, vulnerability 
coefficients were robustly linearly and then quantized based on how many standard 
deviations the dependent variable (e.g., total immature prouctivity count at a capture point) 
transitioned  as per standard deviation increase in the exogenous, trasnmittance emissivity 
regressands. For univariate seasonal, S. damnosum s.l., capture point, endmember paradigms, 
the absolute value of the standardizable coefficient would equal the correlation coefficient 
[24]. Note, in Jacob et al. [22] the quantitated interative explanatorial   correlations took the 
place of the corresponding variances and covariances in the  forecast vulnerability model 
estimators. In probability theory and statistics, covariance is a measure of how much two 
random variables change together [25]. Standardization of the explicative, discontinuous, 
non-randomized, infrequently canopied, parameterizable, geo-spectrotemporal, covariate 
coefficients rendered from  a stochastic interpolator (i.e., Ordinary kriged algorthm) revealed 
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unbiased lineraizable estimators  eco-cartographically illustrating exogenously residual, 
metaheuristically optimizable, eco-epidemiological forecasts of  un-geosampled, independent  
vulnerability  illuminative, prolific,  immature habitat variables which had a greater effect on 
the dependent variable in  the analysis when the variables were measured in different units of  
proxy, uncoalesced, geoclassified, LULC biosignature, moderate resolution orthogonally 
decomposable, fractionalized endmember and orthogonalized spatial filter synthetic, 
measurements (e.g., immature pre-flooded, productivity,  counts of narrow, African, riverine 
tributary, agro-village complex, sparsely shaded, trailing vegetation, turbid water, S. 
damnosum s.l.,capture point   measured in measured in discontinuous  canopy gap ) in 
ArcGIS. 

 Renderings from a non-fractionalized, non-expositive,  non-optimizable, non-
orthogonalizable, eco-geophysiologically, endmember, explanative, moderate resolution, 
non-metaheursitic, elucidative, bio-physical, criterion variable, in an geo-spectrotemporally 
uncoalesceable, explicatively probabilistic image regression, equation in ArcGIS  where 
covariace weightages are  geoclassfiable, geosampled, eco-georeferenceable, explanative, 
hyperproductive, seasonal, eco-epidemiological, infrequently canopied, sparsely shaded, S. 
damnosum s.l., narrow tributary, African, riverine agro-village, ecosystem complex,  capture 
point, wavelength, eigenvector, frequencies,  the discontinuous, canopied, sparsely shaded, 
illuminative, irradiance, may be geospatially  recified. For example, a continuity of solutions 
rendered from Calculus Methode/MapServerTM may resolve perturbation and constrained,  
semi-infinite, vector optimization problems of non-quantitable,  S. damnosum s.l., 
fractionalized, capture point, space–time, endmember, orthogonalized, synthetic, eigenvector, 
forecast-oriented, vulnerability coefficients ( e.g., geospatial outiers)  in moderate resolution, 
eco-geographical,  regression space. In so doing, the expositively decomposed, moderate 
resolution, wavelength, transmittance, emissivity forecasts  of unknown, un-geosampled, 
seasonally trailing vegetation, turbid water, sparsely shaded, discontinuously canopied, 
immature capture point,  hyperproductive habitats would be would be optimally identified,.  

 
Calculus Methode/Map Server TM is a powerful 2D GIS application system for 

networking systems. With specific algorithm, it has advantages of quick image 
demonstration, rapid geometry processing and accuracy GIS analysis. Map Server makes it 
possible to display image data (e.g., explicatively uncoalesced, eco-georeferenceable, S. 
damnosum s.l., capture point endogenous explanators) instantly. With 3D displaying function 
of Map Server, an ecologist, entomologist or other researcher  may specify the range and 
resolution for a 3D, narrow, tributary, African,  agro-village, geomorphological, complex 
ecosystem, terrain-related, probabilistic, regression, forecast, vulnerability model on a given 
range at same time in an seasonally hypeproductive, trailing vegetation, turbid water, 
discontinuous, infrequently canopied, sparsely shaded, eco-georeferenceable, capture point. 
Modifications can be made on geo-spectrotemporally extracted, immature, S. damnosum s.l., 
habitat mixels by API with temporary storage layers provided by 2D and 3D of Map Server. 
This system has a high efficiency macro image imbedding ability. In a remote sensing  
cyberenvironment, this module may have high viewing technology with optimizing 
compression for high efficiency modelling hyperproductive, trailing vegation, turbid water, 
discontinuous, sporadically canopied, S. damnosum s.l., immature, seasonal 
ecogeoreferenceable,  caprture points, geo-spectrotemporally geosampled in narrow tributary, 
African, construction Cooperating with the specifically designed transmission protocol and 
high-efficiency cache mechanism,  an ecologist, entomologist or other researcher can browse 
the macro embedded image in the internet without setting up other software when attempting 
to resolve extractable, geometrically differential, moderate resolution, iteratively 
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quantitatively, interpolated, expositively fractionalized, decomposed, endmember, 
eigenvector contributions of  seasonally hypeproductive, trailing vegetation, turbid water, 
discontinuous, infrequently canopied, sparsely shaded, capture points in stochastic equations. 
A differential equation is a mathematical equation that relates some function with its 
derivatives [24] A cache is a component that stores data so future requests for that data can be 
served faster; the data stored in a cache might be the result of an earlier computation, or the 
duplicate of data stored elsewhere(www.esri.com) 

A stochastic differential equation (SDE) is a differential equation in which one or more of 
the terms is a stochastic process, resulting in a solution which is also a stochastic process In 
applications, the functions usually represent physical quantities [e.g., iteratively interpolated 
geo-spectrotemporally geosampled, dataset of fractionalized, S. damnsoum s.l., proxy, 
uncoalesced LULC biosignature, endmember eigenvector independent random variables] 
whilest the derivatives represent their rates of change. Apart from describing the explicative, 
sub-mixel, eco-epidemiological, properties of each geoclassified proxy LULC biosignature, 
orthogonally explanatively decomposable,  exogenous regressor in the forecast equation 
itself, these classes of differential equations  can help  in  identification of unknown, un-
geosampled,  iteratively quantitatively interpolative, seasonally hyperproductive, 
discontinuous, trailing vegetation, sparsely shaded, turbid water, S. damnsoum s.l., capture 
points by geometerically differentiating, discontinuously canopied, wavelength, frequnecy-
oriented, transmittance in a moderate resolution spectrum. In so doing, exact contributions 
may be qualitatively quantiated for unbiasedly kriging, geo-spectrotemporalized, 
geospatialized, discontinuous, sparsely shaded, canopy foliage, endmember distributions.  
Commonly employed distinctions in Calculus Methode/Map Server include Ordinary/Partial, 
Linear/Non-linear, and Homogeneous/Inhomogeneous equations. This list is far from 
exhaustive; there are many other properties and subclasses of differential equations in 
Calculus Methode/Map Server which may be very useful for creating robust geo-predictive 
autocorrelation, ArcGIS maps identifying seasonally hypeproductive, eco-georeferenceable S. 
damnosum s.l., immature, capture points in narrow, African tributary, agro-village complexes. 

         Theorectically a differential geo-predictive, S. damnosum s.l. capture point equation is 
linear if the unknown function and its derivatives have a degree >1 and nonlinear otherwise. 
The characteristic property of linear equations is that their solutions form an affine subspace 
of an appropriate function space, which results in much more developed theory of linear 
differential equations. In mathematics, an affine space is a geometric structure that 
generalizes the properties of Euclidean spaces that are independent of the concepts of 
distance and measure of angles, keeping only the properties related to parallelism and ratio of 
lengths for parallel line segments [24]. A  dataset of  homogeneous, seasonal, geo-
spectrotemporal, explicatively, uncoalesced, expositively fractionalized, sub-mixel, spatial 
filter, orthogonal,  eigenvector, moderate resolution, S. damnosum s.l. capture point, linear 
differential equations can be formulated  in Calculus Methode/Map Server as a subclass of 
linear differential equations for which the space of solutions is a linear subspace ( i.e., the 
sum of any set of solutions or multiples of solutions is also a solution). The  extrapolated 
vulnerability coefficients of the unknown function and its derivatives in a  linearizable, 
hyperproductive,eco-georeferenceable, trailing vegetation, turbid water, discontinuous, 
infrequently canopied, sparsely shaded,  eco-georefernceable, agro-village, narrow, riverine 
tributary,  S. damnosum s.l.  seasonal, elucidative, capture point differential equation can be 
explanative  functions of the unmixed, moderate resolution, heursitically optimizable, 
wavelength, frequency-oriented, emissivity, independent random variables. If these radiance 
coefficients are constants then a constant coefficient, linear, capture point, differential 
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equation may be robustly parsimoniously constructed         in Calculus Methode/Map Server. 
This model may suggest some distribution-free methods for testing hypothesis of parallelism 
and concurrence  in mutliple, eco-georeferenceable, seasaonlly hypeproductive, elucidatively, 
geo-spectrotemporally uncoalesced, trailing vegetation, turbid water, discontinuous, 
infrequnetly canopied, speardely shaded, narrow tributary, African riverine linear regressions. 
It may be assumed that the independent variable in these  geo-predictive models are equally 
spaced. The proposed procedures may be compared with nonparametric competitors and the 
normal theory t-test. 

Given a differential equation a function u: I ⊂ R → R is called the 
solution or integral curve for F, if u is n-times differentiable on I, 
and  (http://mathworld.wolfram.com/) In mathematics, an 
integral curve is a parametric curve (e.g.,  where t is an geo-spectrotemporally 
uncoalesced, explanative, hyperproductive, seasonal, trailing vegetation, discontinuous, 
turbid water, sparsely shaded, infrequently canopied, narrow, riverine tributary,  agro-village 
complex ecosystem, geosampled,  seasonal parameter) that can represent a specific solution 
or system of equations. If the differential equation is represented as a vector field or slope 
field in Calculus Methode/Map Server,  then the corresponding integral curves  would be 
tangent to the field at each ecogeoreferenceable, iteratively quantiative, exptrapolative, 
interpolative, eco-geographic, eco-epidemiological, seasonal hyperproductive, S. damnossm 
s.l. capture point.Given two solutions u: J ⊂ R → R and v: I ⊂ R → R, u is an extension of v 
if I ⊂ J and  In vector calculus, a vector field is an assignment of a 
vector to each point in a subset of space[24].  

            In Calculus Methode/Map Server, a nonlinear, elucidative, geospectrotemporally 
geosampled,  S. damnosum s.l, geometerically  differential expositively fractionalized,  
moderate resolution,  endmember uncoalesced, eigenvector, capture point, proxy LULC, eco-
georeferenceable,  explicatively, forecasting simultaneous biosignature equation in which the 
unknowns (or the unknown functions in the case of differential equations) can appear as  
variables of a polynomial of degree higher than 1. The unknown or un-geosampled, S. 
damnosum s.l, capture point, eco-epidemiological, model functions may also occur in the 
argument of a function which is not a polynomial of degree one. In other words, in a 
nonlinear system of  forecasting geo-spectrotemporally geosampled, uncoalesced, 
hypeproductive, trailing vegetation, discontinuous, infrequently canopied, sparsely shaded, 
agro-village, narrow, riverine tributary,  seasonal parameter equations, the equation(s) to be 
solved cannot be written as a linear combination of the unknown, proxy LULC biosignature 
variables or functions that appear in them. In Calculus Methode/Map Server it does not 
matter if explanative, non-linearizable, known functions appear in the equations, a 
vulnerability paradigm can be parsimonioulsy constructed regardless. In particular, a 
differential equation is linear if it is linear in terms of the unknown function and its 
derivatives, even if nonlinear in terms of the other variables appearing in it[24]. 

 As nonlinear equations are difficult to solve, nonlinear systems are commonly 
approximated by linear equations (linearization)( http://mathworld.wolfram.com/). This 
works well up to some accuracy and some range for input S. damnsoum s.l. 
geospectrotemporally uncoalesced  sub-mixel, explanatorial, discontinuous, uncoalesced, 
sparsely shaded,  canopied values, but some interesting phenomena such as  quantitable  
singularities which may be  inconspiciuous by linearization may still exist in the forecast 
post-quantization residuals.  
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   Some aspects of the behavior of the fractonalized, sub-mixel, nonlinear system may be  
unpredictable or counterintuitive. Although such unruly behavior may resemble random 
behavior, it may  not  be random in nonlinear, geo-spectrotemporal, geo-spatialized, S. 
damnosum s.l, geometerically  differential, expositively fractionalized,   endmember 
eigenvector, capture point,  uncoalesced, eco-georeferenceable, iteratively interpolated,   
forecasting proxy, LULC biosignature explanators. There may be only few methods of 
solving, nonlinear, sub-mixel, S. damnosum s.l, capture point, differential equations exactly; 
those that are known may typically depend on the equation having particular symmetries.  
Maybe one of the regressors can be a non-linear function of another regressor in the capture 
point, forecasting vulnerability model or of the data in the model may be efficiently 
delineated in polynomial regression and/or segmented regression framewworks. However 
these regressions equations may lead to the same estimation procedures; however, different 
approaches to the asymptotic analysis may be employable in these two model situations. Both 
interpretations may be appropriate in different cases of decompositionally fractionalized, 
moderate reosolution, endmember eigenvector iterative interpolation for optimally 
identifiying unknown, un-geosampled seasonal, S. damnsoum s.l. hyperproductive, capture 
points.  

 However an elucidative, nonlinear, geo-spectrotemporally uncoalesced, explanative, 
geometerical, differential ,capture point, forecasting, vulnerability, iterative, interpolative 
equation can exhibit very complicated behavior over extended time intervals  employing 
multiple, chaotic, eco-geophysiological, biogeophysical, expostively fractionalized, moderate 
resolution, fractionalized, proxy, biosignature LULC,  endmember, eigenvector 
characteristics. Chaos theory is the field of study in mathematics that studies the behavior and 
condition of dynamical systems that are highly sensitive to initial conditions [24]. Small 
differences in initial conditions (such as those due to rounding errors in numerically 
uncoalesced, sub-mixel, hyperproductive,  S. damnsoum s.l., capture point, iterative 
interpolative computations) may yield widely diverging outcomes when optimally 
forecasting,  geo-spectrotemporally eco-georeferenceable, narrow, tributary, African agro-
village, seasonal, immature, capture point, hyperproductive habitats making  long-term 
forecasting impossible in general. This happens even though these systems are deterministic, 
meaning that their future behavior is fully determined by their initial conditions, with no 
random elements involved.   

The deterministic nature of  eco-georeferenceable, uncoalesced, sub-mixel, 
hyperproductive,  S. damnsoum s.l., capture point, iterative interpolative capture points 
systems does not make them conducive to eco-geographically geo-prediction. Such 
determinitsic occurrences may be unquantitable using simple unmixing algorithms in most 
software packages for identying unknown, un-geosampled, moderate reoslution, imaged, 
seasoanally hyperproductive, eco-georeferenceable, geospectrotemporally 
uncoalesced,moderate reosolution, trailing vegetaion, turbid water, discontinuous, 
infrequnetly canopied, sparsely shaded, S. damnsoum s.l. capture points with precision in an 
iterative interpolator.  Chaotic behavior exists in many natural systems, such as weather and 
climate [24[. This behavior may be studied through fractional endmember analysis of a 
chaotic mathematical model, or through analytical techniques such as recurrence plots in 
Calculus Methode/Map Server. In descriptive statistics and chaos theory, a recurrence plot is 
a plot showing, for a given moment in time, the times at which a phase space trajectory visits 
roughly the same area in the phase space. In other words, it is a graph 
of showing on a horizontal axis and on a vertical axis, where is a phase 
space trajectory. 
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 Tests have confirmed that the speed of processing the macro image in Calculus 
Methode/Map Server is fast comparable with other mathematical GIS internet server 
products. (www.esri.com). The product can transform geo-spectrotemporally geospatialized, 
explanatorial,  S. damnosum s.l.,  capture point. 3D maps from 2D, Planar maps. In graph 
theory, a planar graph is a graph that can be embedded in the plane,( i.e., it can be drawn on 
the plane in such a way that its edges intersect only at their endpoints) (www.esri.com).The 
Geometric Calculus Map Server uses Buffering Tools and  Best Path tools which are  
designed especially with both efficiency and accuracy thus, ecogeoreferencable, elucidative 
geometrically differentiatiable, hyperproductive, trailing vegetation, turbid water, 
discontinuous, sporadically canopied, sparsely shaded, S. damnosum s.l., geo-
spectrotemporally uncoalesced, moderate resolution, capture point, bidirectional, wavelength, 
frequency-oriented, transmittance may be differentially geometrically mapped. 

In calculus a differentiable function of one real variable is a function whose derivative 
exists at each point in its domain. As a result, a  graph of a expositively differentiable 
forecasting geo-spectrotemporally uncoalesced, eco-georeferenceable, hypeproductive, 
trailing vegetation, discontinuous, infrequently canopied, sparsely shaded,  seasonal 
parameter function must have a (non-vertical) tangent line at each point in its domain, be 
relatively smooth, and cannot contain any breaks, bends, or cusps. In mathematics a cusp, 
sometimes called spinode in old texts, is a point on a curve where a moving point on the 
curve must start to move backward [24]. More generally, if x0 is a geo-spectrotemporally 
geosampled hypeporductive, S. damnsoum s.l., seasonal, capture point in the domain of a 
function f, then f is said to be differentiable at x0 if the derivative f ′(x0) exists. This means 
that the graph of f has a non-vertical tangent line at the point (x0, f(x0)). The function f may b 
elocally linear at x0, as it may be well approximated by a linear function tabulated near this 
agro-village, narrow, riverine tributary, immature, capture point, hyperproductive, agro-
village complex,  habitat  

Sub-differential, nonsmooth, optimization techniques for conducting endmember 
eiegenvetcor moderate reoslution, deompositional variational analysis may be stablized in 
Calculus Methode/Map Server for parsimoniously, qualitatively quantitating Lipschitz 
behavior of archived robustifiable, Pareto solutions rendered from logistically regressed,   
capture point,  S. damnosum s.l., sub-mixel, geo-spectrotemporal, moderate resolution, 
dichotomized exogenous covariates iterated in parametric, nonconvex, semi-infinite 
algorithms in Calculus Methode/MapServerTM. Logistic regression measures the relationship 
between the categorical dependent variable and one or more independent variables by 
estimating probabilities using a logistic function, which is the cumulative logistic 
distribution. probability theory and statistics, the CDF of a real-valued random variable X, or 
just distribution function of X, evaluated at x, is the probability that X will take a value less 
than or equal to x[http://mathworld.wolfram.com/.html]. A continuous S. damnsoum s.l., 
fractionalized endmember eigenvector distribution, may render  the area under the probability 
density function (PDF) from minus infinity to x. Cumulative distribution functions may be 
used to specify the distribution of multivariate random variables[24]. 

 Thus, this explanatorial, linear paradigm would  treats the same set of  uncoalesced S. 
damnosum s.l., sub-mixel, fractionalized,  moderate resolution data variables   as probit 
regression using similar techniques, with the latter using a cumulative normalized distribution 
curve instead. Lipschitz continuity, is a strong form of uniform continuity for functions [24]. 
Equivalently, in the latent variable interpretations of these methods, ecologists, entomologists 
and other researchers may employ a  binarized  regressand dataset of fractionalized moderate 
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resolution, geo-spectrotemporal, unmixed S. damnsoum s.l. trailing vegetation, turbid water, 
ecogeoreferenceable, sparsely shaded, immature, seasonal hyperproductive,  capture point, 
forecast, vulnerability  model estimator  with  a standard logistic normalized distribution of 
errors. 

 
 The use of binary variable regressions in the analysis of qualitative endmember 

moderate resolution variables (is not confined to the dicho tomeous variable case when 
quantiating a continuous, eco-georeferenceable,  narrow tributray, African, agro-village 
complex, seasonal, capture point, trailing vegetation, turbid water, discontinuous, sparsely 
shaded, sporadically canopied,  S. damnsoum s.l., fractionalized endmember eigenvector 
distribution. It is evident that a orthogonalizable regressor which can take more than two 
different seasonal geo-spectrotemporally, values, can be redefined in terms of a set of binary 
variables. It is perhaps less obvious, however, that this also applies to the regressand. The 
principle was pointed out by Theil (1969) for the linear logistic model. A similar device is 
used for contingency tables. 

 
Let B1, B2, ..., Bm be a set of mutually exclusive geo-spectrotemporally 

geospatialized, geosampled, eco-georeferenceable, trailing vegetation, turbid water, 
discontinuous, sporadically canopied, S. damnsoum s.l., moderate resolution, fractionalized 
endmember and orthogonalized, spatial filter   eigenvector, characteristics of a sample unit, 
say m alternative classes of a classification scheme. Let A1, A2, .. Ak be k uncoalesced 
capture point characteristics which may or may not occur for each frequency-oriented, , 
wavelength, sample unit ( S. damnosum s.l., agro-village , narrow tributary immature 
hypeporductive , seasonal, habitats). Then an experimenter, or medical entomologist or other 
researcher may draw transmittance emissivity inferences on the set of quantitated conditional 
probabilities of B1, B2, ...,Bm respectively, given the various possible  endmeber eigenvector 
combinations of the A-characteristics. One way of doing this is by means of m regression 
equations (one of which is redundant) in ArcGIS. To represent B1, B2, ..., Bi,,  a set of 
moderate resolution,  binarized  expositive, unmixed,  S. damnosum s.l. geo-spectrotemporal, 
geosampled, illuminative, immature  capture point,  variables may  quantitateY1, Y2, ..., Ym. 
For each of these  variables the regression on the set of binary variables X1, X2, ..., Xk, 
representing A1, A2, ..., Ak, and their  products up to the kth order may then be computated 
in ArcGIS ( e.g., Geostatistical Analyst TM). 

If any  explanative, geo-spectrotemporal, fractionalized endmember, S. damnsoum s.l. 
trailing vegetation, turbid water, ecogeoreferenceable, sparsely shaded, immature, seasonal 
hyperproductive,  capture point, regression assumptions is violated (i.e., if there are nonlinear 
inconspicuous, undected, non-quantitative  relationships between explicative, dependent and 
independent, discontinuous, non-homogenous, geo-spectrotemporally uncoalesced, sparsely 
shaded, trailing vegetation, turbid water, endmember, orthogonalized eigenvectors or the 
errors exhibit wavelength, frequency-oriented, non-decomposeable transmittance, emissivity  
correlation non-normalities such  endmember heteroscedasticity) in a  geoclassifiable, eco-
georeferenceable, narrow, African, riverine tributary, agro-village complex,  hyperproductive, 
capture point   reflectance-oriented,  regression map then the eco-epidemiological forecasts 
(e.g., unbiased iteratively interpolated, proxy, LULC biosignature, covariate coefficients of 
eco-cartographically unknown, un-geosampled S. damnosum s.l., seasona,l capture points), 
rendered from the confidence intervals, and scientific insights yielded by the S. damnosum s.l 
regression model may be (at best) inefficient or (at worst) seriously biased or misleading.  
Ideally, a statistical software will automatically provide charts and statistics that test whether 
these assumptions are satisfied for such a forecast, vulnerability model. Unfortunately, many 
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software packages do not provide such output by default (e.g., additional menu commands 
must be executed or codes must be written) and some such as Excel’s built-in regression add-
in offer only limited options.  RegressIt does provide such output and in graphic detail but 
many  non-heuristic, non-optimizable,  sub-mixel, fractionalized,  canopy structural, 
endmember models generated  have violated  many linear assumptions (e.g., the expected 
value of the  moderate resolution, uncoalesced, wavelength dependent variable is a straight-
line function of each orthogonalized independent variable whenst  holding the others  fixed, 
or the slope of the regression line does not depend on the explanatorial regressor values of the 
other  capture point geosampled variables). 

Unfortunately, many of  geo-spectrotemporally  fractionalized, endmember 
eigenvector moderate resolution regression, forecastable, S. damnosum s.l. and other medical 
entomological vector capture point, eco-georefernceable, vulnerability paradigms are  
accepted by a naïve user on the basis of a large value of R-squared. A regression (e.g., 
Poisson, Negative binomial with a non-homogenous distributed mean)  geo-predictive, S. 
damnosum s.l. time series dependent, vulnerability equations that does not satisfy the 
assumptions reasonably well may be repaired employing nonlinear transformation of 
variables in ArcGIS.  The normal quantile plots from those models may reveal robustifiable, 
ArcGIS Online web maps, or a basemap and operational layers revealing geolocations of 
unknown, un-geosampled S. damnosum s.l., iteratively interpolative, hyperproductive, 
seasonal .habitats).  

An ecologist, entomologist or other researcher may establish sufficient conditions in 
Calculus Methode/Map Server for the Aubin Lipschitz-like property of the Pareto solution 
which may map under seasonal, S. damnosum s.l., habitat perturbations of both the objective 
function and constraints. Among many extensions, the pseudo-Lipschitzian property 
introduced by Aubin [1] the Aubin property or the Lipschitz-like property has been used 
extensively in the study of endmember sensitivity analysis of optimization problems and 
variational inequalities. It also plays an important role on developing generalized 
differentiation calculi for nonsmooth functions and set-valued mappings; introduce a notion 
of Levitin-Polyak well-posedness for generalized semi-infinite multiobjective programming 
problems in terms of weakly efficient solutions. A obtain some metric characterizations of 
Levitin-Polyak well-posednessfor this problem. We derive the relations between the Levitin-
Polyak well-posedness and the upper semi-continuity of approximate solution maps for 
generalized semi-infinite multiobjective programming problems. 

 
 Multi-objective error optimization (also known as multi-objective programming, 

vector optimization, multicriteria optimization, multiattribute optimization or Pareto 
optimization) is an area of multiple criteria decision making that is concerned with 
mathematical optimization problems involving more than one augmented objective function 
(www.esri.com). The elements of this parameter vector may enable  geometerically,  
differnentially correcting, hyperproductive, trailing vegetation, seasonal, infrequently 
canopied, turbid water, S. damnosum s.l.,narrow tributary, eco-georefernceable, African, 
riverine agro-village, ecosystem complex, discontinuous, infrequently canopied, sparsely 
shaded, capture point may be  thereafter re-computated in Calculus Methode/MapServerTM 
and interpreted as the partial derivatives of the response variable [e.g., uncoalesced, red, 
green  and blue (RGB) corresponding to the ‘‘standard moderate resolution, model’’ of 
additive color reproduction] employing  fractionalized, proxy, LULC eco-geophysiological, 
bio-geophysical, endmember biosignature contributions) in the  forecast vulnearbility  
paradigm. 
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        In mathematics, a partial derivative of a function of several variables is its derivative 
with respect to one of those variables, with the others held constant, as opposed to the total 
derivative, in which all variables are allowed to vary. Partial derivatives are used in vector 
calculus. Vector calculus (or vector analysis) is a branch of mathematics concerned with 
differentiation and integration of vector fields, primarily in 3-dimensional Euclidean 
space.The partial derivative of a function f(x, y, ...) with respect to the variable x is variously 

denoted by [24]. Since in general a partial derivative is a function of 
the same arguments as in the original function, this functional dependence is sometimes 

explicitly included in the notation, as in  Partial derivatives are used in 
vector calculus and differential geometry.. Differential geometry is a mathematical discipline 
that uses the techniques of differential calculus, integral calculus, linear algebra and 
multilinear algebra to study problems in geometry. Partial derivatives are key to target-aware 
image resizing algorithms. Widely known as seam carving, these algorithms require each 
mixel in an image to be assigned a numerical 'energy' to describe their dissimilarity against 
orthogonal adjacent mixels [25]. The algorithm then progressively removes rows or columns 
with the lowest energy. The formula established to determine a mixel's energy (magnitude of 
gradient at a pixel) depends heavily on the constructs of partial derivatives. 

       Suppose that f(x, y) is a differentiable real function of two variables whose second partial 
derivatives exist. The Hessian matrix H of f is the 2 × 2 matrix of partial derivatives of f:   
Hence, suppose that ƒ is a function of more than one fractionalized, geo-spectrotemporal, 
geosampled,  seasonal, explanatorial, moderate resolution, optimally imaged,  
hyperproductive, discontinuous,  infrequently canopied, turbid water, sparsely shaded, S. 
damnosum s.l., trailing vegetation or turbid water, decomposable, input variable in an  eco-
georeferenceable, narrow tributary,African, riverine agro-village, ecosystem complex within 
a moderate resolution uncoalesced spectrum,  In such circumstances an unbiased 
geospatialized, moderate resolution, eco-epidemiolgical, capture point, fractionalized, 
endmember eigenvector, forecast-oriented, parameterizable estimator dataset may be 
optimizable by  ( See Figure 3). As such, accurate endmember 
comparisons of moderate resolution, ground-based measurements of the fractionialized 
photosynthetically active radiation intercepted by seasonal, discontinuous, S. damnosum s.l. 
proxy, LULC biosignature may be reviwed in Geospatial Analyst TM. In so doing , exact eco-
geophysiological, biophysical and biochemical substance measurmenets may be revealed and 
thus iteratively interpolated ( e.g., Chorophyll (Chl)-a) In mathematics, the Hessian matrix or 
Hessian is a square matrix of second-order partial derivatives of a scalar-valued function, or 
scalar field. It describes the local curvature of a function of many variables. Specifically, 
suppose f : ℝn → ℝ is a function taking as input a vector x ∈ ℝn and outputting a scalar f(x) ∈ 
ℝ; if all second partial derivatives of f exist and are continuous over the domain of the 
function, then the Hessian matrix H of f is a square n×n matrix, usually defined. 

The Jacobian matrix of the derivatives , , ..., of a function 
with respect to , , ..., is called the Hessian of , i.e., 

[25]. As in the case of the Jacobian, the 
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term "Hessian" unfortunately appears to be used both to refer to this matrix and to the 
determinant of this matrix (Gradshteyn and Ryzhik 2000, p. 1069). In the second derivative 
test for determining extrema of a function , the discriminant is given by 

The Hessian can be implemented in the Wolfram Language as 
HessianH[f_, x_List?VectorQ] := D[f, {x, 2}] (http://mathworld.wolfram.com).  

Taking the differential  may shows that is the determinant of the matrix , 
in a S. damnosum s.l. forecast, vulnerability probabilisc paradigm, and therefore  would 
render the ratios of -dimensional volumes (contents) in and , 

The use of determinants in calculus includes the 
Jacobian determinant in the change of variables rule for integrals of functions of several 
variables. The differentials therefore appears, for example, in the change of variables 
theorem.  

The theorem which effectively describes how lengths, areas, volumes, and 
generalized -dimensional volumes  (contents) are distorted by differentiable functions. In 
particular, the change of variables theorem reduces the whole problem of figuring out the 
distortion of the content to understanding the infinitesimal distortion, i.e., the distortion of the 
derivative (a linear S. damnosum s.l.  map), which is given by the linear map's determinant. 
So is an area-preserving linear transformation iff , and in more 
generality, if is any subset of , the content of its image is given by times the 
content of the original. The change of variables theorem takes this infinitesimal knowledge, 
and applies calculus by breaking up the domain into small pieces and adds up the change in 
area, bit by bit. The change of variable formula persists to the generality of differential k-

forms on manifolds, giving the formula under the conditions that and are 
compact connected oriented manifolds with nonempty boundaries, is a smooth map 
which is an orientation-preserving diffeomorphism of the boundaries. In one dimension, the 
explicit statement of the theorem for a continuous function of is 

where is a  differential   mapping on the interval 
and is the interval with and (Lax 1999). In two dimensions, the 

explicit statement of the theorem is and in 
three dimensions, it is 

where 

is the image of the original region , is the Jacobian, and is a global 
orientation-preserving diffeomorphism of and (which are open subsets of ). The 
concept of the Jacobian can also be applied to functions in more than variables. For 

example, considering and , the Jacobians = , = can 
be optimally  defined [25]. For the case of  geo-spectrotemporal explanative uncoalesced, 
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moderate resolution, trailing vegation, discontinuously canopied, eco-georeferenceable, 
immature S. damnosum s.l. datset of quanatized endmember  variables, the Jacobian takes the 

special form where is the dot product and is the cross 

product, which can be expanded by to give  targeted, iteratively 
interpolated, eco-georeferenced, hypeproductive habitats. 

The dot product can be defined for two vectors and by where is 
the angle between the vectors and is the norm. It follows immediately that if is 
perpendicular to . The dot product therefore has the geometric interpretation as the length of 
the projection of onto the unit vector when the two vectors are placed so that their tails 
coincide. By writing = and = it follows that (1) 
yields 

= = = =

So, in general, = = This can be written very succinctly 
using Einstein summation notation as  Einstein summation is a notational 
convention for simplifying expressions including summations of vectors, matrices, and 
general tensors.[25]. The dot product is implemented in the Wolfram Language as Dot[a, b], 
or simply by using a period, a . b. The dot product is commutative and 
distributive The associative property is meaningless for the dot 
product because is not defined since is a scalar and therefore cannot itself be dotted. 
However, it does satisfy the property for a scalar. The derivative of a dot 

product of vectors is  The dot product is also called the 
scalar product and inner product. In the latter context, it is usually written . The dot 
product is also defined for tensors and by  So for  four- geo-spectrotemporal 
explanative uncoalesced, moderate resolution, trailing vegation, discontinuously canopied, 
eco-georeferenceable, immature S. damnosum s.l. datset of quanatized endmember  vectors 

and , may be defined by = = = where is 
the usual 3-D dot product.The dot product is invariant under rotations 

= = = = = =  where Einstein summation has 
been used.  

In mathematics, especially in applications of linear algebra to physics, the Einstein 
notation or Einstein summation convention is a notational convention that implies summation 
over a set of indexed terms in a formula, thus achieving notational brevity. The first item on 
the above list can be employed to greatly simplify and shorten equations involving tensors. 

For example, using Einstein summation, and The second and 

third items on the list indicate that the expression is valid, whereas the 
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expressions and are invalid because the index appears three times in 
the first term of (), while the non-repeated index in the first term of () doesn't match the non-
repeated of the second term.  The convention was introduced by Einstein (1916, sec. 5), who 
later jested to a friend, "I have made a great discovery in mathematics; I have suppressed the 
summation sign every time that the summation must be made over an index which occurs 
twice..." (Kollros 1956;  Pais 1982, p. 216).  In practice, the convention tends to occur 
alongside both the Kronecker delta and permutation symbol. Moreover, the Einstein 
summation convention easily accommodates both superscripts and subscripts for 
contravariant and covariant tensors, respectively. As part of mathematics it is a notational 
subset of Ricci calculus; however, it is often used in applications in physics that do not 
distinguish between tangent and cotangentspaces. 

If m = n, the Jacobian matrix is a square matrix, and its determinant, a function of x1, 
…, xn, is the Jacobian determinant of f in a trailing vegation, narrow African, riverinme 
tributray, hypeporductive, eco-georeferenceable, S. damnsoum s.l.,  capture point, moderate 
resolution, geo-spectrotemporal, forecast vulnerability probabilsitic paradigm.  It  may 
provide LULC  important information about the local behavior of f ( e.g., immature 
productivity count on a moderate resolution, geoclassifieable LULC)  In particular, the 
function f  would have locally in the neighborhood of a hyperproductive , seasaonl ecpoi-
georefrenceable, explanative, point x an inverse function that is differentiable if and only if 
the Jacobian determinant is nonzero at x (see the Jacobian conjecture in Figure 5). The 
Jacobian determinant occurs also when changing the variables in multiple integrals (see 
substitution rule for multiple variables)[25]. If m = 1, f is a scalar field and the Jacobian 
matrix is reduced to a row vector of partial derivatives of f—i.e. the gradient of  

 
 
 
 
 
 
 
 
 
Figure 5. A  differential geometrical graph of z = x2 + xy + y2  forecast endmember S. 
damnsoum s.l., vulnerability paradigm derivative as the best affine approximation to a 
function at a hypeproductive habitat point, calculated via a m=n Jacobian matrix. 
where  the partial derivative at (1, 1) leaves y constant and where  the corresponding 
tangent line is parallel to the xz-plane for estimatimating incident solar radiation  in a 
discontinuous canopy surface sample 
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A trailing vegetation, hyperproductive, seasonal, turbid water, eco-
georeferenceable,explanative, S. damnosum s.l., narrow tributary,African, riverine agro-
village, ecosystem complex, discontinuous, infrequently canopied, sparsely shaded,  forecast, 
vulnerability geo-spectrotemporal, geosampled, graph function  in Calculus 
Methode/MapServerTM may optimally define  an eco-epidemiological, capture point, 
immature habitat surface in Euclidean space. In geometry, Euclidean space encompasses the 
2-D Euclidean plane and the 3-D space of Euclidean geometry ( 
http://mathworld.wolfram.com/CauchySequence.html). For example, for  every eco-
georeferenceable, capture point on a infrequently canopied, immature, discontinuous, S. 
damnosum s.l.habitat surface sample, there would be an finite number of tangent lines (e.g., 
wide range of scatter when quantiating seasonal reflectance/canopy height relationships for 
determining layering information such canopy layer structure or foliage profile layering).In 
geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight 
line that "just touches" the curve at that point[24]. More precisely, a straight line is said to be 
a tangent of a curve y = f (x) at a point x = c on the curve if the line passes through the point 
(c, f (c)) on the curve and has slope f '(c) where f ' is the derivative of f. A similar definition 
applies to space curves and curves in n-dimensional Euclidean space in Calculus 
Methode/MapServerTM.  

       Partial differentiation in an explanatorial, seasonally hyperproductive, explicative, eco-
georeferenceable, capture point, forecast, vulnerability model, residual output in in Calculus 
Methode/MapServerTM may determine S. damnosum s.l.,exogenous catchment 3-D, slope 
covariate coefficients. The difference of the canopy elevation and underlying terrain elevation 
yields a canopy height modelthat can eco-cartographically represents a spatially-explicit 
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description of canopy structure (i.e. volume, height, biomass, etc.) over a given area 
[www.esri.com] Usually, the lines of most interest are those that are parallel to the xz-plane, 
and those that are parallel to the yz-plane which result from holding either y or x constant, 
respectively. To find the slope of the line tangent to the function at P(1, 1) that is parallel to 
the xz-plane, the y variable should  treated as constant in the capture point  model . In so 
doing,  a differential graph can  determine if iteratively interpolated , eco-georeferenceable, S. 
damnosum s.l. capture point  geospectrotemporally uncoalesced, discontinuous canopy 
visible wavelength reflectance is negatively correlated to canopy height due to chlorophyll 
absorption and structural shadowing effects, for example, while  optimally quantiating 
whether near-IR reflectance is positively correlated due to the light scattering properties of 
leaf internal structure. ArcGIS provides a simulation, at a moderate spectral resolution, of 
quasiinfinite leaf reflectance (as represented by stacked leaves) and single leaf 
reflectance(www.esri.com). Single leaf reflectance and transmittance are important input 
variables to vegetation canopy reflectance models[24].   
 

 Partial derivatives are defined as derivatives of a function of multiple variables when 
all but the variable of interest are held fixed during the differentiation. 

[26].The above partial derivative is 
sometimes denoted for brevity. Partial derivatives can also be taken with respect to 

multiple variables, as denoted for examples = , =  and = Such partial 
derivatives involving more than one variable are called mixed partial derivatives. For a "nice" 
two-dimensional function (i.e., one for which , , , , exist and are continuous 
in a neighborhood ), then [ http://mathworld.wolfram.com/] More 
generally, for "nice" functions, mixed partial derivatives must be equal regardless of the order 
in which the differentiation is performed, so it also is true that  

  On the graph in Figure 3 the S. damnsoum s.l., forecast vulnerability quantiated 
explanative function looks on the plane y = 1. By finding the derivative of the equation while 
assuming that y is a constant, in the model’s latent forecasts, the slope of ƒ at the point (x, y) 

may be found by optimally employing . So at (1, 1), by substitution, the slope of 
a geo-spectrotemporally  iteratively plotted,  explanatorial, seasonal, discontinuous canopy 
patterns of gross primary productivity, inferred from eddy covariance measurements of 
surface–atmosphere CO2 exchange surface may be determined (i.e., 3). The derivative of a 
function f(x) of a variable x is a measure of the rate at which the value of the function changes 
with respect to the change of the variable [26]. It is called the derivative of f with respect to x. 
If x and y are real numbers,( e.g., dataset of uncoalesced S. damnosum s.l., moderate 
resolution wavelength, transmittance emissivty frequencies) and if the graph of f is plotted 
against x, the derivative is the slope of this graph at each point.The simplest case, apart from 
the trivial case of a constant function, is when y is a linear function of x, meaning that the 

graph of y divided by x is a line. Therefore, at the geosampled, geospatialized, 
moderate resolution,  trailing vegetation, hyperproductive, seasonal, turbid water, S. 
damnosum s.l.narrow tributary,African, riverine agro-village, eco-georeferenceable, 
ecosystem complex,  capture point (1, 1). That is, the partial derivative of z with respect to x 
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at (1, 1) is 3, as shown in the graph in Figure 6. 

Figure 6. A differential graph of a hypothetical, capture point, geo-spectrotemporally 
uncoalesced,  proxy  S. damnsoum s.l.,biosignature revealing the function in the xz-plane 
at y= 1 where   two axes are  optimally  forecastable with different scales and  the slope 
of the tangent line is 3. 

 

   Currently, there does not exist a single solution that can simultaneously heuristically 
optimize each log-transformed, S. damnosum .s.l., seasonal, geo-spectrotemporal porxy 
LULC biosignature endmember, eigenvector forecastor, for resolving diffuse, nontrivial, 
multi-objective, irradiance optimization problems in discontinuous canopy leaves (e.g., 
broadly related moderate resolution ,vegetation geoclassifiable LULCs  amount and vigor  
that are not sensitive to canopy structure). Leaves are an important component of  trailing 
vegetation, hyperproductive, seasonal, turbid water, eco-georeferenceable,explanative, S. 
damnosum s.l., narrow tributary,African, riverine agro-village, ecosystem complex, 
discontinuous, infrequently, sparsely shaded canopies, and it is the concentration of their 
biochemical constituents, namely, pigments, water, nitrogen, cellulose, and lignin, together 
with canopy structure that shapes the absorption features of  a capture point’s reflectance 
endmember spectra. Absorption features in the NIR region of the  spectrum (1000–2500 nm) 
in a S. damnosum s.l., seasonally hypeproductive, immature habitat may be  a function of the 
bending and stretching vibrations of biochemical bonds between, for example, hydrogen–
carbon and nitrogen–oxygen atoms, together with their harmonics and overtones. In the 
visible region, chlorophyll and carotenoid pigments have strong absorption due to electron 
energy transitions [24].  

 Moderate spectral resolution remotely sensed data can be statistically analyzed to 
estimate the concentration of biochemicals in canopies (www.esri.com). Such information 
has been used to drive ecosystem, simulation,n proxy LULC biosignature  models for 
estimating photosynthetic efficiency, the rate of nutrient cycling, and the degree of vegetation 
stress. Strong correlations between leaf biochemical concentrations and specific wavebands 
of measured spectra quantitated from eco-epidemiolgical, S. damnosum s.l. forecasting 
vulnerability paradigms. However, heuristically optimizable, wavebands selected by multiple 
linear regression using biochemical assay data are often not consistent with the absorption 
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features of the biochemicals within canopy leaves. Even when known causal wavebands are 
selected in the regression equation, geo-spectrotermpoal correlations with explicative, 
biochemical concentrations are not always strong [24]. To investigate this further, a physical 
modeling approach may be  required to describe and quantify the reflectance, scattering, and 
absorption of  trailing vegetation, hyperproductive, seasonal unquantiated, turbid water, eco-
georeferenceable,explanative, S. damnosum s.l., narrow tributary,African, riverine agro-
village, ecosystem complex, discontinuous, infrequently ,sparsely shaded, canopy leaves as a 
function of their biochemical and physical properties. 

  Thus, qualitaively quantitating geo-spectrotemporal, eco-georeferenceable, 
aggregations of expositively  uncoalesced, moderate resolution, proxy, geoclassfiable LULC, 
biophysical, iteratively interpolative,fractionalized,endmember,biosignature, probabilistic 
uncertainties (e.g., low reflectance saturation values for visible and NIR bands, perhaps 
caused by smaller canopies being shadowed by adjacent discontinuous trailing vegation). 
Hence, eco-epidemiological, frequentistic or non-frequentistic, fractionalized, endmember, 
heursitically optimiazable  datasets of  iteratived, geospatialized, eco-georeferenceable, 
seasonally hyperproductive, S. damnsoum s.l.,  capture point, geo-spectrotemporalized  
geosampled capture points  in  narrow tributary, African, agro-village, complex ecosystem 
with sub-optimally moderate resolution, wavelength, frequency-oriented, transmittance, 
emissivity estimators may reveal  defective interpolated  orthogonal eigenvectors which may 
not quantiate sparsely shaded, discontinuous  canopy, narrow tributary, African, agro-village 
complex ecosystem-level phenological responses to climate change.  

      As such, identification of a kriged (i.e., Gaussian process regression) iteratively 
interpolated dataset of  un-geosampled,seasonally hyperproductive,  S. damnosum s.l. capture 
points may be hindered as the objective functions for the forecasting paradigms may be 
geospatially conflicting, and there may  exist possibly infinite number of Pareto optimal 
solutions. By yielding all of the potentially optimal endmember solutions in, Calculus 
Methode/MapServerTM an ecologist, entomologist or other researcher can make focused 
tradeoffs within a constrained set of parameterizable, sub-mixel, moderate resolution, time 
series dependent datasets of hueristically oprimizable, S. damnosum .s.l.,  seasonal,  
endmember, orthogonalized, eigenvector forecastors rather than needing to consider the full 
ranges of parameters in a  Pareto frontier, P(Y). For example , consider an eco-
georeferenceable, seasaonlly hyperproductive, S. damnsoum s.l.,  capture point, optimally 
parameterizable  geo-spectrotemporal, moderate resolution, uncoalesced, wavelength, 
frequency-oriented, transmittance, emissivity estimator dataset  with function , 
where X is a compact set of feasible decisions in the metric space , and Y is the feasible 
set of criterion vectors in , such that . An ecologist, 
entomologist or other researcher may assume that the preferred directions of criteria values in 
Calculus Methode/MapServerTM are known. A  geospectrotemporal, Similium,  seasonal, 
immature habitat,  may be  preferred to another eco-georferenceable, immature 
habitat  point ,  which may be optimally written as  in Calculus 
Methode/MapServerTM The Pareto frontier  may then be written 
as:  for capturing near-surface, spatial 
and temporal variation in S. damnsoum s.l.,  capture point, discontinuous, canopy phenology. 

The canopy-absorbed photosynthetically active radiation APARCAN is the solar energy 
consumed in the canopy photosynthetic process [25]. Due to the difficulty of acquiring 
extensive ground-based observations trailing vegetation, hyperproductive, seasonal, turbid 
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water, eco-georeferenceable,explanative, S. damnosum s.l., narrow tributary,African, riverine 
agro-village, ecosystem complex, discontinuous, infrequently canopied, sparsely shaded,  
forecast, vulnerability geo-spectrotemporal, geosampled, increasing efforts are being devoted 
to estimate APARCAN from optical satellite measurements[22]. So far, APARCAN has been 
obtained from the downwelling PAR at the surface (SFC), PARSFC↓, and the fraction of PAR 
absorbed by a canopy, FPAR for eco-georeferenceable, capture point, seasonally 
hyperproductive, S. damnosum s.l. immature habitats. A new approach Calculus 
Methode/MapServerTM may define APARCAN as the product of APARSFC and RPAR in a 
iterative interpolative, moderan resolution, forecast, vulnerability model. APARSFC is the 
total PAR absorbed by all surface materials including canopy, soil, litter, etc., while RPAR is 
the ratio of the PAR absorbed by the green canopy only, to APARSFC. [24]. The advantage of 
this differential approach is that APARSFC and PARSFC↓, can be optimally determined more 
accurately. The determination of seasonal, RPAR may be found to be aws accurate as that of 
FPAR in a S. damnosum s.l. habitat model.. The whole approach may be   introduced in two 
parts in a difeferential geometrical forecasting vulnerability model. Part I, may be presented 
in Calculus Methode/MapServerTM, dealing with the exact retrieval of APARSFC. Using a 
complex atmospheric radiative transfer model, APARSFC may then be found to be related to 
the upwelling PAR reflected at the top of the atmosphere (TOA),(e.g.,  PARTOA↑.). The 
relationship may be independent of cloud parameters and surface conditions, and moderately 
dependent on ozone amount and aerosol optical properties. A parameterization may be 
developed to estimate APARSFC from PARTOA↑ inferred from satellite measurements (e.g., 
iteratively interpolated, geospectrotemrpoally uncoalesced S. damnosum s.l.capture point, 
proxy LULC biosignatrures) which may be more pronounced in the visible bands. Error 
analyses may be also conducted in Calculus Methode/MapServerTM using data from both 
model simulations and field observations. In Jacob et al. [22] performed   elucidative  
parameterizations  and found estimating absorbed photosynthesis radiation and leaf area 
index from spectral reflectance estimator may be  valid to within 5 W m−2 compared to the 
results of detailed discontinuous gap, radiation model simulations. A preliminary comparison 
against (First ISLSCP Field Experiment) FIFE ground observations may revealed  a bias 
error of −2.3 W m−2 and a standard error of 23.7 W m−2 for the instantaneous estimates of 
APARSFC. 

 It would be invalid to treat Pareto efficiency as equivalent to optimality when 
constructing a trailing vegetation, hyperproductive, seasonal, turbid water, eco-
georeferenceable,explanative, S. damnosum s.l., narrow tributary,African, riverine agro-
village, ecosystem complex, discontinuous, infrequently canopied, sparsely shaded,  S. 
damnsoum s.l., forecasting vulnerability paradigm  since the latter is a normative concept that 
is a matter of opinion but typically would take into account the degree of inequality of an 
eco-epidemiological, frequentistic or non-frequentistic, endmember dataset of  iteratively 
interpolative,  explicatively geospatialized, eco-georeferenceable, seasonally 
hyperproductive, S. damnsoum s.l.,  capture point, seasonal distributions.Pareto efficiency 
does not require an equitable distribution of data. This possibility is inherent in the definition 
of Pareto efficiency; often the status quo is Pareto efficient regardless of the degree to which 
data (e.g.,  un-geosampled,seasonally hyperproductive, forecasted  S. damnosum s.l. defective   
narrow tributary, African, agro-village, complex ecosystem, trailing vegetation, 
discontinuous, infrequently canopied,sparsely shaded, turbid water, capture points) is 
equitably distributed. 

        The Remez penalty and smoothing algorithm (RPSALG) is a unified framework for 
penalty and smoothing methods for solving min-max, convex, semi-infinite, programing 
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problems, whose convergence may be plotted in Calculus Methode/MapServerTM. The min-
max-problem is a convex problem, as the functionf(x) = maxi2V fi(x) is convex since point-
wise maximum of convex functions preserves convexity. For a min-max problem in the form 
of minx∈X maxt∈T {ft(x)}, the nondifferentiability of the max function F(x) ≡ maxt∈T {ft(x)} 
may present special difficulty in finding optimizable solutions in most software packages or 
cyberenvironments for forecasting geo-spectrotemporally uncoalesceable, moderate 
resolution explanative seasonally, eco-georeferenceable, unknown, un-geosampled, eco-
geophysiosological biophysical,  hyperproductive, S. damnsoum s.l.,   narrow tributary, 
African, agro-village complex, ecosystem, capture point, trailing vegetation, discontinuous, 
infrequently canopied,sparsely shaded, turbid water, eco-epidemiological, capture points and 
theire uncoalesced datasets of frequentistic or non-frequentistic,  explicatively  iteratively 
interpolative,  optimally imaged, orthogonally decomposable, iteratively interpolative 
fractionalized, endmember eigenvectors.  
 

 It may be shown in Calculus Methode/MapServerTM that an entropic regularization 
procedure can provide a smooth approximation Fp(x) that uniformly converges to F(x) over 
X,  in an explanatorial eco-georeferenceable, prolific, S. damnsoum s.l. seasonal, geo-
spectrotemporal, geosampled, capture point, as p tends to infinity. Entropy regularization is a 
straightforward and successful method of semi-supervised learning that augments the 
traditional, conditional likelihood, objective function with an additional term that aims to 
minimize the geo-predicted label entropy on unlabeled data[24]. In this fashion, an empirical 
regressable  dataset of  unknown, ungeosampled,trailing vegation, disconstinuous, 
infrequently canopied, sparsely shaded, turbid water,  seasonal, hyperproductive,  narrow 
tributary, African, agro-village complex, eco-georeferenceable, S. damnsoum s.l. ecosystem, 
capture point,  may be optimally mapped. Additionally, elucidatively residualized, 
optimizable eco-geophysiosological biophysical, elucidative forecastors may be rendered in 
Calculus Methode/MapServerTM with p being sufficiently large, minimizing the smooth 
function Fp(x) over X.   In so doing, a very accurate approximate solution to the min-max 
problem in  a robustly fractionalized, geo-spectrotemporal, geo-spatial, endmember 
eigenvector iteratively, quantitative, interpolative,  uncoalesced, moderate resolution, 
wavelength, transmittance, frequency-oriented, emissivity, eco-epidemiological,  forecast, 
vulnerability model may be devised.  This approach may be applicable for solving 
linearizable semi-infinite programming problems such as quantitating biased, constrained, 
convexical eco-georeferenceable, hyperproductive,   S. damnosum s.l. seasonal, capture point, 
forecasting moderate resolution, fractionalized, endmember, eigenvector misspecified 
contributions. 

Each iteration of RPSALG in an Calculus Methode/MapServerTM cyberenvironment 
involves two types of auxiliary optimization problems: the first one consists of obtaining an 
approximate solution of some discretized convex problem, while the second one requires 
solving a non-convex optimization problem involving the parametric constraints as objective 
function with a endmember, forecastable regressional, explanatorial seasonally geosampled 
variable (e.g., Percent of discontinuous, sporadically  canopied, trailing vegetation at a 
hyerproductive, S. damnosum s.l., capture point). The latter problem may be optimally 
quantitated with a variant of the cutting angle method for  parsimoniously implementing a 
heursitic deterministic  technique for resolving different moderate resolution, proxy, 
uncoalesced  LULC biosignature uncertainties ( waveband diffuse multiscattering) in sub-
mixel, optimally   parameterized, S. damnosum s.l. noisy datasets especially those that  may 
exhibit equifinality. Equifinality is the principle that in open systems a given end state can be 
reached by many potential means [24]. 
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      By increasing positive homogeneous (IPH) functions over the unit simplex  in Calculus 
Methode/MapServerTM, Lipschitz problems may be optimally qualitatively quantated in  an 
uncoalesced dataset of   fractionalized moderate resolution, orthogonalized synthetic, spatial 
filter, trailing vegation, discontinuous, infrequently canopied, sparsely shaded, turbid water,  
seasonal, hyperproductive,  narrow tributary, African, agro-village complex, eco-
georeferenceable, ecosystem, S. damnsoum s.l.   capture point,  immature habitats eco-
geophysiosological biophysical seasonal, endmember eigenvectors rendered from  any 
iterative interpolator . A function f such that  for all x and y, where is a 
constant independent of x and y , is called a Lipschitz function[24]. Any seasonally 
hyperproductive, S. damnsoum s.l., moderate resolution, imaged, immature habitat, capture 
point, function with a bounded first derivative must be Lipschitz[22]. In so doing, the 
reflectance of a seasonal, hyperproductive, narrow tributary, African, agro-village complex, 
eco-georeferenceable, S. damnsoum s.l.   ecosystem, capture point discontinuous canopy may 
be  similar, but may be seasaonlly  modified by the nonuniformity of incident solar radiation, 
specific plant structureal (e.g., relationships leaf reflectance and chlorophyll fluorescence), 
leaf areas, shadows, and background reflectivities 

An ecologist, entomologist or other research may also derive the Lipschitz 
dependence of the set of solutions of a convex minimization or other problems and its 
Lagrange multipliers in a Calculus Methode/MapServerTM cyberenvironment.  In 
mathematical optimization, the method of Lagrange multiplier is a strategy for finding the 
local maxima and minima of a function subject to equality constraints. Optimally tabulating 
geo-spectrotemporally, explanative, robust  geospatially, optimally geoclassifiable elucidative 
datasets of  heursitically parameterizable,  quantitatable, proxy, LULC biosignature, eco-
geophysiosological, biophysical, fractionalized fractionalized, endmember eigenvector, 
estimator, moderate resolution, proxy datasets  may enable iteratively interpolation of  
uncoalesced,  eco-georeferenceable, eco-epidemiological, seasonally hyperproductive, S. 
damnsoum s.l.,  narrow tributary, African, agro-village complex, ecosystem, capture point, 
trailing vegetation, discontinuous, infrequently canopied,sparsely shaded, turbid water, 
immature habitat, wavelength, tranmittance, emissivities in Calculus Methode/MapServerTM  
may aid in  revealing  geolocations of unknown, ungeosampled hyperproductive, seasonal 
habitats employing priciples rendered from the inverse  function theorem. 

 In mathematics, specifically differential calculus, the inverse function theorem gives 
sufficient conditions for a function to be invertible in a neighborhood of a point (e.g., a 
seasonally hyperproductive, narrow tributary, African, agro-village, trailing vegetation, 
discontinuous, infrequently canopied, turbid water S. damnsoum s.l.  eco-georeferenceable, 
capture points) in its  domain. The theorem also gives a formula for the derivative of the 
inverse function. In multivariable calculus this theorem can be generalized to any 
continuously differentiable, elucidative vector-valued function whose Jacobian determinant is 
nonzero at a point in its domain. In Calculus Methode/MapServerTM,the Jacobian matrix is 
the matrix of all first-order partial derivatives of a vector-valued function(www.esri.com). 

Suppose f : ℝn → ℝm is a non-optimizable, explanatively fractionalionizable,  geo-
spectrotemporally,optimally orthogonalizable,  moderate resolution,fractionalizable, eco-
geophysiosological biophysical endmember eigenvector, empirically regressed. geosampled, 
uncoalesced, moderate resolution, eco-georeferenceable, geoclassfiable, hyperproductive, 
seasonal, eco-epidemiological, trailing vegetation, infrequently canopied, discontinuous, 
turbid water, S. damnosum s.l., narrow tributary,African, riverine agro-village, ecosystem 
complex,  capture point, forecasting vulnerabili tmodel function  in a Calculus 
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Methode/MapServerTM cyberenvironment.  Optimally this input vector x ∈ ℝn would render 
an output based on the vector f(x) ∈ ℝm. Then the Jacobian matrix J of f would be  an m×n 

matrix, optimally defined and arranged as follows: or, 

component-wise: .  This matrix, whose entries would be  functions of x (i.e., eco-
georeferenceable capture point),  may be  denoted by Df, Jf, and ∂(f1,...,fm)/∂(x1,...,xn), for 
example. The Jacobian matrix could optimally autoregressively quantiate if the function f in 
the spatially weighted eco-geophysiosological, biophysical, S. damnsoum s.l., forecast 
vulnerability model  is  differentiable at a  x.  Then the Jacobian matrix could define an eco-
epidemiological, S. damnsoum s.l.  linear map ℝn → ℝm, which  could be optimally 
heursitically quantized parsimoniously employing  linear approximation of the function f near 
the point x. This forecast, vulnerability map would be thus the quantized generalizations of 
the elucidtaively quantitable, heursitically optimizable, partial and non-patial derivatives of 
the differential f at x.  

If m = n, the Jacobian matrix is a square matrix, and its determinant is  a function of 
x1, …, then xn, is the Jacobian determinant of f[www.sas.edu]. This deterimnant in a seasonal, 
eco-epidemiological, trailing vegetation, infrequently canopied, turbid water, discontinuous, 
infrequently canopied, S. damnosum s.l.narrow tributary,African, riverine agro-village, 
ecosystem complex,  capture point,  moderate resolution, forecasting, vulnerability  model 
could render important information about the local behavior of f. Further, the function f 
would be geo-spectrotemporally geospatially quantifiable in the neighborhood of an eco-
georeferencable,  capture  point x  employing an inverse function that is differentiable if and 
only if the Jacobian determinant is nonzero at x. The Jacobian determinant occurs also when 
changing regressands in multi-variable integrals. If m = 1 in the S. damnosum s.l. model, f is a 
scalar field and the Jacobian matrix would be reduced to a row vector of partial derivatives of 
f (i.e. the gradient of f). 

        In this case, the theorem gives a formula for the Jacobian matrix of the inverse. There 
are also versions of the inverse function theorem for complex holomorphic functions in 
SAS/GIS for constructing differentiable, S. damnsoum s.l., capture point, immature habitat 
maps between manifolds, for quantitating differentiable functions between Banach spaces, 
and so forth. In mathematics, more specifically in functional analysis, a Banach space (is a 
complete normed vector space[24]. Given a complex-valued function f of a single complex 
eco-georeferenceable, eco-epidemiological, seasonally hyperproductive narrow tributary, 
African, agro-village complex, ecosystem,  S. damnsoum s.l., capture point, trailing 
vegetation, discontinuous, infrequently canopied,sparsely shaded, turbid water, immature 
habitat, moderate resolution, uncoalesced, wavelength, tranmittance, emissivity variable, the 

derivative of f at a point z0 in its domain is defined by the limit  In so 
doing, fluorescence effects for non-constant, leaf chlorophyll pigment, seasonal  levels in S. 
damnsoum s.l., immature, hyperproductive, eco-georefernced, capture points, may be 
suggested, through model simulation employing moderate resolution, geometrical  optical 
indices.   

The chlorophyll content in leaves is potentially one of the most important indicators 
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of vegetation strain in seasonally hyperproductive,eco-georferenceable, S. damnosum s.l. 
narrow tributary, African, agro-village complex, ecosystem trailing vegetation, discontinuous, 
infrequently canopied,sparsely shaded, turbid water,capture point[22]. The total chlorophyll 
content in leaves decreases in stressed vegetation geoclassifiable LULCs, changing the 
proportion of light-absorbing pigments and leading to less overall absorption. The absorption 
of electromagnetic radiation by this pigment varies with the wavelength, with strong 
absorption in the blue (400–500 nm) and red (600–700 nm) portions of the visible spectrum 
and relatively less absorption in the green (500–600 nm) portion[24]. Differences in 
reflectance between healthy and stressed vegetation due to changes in pigment levels may be 
detected in the green peak and along the red edge (690–750 nm) in an eco-georefernceable, 
seasonally hyperproductive, S. damnosum s.l.capture point. Thus tracking fluorescence 
signals independent of pigment levels  employing an iteratively interpolated, geo-
spectrotemporally uncoalesced, moderate resolution, eco-georferenceable, S. damnosum s.l., 
capture points proxy LULC biosignature in SAS/GIS may  optimally geolocalize, , remotely 
illusive  discontinuous canopy gaps where the bidirectional reflectance effects of canopy 
architecture and combined  variations in leaf pigment and fluorescence are possible in a 
seasonally hypeproductive, explanative, trailing vegetation, turbid water, discontinuous, 
infrequently canopied,sparsely shaded, immature habitats  as well as potentially confounding 
issues related to atmospheric correction 

Such estimates may arise from a generalization of the following classical result 
whereby each convex function is the upper envelop of its affine minorants in a heursitically 
optimizable dataset of  narrow tributary, African, agro-village, trailing vegetation, 
discontinuous,infrequently canopied, turbid water S. damnsoum s.l. eco-georeferenceable, 
capture points, geo-spectrotemporally uncoalesced,  wavelength, tranmittance frequencies..  
In the theory of integral and differential equations, a majorant (minorant) or majorant 
function (minorant function) for some function  f is a continuous function whose Dini 
derivative at each point  (e.g., eco-georeferenceable, eco-epidemiological, seasonally 
hyperproductive, capture point) is not less (not greater) than f(t)  and is different from −∞  to 
+∞ . The upper right-hand Dini derivative Λ α.  Λα is definable in Calculus 
Methode/MapServerTM to be the limes superior of the quotient (f(x1)−f(x))/(x1−x) 
(f(x1)−f(x))/(x1−x) as x 1 →x x1→x, where x 1 >x. The lower right-hand λα, the upper left-
hand Λ g , and the lower left-hand Dini derivative λg are defined analogously. If Λ α =λ α  
(i.e., Λ g =λ g  ), then f would have at the point x, a one-sided Dini derivative.The difference 
between any majorant and any minorant is a non-decreasing function[24]. Any elucidatively 
summable, eco-georeferenceable,  eco-epidemiological, seasonally hyperproductive, S. 
damnsoum s.l.  narrow tributary, African, agro-village complex, trailing vegetation, 
discontinuous, infrequently canopied,sparsely shaded, turbid water capture point quantized 
function on an interval would optimally have a dataset of absolutely-continuous majorants 
and minorants which are arbitrarily close to its indefinite Lebesgue integral.  

The integral of a non-negative function can be regarded, in the simplest case, as the 
area (e.g., linear quadrant between  an eco-georeferenceable, eco-epidemiological, seasonally 
hyperproductive, trailing vegetation, discontinuous, infrequently canopied,sparsely shaded, 
turbid water S. damnsoum s.l.  narrow tributary, African, agro-village complex, capture 
point,)ArcGIS graph of that function and the x-axis. The Lebesgue integral extends the 
integral to a larger class of functions in Calculus Methode/MapServerTM It also extends the 
domains on which these functions can be defined. For non-negative functions with a smooth 
enough graph—such as continuous functions on closed bounded intervals—the area under the 
curve could be defined as the integral, and computed using approximation techniques on the 
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region by Calculus Methode/MapServerTM -derived heursitically optimizable, seasonally 
hyperproductive, S. damnsoum s.l., eco-georeferenecable polygons. However, as the need to 
consider more irregular functions arises—as a result of the limiting processes of 
mathematical analysis and the mathematical theory of probability—it would became clear 
that more careful approximation techniques for these models may be required to define a 
suitable integral. Also, an ecologst, entomologist or orher researcher may wish to integrate 
residualizable, eco-epidemiological, ecogeoreferenceable, forecasted unknown, un-
geosampled habitats on regression spaces more generalizable than the real line in. Calculus 
Methode/MapServerTM The Lebesgue integral may provide the right abstractions needed to  
conduct an iterative interpolation employing geospectrotemporally uncoalesced, moderate 
resolution, trailing vegation, discontinuous, sporadically canopied,narrow tributary S. 
damnsoum s.l., African, agro-village complex, capture point, proxy, LULC, biogeophysical, 
eco-geophysiological, biosignature variables  in an Calculus Methode/MapServerTM 
cyberenvironment 

A closed proper convex function f is the pointwise supremum of the collection of all 
affine functions h such that h ≤ f [24].In abstract convex analysis in Calculus 
Methode/MapServerTM the requirement of linearity of the minorants may be  dropped, and 
abstract convex functions may be eco-cartographically  illutsratable as the upper envelops of 
some simple minorants, or support functions, which may not necessarily have to be affine 
when modelling uncoalesced moderate resolution, S. damnsoum s.l.capture points. Depending 
on the choice of the support functions, an ecologist, entomologist or other researcher 
optimally may obtain different flavours of abstract convex analysis in an Calculus 
Methode/MapServerTM cyberenvironment, which may  be applicable to  constructing forecast 
vulnerability paradigms. Convex analysis is the branch of mathematics devoted to the study 
of properties of convex functions and convex sets, often with applications in convex 
minimization, a subdomain of optimization theory[24]. In mathematics, computer science and 
operations research, mathematical optimization (alternatively, optimization or mathematical 
programming) is the selection of a best element (with regard to some criteria) from some set 
of available alternatives (http://mathworld.wolfram.com/ html).  

In the simplest case, an optimization problem in an regression-related eco-
georeferenceable, seasonally hyperproductive, trailing vegetation, discontinuous, infrequently 
canopied,sparsely shaded, turbid water S. damnsoum s.l.,  narrow tributary, African, agro-
village complex, biogeophysical, eco-geophysiological,capture point, forecasting 
vulnerability paradigm  consists of maximizing or minimizing a real function by 
systematically choosing input values from within an allowed set and computing the value of 
the function. The generalization of optimization theory and techniques to other formulations 
comprises a large area of applied mathematics [24]. More generally, the  optimization would  
include finding the "best available" geo-predictable,  unbiased dataset of seasonally 
hyperproductive, immature Similium, capture point explicative, count  values of some 
objective function, which in an Calculus Methode/MapServerTM  cyberenvironment could be  
optimally defined by a domain or a set of constraints along with a variety of different types of 
objective functions and different types of domains from other proxy, geoclassifiable, LULC, 
biosignature uncoalesced habitat, heterogeneity metrics and  geoclassifiable, ecophysiological 
bogeophysical, elucidative, variables geo-spectrotemporally geospatially, in African, 
riverine-agro-village narrow tributary terrestrial ecosystems (e.g., non-contiguous, mean 
canopy height. seasonal, diurnal changes  in carbon dynamics  concurrent  xanthophyll 
pigment changes during pre-flooding, absorbed photosynthetically active radiation by trailing  
green vegetation etc). 
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For set-valued geo-spectrotemporally eco-epidemiological, uncoalesced, geosampled 
datasets of biogeophysical, eco-geophysiological, geo-spatialized, heuristically robustifiable, 
orthogonally, explanatively decomposable, expositively fractionizable, frequentistic or non-
frequentistic, seasonally hyperproductive, geoclassifiable, eco-georeferenceable,narrow, 
African, riverine tributary, agro-village complex, S. damnosum s.l. immature habitat,  
iteratively interpolative, proxy,  LULC biosignature,  components maps, the inverse function 
theorem can be generalized to differentiable maps between differentiable manifolds in 
Calculus Methode/MapServerTM. A manifold is a topological space that resembles Euclidean 
space near each sampled point[24].In this context, a  differentiable decomposed, S. 
damnosum s.l. forecast, vulnerability map  can be deduced if the differential of 

,   is a linear isomorphism at an  point P  (e.g., seasonal, explanative, 
eco-georeferenceable, hyperproductive, capture point) in  M. In such circumstances there 
would exist an eco-georeferenceable, narrow, African, riverine tributary, agro-village 
complex, geospatialzed, ecogeorferenceable neighborhood U of P such 
that is a diffeomorphism. In mathematics, a diffeomorphism is an 
isomorphism of smooth manifolds [24]. More precisely, each explicative, eco-
georeferenceable, seasonally hyperproductive, geo-spectrotemporally uncoalesced,  S. 
damnosum s.l capture point,  moderate resolution, fractionalized, endmember, eigenvector 
dataset containing  an n-dimensional manifold in Calculus Methode/MapServerTM would 
have have an elucidatively geo-spatializable neighbourhood that is homeomorphic to the 
Euclidean space of dimension n. A function f: X → Y between two topological spaces (X, TX) 
and (Y, TY) is called a homeomorphism if it has the following bicontinuous  properties:1)f is a 
bijection (one-to-one and onto),2)f is continuous,;and, 3) the inverse function f−1 is 
continuous (f is an open mapping)[24]. 

A Calculus Methode/MapServerTM cyberenvironment can generate invertible 
functions that can map seasonally explicatively eco-georeferenceable, hyperproductive,geo-
spectrotemporally  geoclassifiable, narrow, African, riverine tributary, agro-village complex, 
seasonal, capture point, immature, black-fly habitats of S. damnosum s.l., employing a 
differentiable manifold such that both the function and its inverse are smooth. In so doing, M  
and  N  would  have the same dimension at P in a  forecasting vulnerability paradigm in 
Calculus Methode/MapServerTM. If the derivative of F is an isomorphism at all eco-
georeferenceable  overlaid geosampled, seasonal,  biogeophysical, eco-geophysiological, 
capture points P in M,then the map  F could be  geoclassifiable as a  a local diffeomorphism. 
Let X and Y be differentiable manifolds in Calculus Methode/MapServerTM then a S. 
damnosum s.l., function,  may be a local diffeomorphism, if for each  geo-
spectrotemporally, geosampled, capture  point x in X, there exists an open set U containing x, 
such that is open in Y and is a diffeomorphism. A local diffeomorphism 
may be  a special case of an immersion f from X to Y, where  eco-georeferenceable, moderate 
resolution images of trailing vegation, discontinuous, infrequently canopied, turbid water, 
narrow,  riverine tributary, African, agro-complex, hyperproductive, S. damnsoum s.l. capture 
point,  seasonal, image f(U) of U under f locally has the differentiable structure of a 
submanifold of Y. Then f(U) and X  would have a lower dimension than Y in the optimizable 
moderate resolution, fractionalized, uncoalesced endmember eigenvetcor  datasets. 
Thereafter, Geostatistical Analyst TM may provide a eco-cartographic framework for  
constructing a geo-spatial heuristically elucidatively optimizable, orthogonally explanatively 
decomposable, fractionizable, non-frequentistic, seasonally hyperproductive, geoclassifiable, 
eco-georeferenceable,narrow, African, riverine tributary, agro-village complex, S. damnosum 
s.l. immature t,  proxy LULC biosignature,  iteratively interpolatble components map 
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To minimize or upper-bound  a geospectrotemporal, geospatialized,  S. damnsoum s.l., 
immature habitat, moderate resolution, geo-spectrotemporally uncoalesced wavelength, 
trasnmittance, frequency-oriented,  emissivity tabulated value of a function robustly, an 
ecologist, entomologist or other researcher might minimize or upper-bound the "epsilon-
robust regularization" in Calculus Methode/MapServerTM which may optimal define a 
geometerical, measurement variable from a geo-spectrotemporally  geosampled capture point 
employing the maximum value of the function within an epsilon-radius ( e.g., Euclideanized 
distance from a eco-georeferenceable, hyperproductive, seasonal capture point to an narrow, 
African, tributary, agro-complex . Recently, automatic, data-driven and computationally 
efficient frameworks for extracting networks employing tractography and epsilon 
neighborhoods were proposed in the diffusion tensor imaging (DTI) literature(www.esri.com) 
Regularization of geo-spectrotemrpaolly geosamplable forecastable uncoalesced, iteratively 
interpolative, S. damnosum s.l. moderate resolution, geometerically dieffereential,  
independent variables  may be easy to compute in In so doing, convex quadratics may lead to 
semidefinite eco-cartographic, trailing vegation, discontinuous, infrequently canopied, turbid 
water, narrow,  riverine tributary, African, agro-complex, hyperproductive, S. damnsoum s.l. 
capture point,  representable regularizations. Quadratic programming (QP) is a special type of 
mathematical optimizer in Calculus Methode/MapServerTM for minimizing or maximizing a 
quadratic function of several variables subject to linear constraints 
(http://mathworld.wolfram.com/.html) 

Further, optimally heursitically calculatable moderate resolution, radius measurements 
of an uncertainity fractionalized, endmember, spatially weighted, autoregressive, moderate 
resolution, eigenvector matrix may lead to robustifiable pseudospectral computations. For 
favorable classes of functions,  an ecologist, entomologist or other researcher  may utilize 
regularization or may quantiate Lipschitz in Calculus Methode/MapServerTM around any 
given geo-spectrotemporally geosampled eco-georeferenceable, eco-epidmiological, sparsely 
shaded, seasonally hyperproductive, trailing vegation, discontinuous, infrequently canopied, 
turbid water, narrow, African, agro-village complex, ecosystem, S. damnsoum s.l., immature 
habitats for all small epsilon > 0, even if the original function is nonlipschitz like the spectral 
radius of a explanative, orthogonally decomposed, capture point.  

One favorable class for aiding in iteratively quantitatively interpolating an 
orthogonally decomposable, moderate resolution images of hyperproductive, eco-
georeferenceable, S. damnosum s.l. seasonal, capture point consists of the semi-algebraic 
functions in Map Algebra TM in ArcGIS. Such functions have graphs that are finite unions of 
sets defined by finitely-many polynomial inequalities, and are commonly encountered in 
forecast, vulnerability-oriented,  medical entomological, vector, arthropod-related, 
heuristically robustifiable, immature, seasonal, mapping applications. The pseudospectrum of 
a matrix is the subset of the complex plane consisting of all eigenvalues of complex matrices 
within a distance measured by the operator 2-norm[24] . The operator norm of a linear 

operator is the largest value by which stretches an element of , ( 
http://mathworld.wolfram.com/OperatorNorm.html) In linear algebra, functional analysis, 
and related areas of mathematics, a norm is a function that assigns a strictly positive length or 
size to each vector in a vector space—save for the zero vector, which is assigned a length of 
zero. 

A norm  optimally definable on the space of elucidatively bounded linearizaable  geo-
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spectrotemporally uncoalesced, geospatialized, trailing vegation, discontinuous, infrequently, 
seasonally sparsely shaded, explanatively  hyperproductive, S. damnsoum s.l., capture point, 
moderate resolution, synthetic, orthogoalizable, endmember eigenvector  operators between 
two given normed vector spaces in Calculus Methode/MapServerTM, may render 
explicatively unbiased unknown, un-geosampled, prolific habiats in an eco-georeferenceable,  
narrow, African, riverine tributary, agro-village, complex.  Given a nonderogatory matrix A0, 
for small epsilon > 0 in a eco-epimiological, S. damnosum s.l. , geo-spectrotemrpoal, 
geospatial, moderate resolution, wavelength, frequency-oriented, transmittance, emissivity, 
forecasting, vulnerability model, then the pseudospectrum of any matrix A near A0 in 
Calculus Methode/MapServerTM may consist of compact convex neighborhoods of  
orthogonally decomposable endmember  eigenvalues of A0.Additionally, the dependence of 
each of these neighborhoods on A would be  Lipschitz.  

Commonly a constraint may has to be imposed on  the spatial filters for  
orthogonalization of eigenvector, nonnegative, abundance fractions in the eigenfunction 
decompositional algorithm in ArcGIS.An eco-georeferenceable,  hyperproductive, narrow, 
African, riverine tributary, agro-village, complex, capture point, discontinuous, trailing 
vegetation, sparsely shaded, infrequently canopied, S. damnosum s.l., extracted mixel   may 
be subsequently summed  to one. In order to preserve inherent characteristics of solutions 
corresponding to amounts and fractionalized, reflectance of uncoalesced,  endmember 
orthogonal eigenvector, moderate resolution, proxy, geoclassifiable LULC, biosignature 
wavelength, transmittance emissivity measurements, associated with seasonal geo-
spectrotemporally geosampled, frequency, immature counts, sub-mixel intensities and 
iteratively quantatively interpolative, discontinuous, trailing vegetation, sparsely shaded, 
canopy, bio-chemical pigment concentrations [Chorphyll(Chl)-a], the nonnegativity 
constraints  may have to qualitatively implemented  so as to avoid physically absurd and 
unpredictable results. For technical reasons, the variables of linear programs must always 
take non-negative values (i.e., they must be greater than or equal to zero)[24].  This 
viewpoint has both computational as well as philosophical underpinnings for mapping 
hyperproductive, eco-georeferenceable,  narrow, African, riverine tributary, agro-village, 
complex,  geo-spectrotemporally geosampled, seasonal, capture point,  S. damnosum s.l., 
endmember eigenvectors.  For example, for the sake of interpretation a medical entomologist 
of other experimenter might prefer to determine heuristically explanatively optimizable 
solutions from the same regression space,or a subspace thereof,in a moderate resolution, 
seasonal, eco-georeferenceable,  explanative, capture point, S. damnosum s.l. endmember,  
forecasting, vulnerability model  as that of the input data. Non-negative matrix factorization 
is distinguished from the other methods by its use of non-negativity constraints which 
optimally leads to a parts-based representation in ArcGIS as the constraint is restricted to 
only additive, not subtractive, combinations [25].  

 
Whilest the sum-to-one constraint is easy to utilize, the nonnegativity constraint may 

be  tedious  to implement in an illuminatively expositive, eco-georeferenceable uncoalesced,  
dataset of  geo-spectrotemporally geo-spatialized, ArcGIS-derived, geo-predictive, S. 
damnosum s.l., larval control,  unbiased, mapping variables (e.g., seasonally flooded, 
positively autocorrelated, remotely targeted, hyperproductive, trailing vegetation, sparsely 
shaded, discontinuous, infrequently canopied, narrow, African, riverine tributary, agro-village 
complex, endmember, capture points) since it may result in a set of inequalities and thus 
could only be be solved by futher,  numerical, iterative, algorithms in ArcGIS which may 
induce  erroneous, propogational sub-mixel estimators (e.g., endmember heteroskedastic 
parameters). Thus, special emphasis must be placed on constraints in least squares 
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computations and numerical, non-linear, optimization algorithms in ArcGIS. Techniques 
involving non- negative low-rank matrix and tensor factorizations may have to be 
emphasized in ArcGIS  in order to optimally decorrelate elucidative, geospectrotemporal, 
geospatially measureable, proxy, LULC biosignature, regressionable trends from an empirical 
dataset of heuristically optimizable, explantively, eco-georefernceable, trailing vegetation, 
discontinuous, infrequently canopied, hyperproductive,  narrow, African, riverine tributary, 
ecosystem complex moderate resolution scene. 

 
          Nonnegative Matrix Factorization (NMF) in ArcGIS includes various extensions and 
modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker 
Decompositions (NTD). NMF/NTF and their extensions are increasingly employed as tools 
in signal and image processing in ArcGIS having garnered interest due to their capability to 
provide new insights and relevant information about complex explanatively   quantitable, 
latent relationships in experimentally, heuristically optimizable   fractionalizable, moderate 
resolution proxy, LULC biosignatures. It is suggested in the literature that NMF can provide 
meaningful components with explicative, bio-geophysical and molecular interpretations. For 
example, in ArcGIS bioinformatics, NMF and its extensions have been successfully applied 
to gene expression, sequence analysis, clustering and text mining. As such,  an ecologist, 
entomologist or other researcher may focus on these iterative iterpolative algorithms  when 
employing explicatively eco-georeferenceable, empirically regressed  geo-spectrotemporal 
datasets of uncoalesced, moderate resolution, seasonal, hyperproductive, trailing vegetation, 
turbid water, discontinuous, infrequently canopied, narrow, African, riverine tributary, agro-
village, complex ecosystem, eco-epidemiological, capture point, optimally parameterizable, 
wavelength, transmittance, for eco-cartographically robustifying large-scale frequency-
oriented,  S.damsnoum s.l. forecast, emissivity, regression-related,fractionalized, 
orthogonalizable,  endmember eigenvector, vulnerability models.  
 
     As a nonparametric method, an ArcGIS regression tree algorithm will not assume any a 
priori distribution of  an heuristically optimizable   explanative, moderate resolution,  
ecogeoreferenceable, orthogonally  decomposable, endmember, trailing vegetation,sparsely 
shaded,  discontinuous, infrequently canopied,  space-time eigenvector, filter specifications  
rendered from a geo-spectrotemporal uncoalesced, S. damnosum  s.l. capture point,  forecast, 
vulnerability model. This relaxation of variable distribution assumptions  may enable   
unmixing, endmember algorithms in ArcGIS to be vigorous in dealing with outliers, 
collinearities amongst fractionally uncoalesced, moderate resolution, wavelength, 
transmittance, sub-mixel, heteroskadesticity, and/or distributional frequentistic,error 
structures that might cause problems in parametric geo-spectrotemporal, S. damnosum  s.l. 
capture point eigenvector, forecast, vulnerability  analyses.  

       When constructing explicative, geo-spectrotemporal, quantiatively geo-spatializable, 
fractionalizable, endmember eigenvector, geo-predictive eco-biological mathematical models 
from   moderate resolution, imaged, seasonal hyperproductive,  uncoalesced, narrow, riverine 
tributary, agro-village complex, S. damnsoum s.l., capture point, riverine foci, proxy, LULC 
biosignatures,  one of the tools to describe the robustness of a system to perturbations would 
be a  sensitivity analysis in ArcGIS which would attempt to optimally determine which 
parameter directions (or their combinations) are the most/least sensitive to perturbations and 
eigenvector probabistic  uncertainties, or to errors resulting from experimental parameter 
estimation. Recently, there has been significant progress in ArcGIS in developing sensitivity 
analysis tools for low-dimensional, stochastic processes, eco-epidmeiological, forecast, 
modeling of unmixed, discontinuous, canopy, biochemical reaction variables regressional 
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networks. Some of the non-linear mathematical tools in ArcGIS include log-likelihood 
methods and Girsanov, polynomial chaos finite difference methods and their variants and 
pathwise sensitivity methods (www.esri.com). Existing fractionalized, endmember, 
sensitivity analysis approaches in ArcGIS  can  reveal  precise variances in optimally 
elucidatively regressed datasets of uncoalesced eco-georeferenceable, trailing 
vegetation,sparsely shaded,  discontinuous, infrequently canopied, fractionalized, 
orthogonalized,  space-time  geo-spectrotemporal, S. damnosum  s.l., capture point, 
orthogonal, eigenvector, spatial filter, gradient estimators in high-dimensional,parameter 
space. 

           The aforementioned ArcGIS algorithmic, eigenfunction, endmember decompositional 
regressional analyses  focuses on quantitating  the sensitivity of  uncoalesced, stochastic 
trajectories from moderate resolution, iteratively quantitative,  interpolators for identfying 
unknown, un-geosampled, geospectrotemporally geosampled narrow, African, riverine 
tributary, eco-georeferenceable, S. damnosum s.l., immature capture point, hyperproductive 
habitats. However, as is often the case in ArcGIS stochastic explanative interpolators, 
decorrelated, sub-mixel, temporal probabilty density functions (PDF), are non-Gaussian in 
nonlinear and/or discrete systems. A PDF or continuous random variable, is a function that 
describes the relative likelihood for this random variable to take on a given value [24]. The 
probability of the randomized, S. damnsoum s.l. , reflectance  variable falling within a 
particular range of   frequency-oriented, transmittance, emissivity  values amy be  given by 
the integral of this variable’s density over a  moderate resolution wavelength,range—that is, 
it is given by the area under the density function but above the horizontal axis and between 
the lowest and greatest values of the range. The probability density function is nonnegative 
everywhere, and its integral over the entire space is equal to one [24]. 

            In that latter direction, there is a broad recent literature relying on information theory 
tools, where fractionalized endmember sensitivity is robustly parsimoniously estimated by  
employing the Relative Entropy and the Fisher Information Matrix between PDFs, in ArcGIS 
for providing an optimizable endmember quantification of information loss along different 
parameter perturbations. Entropy is a measure of unpredictability of information content 
[24].The parametric PDF’s structure is known as it is obtained through an entropy 
maximization subject to constraints. An entropy maximization problem is a convex 

optimization problem of the form maximize subject to 
where is the optimization variable, and 

are problem parameters, and  denotes a vector whose components are all 1[24]. 
Quantitating maximum entropy in an explanative  eco-georeferenceable, 
geospectrotemporally geosampled  narrow, African, riverine tributary, S. damnosum s.l., 
immature capture point, hyperproductive habitat, derived from a moderate resolution, 
uncoalesced, proxy LULC signature endmember eigenvector,  forecast-oriented, vulnerability 
model would require qualitatively quantifying prior data or testable information about a 
PDF[22] .  

Knowing the form of the PDF in an ArcGIS geodatabase containing geo-
spectrotemporally  uncoalesed, moderate resolution, seasonally imaged, hyperproductive, 
narrow, African, riverine, immature, S. damnosum s.l., orthogonally decomposable,  
explanative, capture point, immature habitat, count variables parametrically may allow 
estimating the relative entropy for optimally identifying the most sensitive sub-mixel, 
wavelength, transmittance, forecast-oriented, emissivity,  proxy, reflectance, LULC signature,  
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estimator combinations. Further, the pathwise PDFs in ArcGIS may also be known in reaction 
networks when a Linear Noise Approximation (LNA) is employed for identying unknown, 
un-geosampled, unbiased iteratively interpolated, immature habitat estimators. In such 
circumstances  the relative entropy can be explicitly computed allowing for a robust, 
parametric, endmember sensitivity analysis in ArcGIS, for an eco-epidemiological, S. 
damnosum s.l. remotely sensed, orthogonal, spatial filter, synthetic, eigenvector forecastor 
(e.g., sub-canopy topography, canopy height, basal area, stem diameter, canopy height 
profiles, sparsely shaded, canopy cover and biomass waveform data). Complex stochastic 
dynamics of large reaction networks (e.g., spatial Kinetic Monte Carlo algorithms) may 
itearatively quantitatively interpolate  geo-spectrotemporally uncoalesced,  molecular, 
discontinuous, infrequently canopied, proxy, LULC,  seasonal, biosignature dynamics), 
employing explicit formulas for creating optimizable surfaces from sample data using these 
endmember iterative interpolation methods:Inverse distance weighted,Radial-based 
functions,Global and local polynomials, Kriging for exact data and for error-contaminated 
habitat data,Cokriging and Isotropical or anisotropical models  with quantiatable PDFs in 
ArcGIS. 

        An ecologist, entomologist or other medical researcher can address challenges in PDF  
by introducing a new method for iteratively quantitatively interpolating  complex, geo-
spectrotemrpoally uncoalesced, moderate resolution,  stochastic seasonal, hyperproductive,  
S. damnosum s.l.eco-georefernceable, capture point, proxy LULC signature dynamics in 
ArcGIS based on the Relative Entropy Rate (RER) whichmay   provide a measure of the 
sensitivity of the entire heursitically parameterizable, time-series dependent, seasonally 
hyperproductive, trailing vegetation, turbid water, discontinuous, infrequently canopied 
narrow, African, riverine tributary, normalized, agro-village, complex ecosystem, 
wavelength,frequency-oriented, transmittance distribution. Typically, the space of all such 
time-series is referred in probability theory as the “path space” in ArcGIS.  Quantitable  
RERs in ArcGIS  may  optimally measure the loss of explicatively geoclassifiable, proxy 
LULC signature information per unit time in path space after an arbitrary perturbation of 
parameterized elucidatively, eco-georeferenceable, seasonally explicative, hypeproductive, 
turbid water, S. damnosum s.l. eco-epidemiological, ago-village complex riverine tribuary, 
capture point, covariance weightage combinations.  

Relative Entropy Rate and the corresponding Fisher Information Matrix (FIM) in 
ArcGIS has become computationally feasible as they admit explicit formulas which may 
depend only on the propensity functions, for example,  in a S. geo-spectrotemporally 
uncoalesced S.damnsoum s.l. wavelength, frequency-oriented, transmittance, emissivity, 
moderate resolution, dataset. It may be robustly shown that the proposed geo-
spectrotemporal, pathwise approach to  an expositorily  fractionalized,  endmember 
eigenvector  uncertainty sensitivity analysis  in ArcGIS for an optimally imaged,moderate 
resolution eco-georeferenceable, seasonally hypeproductive, turbid 
water,disocntinuous,infrequently canopied, sparsely shaded,  S. damnosum s.l. eco-
epidemiological, explicative, capture point,  has the following features: First, it is rigorously 
valid for the sensitivity of long-time, stationary dynamics in path space, including for 
example, bistable, periodic and pulse-like, geoclassifiable  changing proxy LULC, signature, 
unbiased, uncoalesced, bi-directional, iteratively quantitative interpolative  dynamics. 
Second, it is a gradient-free eco-georeferenceable, fractionalized, endmember sensitivity 
analysis method suitable for high-dimensional eigenvector, parameter spaces as the ones 
typically arising in complex biochemical networks. Third, the RER method does not require 
the explicit knowledge of the equilibrium PDFs, relying only on information for local, 
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uncoalesced, geo-spectrotemporal, proxy, LULC signature dynamics, thus making it suitable 
for non-equilibrium steady state systems such as seasonally hyperproductive, S. damnosum 
s.l.,  capture point, hyperendemeic, riverine foci.    

Applying the pathwise sensitivity analysis method to  a explicatively  quantitatable,  
heursitically optimizable, geo-spectrotemporally uncoalesced, empirical  datasets of 
geospatially geosampled  eco-georeferenceable, S. damnosum s.l. ,narrow, African, riverine 
tributary, immature capture point, discontinuous, infrequently canopied,iteratively 
interpolative,  biochemical reaction networks in  ArcGIS may demonstrate non-
homogeneous, canopy intrinsic sensitivity structures for optimally endmember mapping 
explanatively, remotely discernable non-random networks of  positively autocorrelated, 
hyperproductive, capture point, immature habitats. Such systems may be  typically modeled 
as jump Markov processes in an ArcGIS cyberenvironment employing simulated exact 
algorithms such as the Stochastic Simulation Algorithm (SSA), or by employing 
approximations such as  stochastic Langevin methods and  mean field ODEs, tau-leap. 

       Unbiased stochastic simulation  for elucidatively identifying unknown, un-geosampled, 
eco-georeferenceable, seasonally explanative, hyperproductive, trailing vegetation, 
discontinuous, infrequently canopied, sparsely shaded, S. damnosum s.l. seasonal, capture 
points requires a simulation that traces the evolution of the narrow , African, agro-village 
complex ecosystem, geo-predictive,uendmber variables for capturing randomized moderate 
resolution, endmember  eigenvector probabilities.With  a stochastic moderate resolution eco-
epidemiological, eco-georeferenceable, seasonal, S. damnsoum s.l. geo-spectrotemporally 
uncoalesced,  wavelength, frequency-oriented, emissivity,forecast, vulnerability  model  
projection, a set of random values. Outputs are recorded and the projection is repeated with a 
new set of uncoalesced,  random proxy LULC signature variable values. These steps are 
repeated in ArcGIS until a sufficient amount of data is gathered. In order to determine the 
next event in the stochastic simulation, the rates of all possible immature habitat, seasonal, 
LULC changes to the state of the model are computed, and then ordered in an array. Next, the 
cumulative sum of the array is taken, and the final cell is quantiated to optimally determine 
the number R, where R is the tota forecastedregressed immature productivity rates. This 
cumulative array may be  now modelled in ArcGIS as  a discrete cumulative distribution 
which may be used to choose the next trailing vegetation, discontinuous, infrequently, 
explanatively canopied, sparsely shaded, S. damnosum s.l. seasonal, hypeproductive 
immature count seasonal capture point  by picking a random number z~U(0,R) and choosing 
the first sampleding event, swhere  z is less than the discrete integer rate associated with that 
event In the end, the distribution of the S. damnsoum s.l.model outputs should  reveal the 
most probable endmember eigenvector estimates as well as a frame of iterable interpolative 
expectations regarding what ranges of  geo-spectrotemporal, immature habitat,tabulated 
values the proxy uncoalesced, LULC biosignature variables. 

         A stochastic gradient method in ArcGIS may be based on mini-batch learning. A 
popular way to speed-up optimization algorithms (e.g., k-mean clustering) in ArcGIS 
especially in a parallel setting is via mini-batching, where the incremental update may be 
metaheuristically optimally performed on an average of the subgradients with respect to 
several   sub-mixel, data variables. The gradient computations for each mini-batch can be 
parallelized in ArcGIS, allowing optimization methods to perform faster and more accurately 
in a distributed framework.   Mini-batch algorithms  in ArcGIS may be proposed as a way to 
speed-up stochastic convex optimization  for optimally identifying unknown, un-geosampled, 
eco-georeferenceable, explanatorial, seasonally hyperproductive,  geo-spectrotemporally 
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uncoalesced, moderate resolution, trailing vegetation, discontinuous, infrequently canopied, 
sparsely shaded eco-epidemiological,, S. damnosum s.l. seasonal, capture points. Such 
algorithms can be also improved employing accelerated gradient methods in ArcGIS. A novel 
analysis  in Geospatial Analyst TM may, for example, heuristically optimally define standard 
gradient methods in regression parameter space which  may be suffice  to obtain a significant 
accelerated gradient algorithmic, residually forecastable, vulnerability  model output for 
qualitatively aiding in iteratively quantiatively interpolating   sub-mixel, fractionalized,  
moderate resolution, eco-georeferenceable, geo-spectrotemporal, hyperproductive, capture 
point, seasonal S. damnsoum s.l., immature hypeproductive habitats. It may be shown that a 
mini-batching distributed framework in ArcGIS is capable of attaining asymptotically 
optimal speed-up for generalized, moderate resolution,  endmember eigenvector, 
orthogonally forecastable, vulnerability mapping variables for strategically implementing and 
prioritizing targeted control intervention tactics (e.g., Slash and Clear’ of hyperproductive, S. 
damnosum s.l.immature  habitat based on seasonal immature productivity counts) in  in eco-
georferenceable, hyperendemic, African agro-village,  narrow, riverine tributary, complex 
ecosystems.    In so doing, the stochasticity of the gradient in the explanatively,  probabilistic, 
residualizable, optimal, regression forecasts (e.g., remotely quantized , eco-georeferenceable, 
unknown un-geosampled, hyperproductive, seasonal, S. damnosum s.l capture points)  can be 
mitigated by the injection of Gaussian noise, which may yield the stochastic Langevin 
gradient method; this method can be employed in an ArcGIS/SAS cybereenvironment  for  
optimally conducting  Bayesian (Appendix 1)  posterior sampling for   moderate resolution, 
forecast, vulnerability mapping uncoalescable eco-georeferenceable trailing vegetation, 
turbid water, eco-epidemiological, seasonally hyperproductive, S. damnsoum s.l. immature 
habitats in  narrow African, riverine tributary, eco-georeferenceable ecosystems. 
 

 However, the performance of the stochastic Langevin gradient method for precisely 
iteratively quantitatively interpolating an explanative, eco-georefernceable,  trailing 
vegetation, turbid water, sparsely shaded, seasonally hyperproductive, S. damnosum s.l., eco-
epidemiological, capture point, optimally, depends on the stochastic algorithmic processes 
employed  in ArcGIS for iteratively decorrelating the explanatorial, eco-georefernceable 
fractionalized, heursitically optimizable,frcationizable, endmember, eigenvector  datasets of 
unmixed, sporadically, sparsely shaded, non-homogenously canopied, quantitatable, 
geoclassifiable shifting proxy LULC signature dynamics. Recent studies in endmember 
ArcGIS, mapping have revealed that violating detailed fractionalized, endmember 
eigenvector, geo-spectralizable, geospatial, equilibrium conditions accelerates the 
convergence to a stationary state and reduces the correlation time between eco-geosampling 
frames in forecast, vulnerability paradigms.  

 
The violation of the detailed balance condition in a stochastic gradient Langevin 

method  may demonstrate  previously non-robustifiable, explanatorial, elucidative, iterative 
unquantitable interpolative probabilistic endmember, uncertainties (e.g., conditional standard 
error of the conditional cumulative distribution function derived through indicator kriging ) 
when assessing seasonal, eco-epidemiological, regressional,  capture point estimates of 
elevation.in an ArcGIS, S. damnosum s.l. forecasting vulnerability model.  The adaptive 
explicit-implicit tau-leaping method with automatic tau selection is a exible algorithm in 
ArcGIS for accelerated stochastic simulation of biochemically reacting systems (e.g., 
photosynthetic vegetated, seasonally explicative discontinuous canopy gap). This ArcGIS 
decompositional  algorithm  combines the advantages of different simulation schemes and is 
particularly useful when a elucidative,  iteratively geoclassifiable geo-spatializable ecosystem 
(sparsely shaded, prolific, ecogeoreferenceable,hyperproductive, S. damnosum s.l., capture 
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point,seasonal, proxy, LULC signature, sub-mixel changes and their dynamical behavior over 
time in the sense that it behaves well in some time periods but possesses stiffness (i.e., spatial 
non-stationarity) in other  time periods. However, the ingredients necessary to fully 
understand and implement the algorithm in ArcGIS are spread over several papers and are  
not always consistent in terminology, which considerably hampers and possibly even 
prevents accessibility and widespread practical use  of these algorithms for modeling time 
series,  S. damnosum s.l. immature habitat variables. A streamlined description of the 
algorithm employing a unified terminology and notation may be accomatable in object-based 
technology (e.g., ENVI) introducing significantly simplifed versions of two major 
ingredients, namely the step size selection and the switching mechanism between the sub-
algorithms.  
 
       An algorithm for the numerical computation of so-called algorithmic or consistent 
tangent moduli in finite, multidimensional, regression space in ArcGIS are geo-
spectrotemporally gespatially customizable for optimally conducting endmember uncertainty 
diagnostics on iteratively interpolative, fractionalized, optimally forecastable eco-
epidmiological eco-georeferenceable  datasets of seaosanlly hyperproductive geosampled, 
moderate resolution, optimally imaged, S. damnosum s.l.,     endmember eigenvector, 
regression model, overtly biased estimators. The Tangent Curve COGO tool can add tangent 
curves any time while working with a parcel traverse or a set of construction lines 
(www.esri.com). These moduli can optimally determine the sensitivity of algorithmic 
expressions especially when qualitatively iteratively, quantizing environmental,uncoalesced, 
proxy  LULC signature stresses(e.g., flooded agro-village complex cosystems along  narrow, 
African,  riverine tributary, eco-experimental geolocations,) with respect to seasonally  
intermittently canopied, explanatively geo-classifiable   geo-spectrotemporal, geospatial 
changes in a total deformation. The tangent modulus is the slope of the stress-strain curve at 
any specified stress or strain[24]. Below the proportional limit, the tangent modulus is 
equivalent to Young's modulus which can define the relationship between stress (force per 
unit area) and strain (e.g., proportional deformation) in a material (e.g., geo-
spectrotemporally uncoalesced, intermittently canopied, moderate resolution, trailing 
vegetation, sparsely shaded, discontinuous, optimally fractionalized,moderate resolution, S. 
damnosum s.l., narrow, African ,tributary agro-village   geoclassified, proxy LULC signature 
polygon ) [25]. These material can  serve as iteration operators by application of Newton-type 
solvers in an ArcGIS cyberenvironment  for qualitatively quantitating heuristically 
optimizable, auto-probabilistically regressable,  synthetically fractionizable, endmember 
eigenvector, orthogonalized,   geo-spectrotemporal datasets of   uncoalesceable,  moderate 
resolution, sparsely shaded, seasonally hyperproductive, immature, eco-epidemiological, 
capture point, S. damnosum s.l., trailing vegetation,  immature,  sparsely shaded, capture 
point hyperproductive habitats.  

 
Jacob et al. (26) employed finite-difference derivatives of a first-order integral 

approximation in SAS/GIS for geospectrotemporally procuring explicatively  quantitable 
approximations  with a default dual quasi-newton optimizer and a pseudo-lipschitizian 
property for  robustly parsimoniously eco-geographically geo-predicting inhomogeneous 
explicatively discontinuous, infrequently canopied, seasonally prolific, S. damnosum s.l. 
expositively  fractionalized, trailing vegetation, turbid water, moderate resolution, 
parameterizable, wavelength, frequency-oriented, trasnmittance emissivity, endmember 
eigenvector,  covariate coefficients. The authors verified a successive approximation scheme 
in SAS/GIS. In so doing, the authors found that the pseudo-regularity  of the forecasted data 
induced the same property  with respect to Lipschitzian perturbations in the explanatory, 
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residulized, regressional,  eco-georeferenceable, explanative, geo-spectrotemporal eco-
epidemiological, residual forecasts. Since the the original  eco-epidemiological, S. damnosum 
s.l. map was a proper function in finite dimension, the  characterization of  the  regularity 
properties was optimally  generalized by  directional derivatives in SAS/GIS  which were 
quantiated in terms of an exact penalty function. The resdiualed forecasts revealed that that 
continuousselections of the inverse map played a crucial role for the equivalence of these 
regularities 
 
        The authors in Jacob et al. (26) proposed a Gaussian process in an eigenfunction spatial 
filter decompositionalanalyses in ArcGIS and a spatial Bayesian probabilistic estimation 
matrix in WinBUGS®. for heuristically, hierarchically,  optimizing  expositorily 
fractionalized endmember, probabilistically projected, eigenvector inferences revealed from a 
probabilsiically regressed geo-spectrotemporally uncoalesced, discontinuous, explanative 
dataset of clustering, eco-georeferencable, 5m, imaged narrow tributary, trailing vegetation, 
infrequently canopied, sparsely shaded, hyperproductive, agro-village complex, turbid water, 
immature habitats of S. damnosum,s.l., geospatially geosampled in an agro-village complex 
ecosystem in  Burkina Faso. Because of its sound theoretical foundation in probability theory, 
the Bayesian belief network technology has become, in artificial intelligence, an important 
alternative architecture for reasoning to logic-based architectures (e.g., ArcGIS rule-based 
systems).The methods started each trial of the geosampled, S. damnosum,s.l., immature 
habitat simulation by instantiating the source nodes (i.e., nodes with no predecessors) and 
then proceeded forward along the diagram arcs in WinBUGS® to instantiate each downstream 
node in turn. Because the ArcGIS iterated values from one trial to the next were unrelated in 
WinBUGS®, the trials were deemed independent. Since the S. damnosum s.l., capture point, 
Bayesianized paradigm was driven by the prior probabilities of upstream nodes, rather than 
just the likelihood of the observed evidence, forward-simulation methods converged slowly 
when faced with quantiating characteristics of low-likelihood evidential paramters (e.g., low 
prior likelihood of explicative, riffle water variables) parameterizable covariate coefficients. 
Because of the way samples depend on the current instantiation, stochastic-simulation 
methods as a group are inefficient when there are deterministic or quantitatively, near-
deterministic relationships in a network when   forecast vulnerability modeling narrow 
African, tributary,S. damnosum s.l.  trailing vegetation, infrequently canopied, agro-village 
complex, turbid water, immature, capture point,  seasonal, hyperproductive habitats[22]. The 
authors intention was to simulate optimally, elucidatively unbiased, endemic. transmission-
oriented, explanatorial, sub-mixel, fractionalized, geo-spectrotemporally uncoalesceable, 
explanative, moderate resolution, wavelength, trailing vegetation, and riffle water  
transmittance emissivities based on geospatially explanative quantized aggregations of 
seasonally geosampled narrow, riverine, tributary, agro-village, complex, ecosystem,  eco-
georeferenceable, capture points within an eco-epidemiological, African, agro-village, study 
site by introducing a latent variable within a non-linear, frequency-oriented, autoregressive 
,endmember eigenvector, emissivity equation. 
 

The Wishart probability distribution of the sample covariance matrix was 
subsequently  optimally  quantitated by employing models generated in PROC NL MIXED 
and SAS/GIS into probability distributions of eigenvalues and eigenvectors in order to 
calculate multiple, seasonal, Bayesianistic, error, estimation, forecasting vulnerability  
models employing the empirically regressable,  geo-spectrotemporally geosampled, eco-
georeferenceable, empirical, S. damnosum s.l. orthogonal data. In statistics, the Wishart 
distribution is a generalization to multiple dimensions of the chi-squared distribution, or, in 
the case of non-integer degrees of freedom, of the gamma distribution [25]. 
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The Wishart distribution was optimally defined over symmetric, nonnegative-definite, 

matrix-valued, random matrices. These probability distributions were of  great importance in 
the estimation of  the covariance matrices in the fractionalized, endmember eigenvector, 
heuristically optimizable, iterative  dataset of the  multivariate,  moderate resolution,  geo-
spectrotemporally, orthogonalized, synthetic, vulnerability-oriented,seasonal,  eco-
georeferenceable, hyperproductive, immature habitat forecastors. The qualitatively 
quantitated, geo-spectrotemporally uncoalesced, optimally fractionalized, endmember 
eigenvectors synthesized from  the eco-georefernceable, S. damnsoum s.l., 
hyperproductive,capture point, immature habitat, seasonal, eco-epidemiological, capture 
points was robustifiable since  the conjugate prior of the inverse covariance-matrix from the  
multivariate, explanatively normalized,  random-vector was quantitable.Unknown, un-
geosampled, prolific, capture point, seasonal immature, eco-georeferenceable, explanative, 
hypeproductive, capture point, immature habitats were  optimally identified  employing the   
iterative interpolative, simulation algorithm. 

 
 In Bayesian probability theory, if the posterior distributions p(θ|x) are in the same 

family as the prior probability distribution p(θ), the prior and posterior are then called 
conjugate distributions, and the prior is called a conjugate prior for the likelihood 
function[24].In probability theory and statistics, the multivariate normalized distribution or 
multivariate Gaussian distribution, is a generalization of the one-dimensional (i.e., univariate) 
normal distribution to higher dimensions[25]. One possible definition  that may be 
parsimonioulsy qualitatively quantitated in a robustifiable,  S. damnsoum s.l., moderate 
resolution, uncoalesced, empriical dataset of  orthogonally decomposable, elucidative, 
wavelength, transmittance, forecastable, vulnerability model paramterizable moderate 
resolution, covariate estimators, is that a endmember random vector  may be be k-variate 
normally distributed if every linearizable combination of its k components (e.g.,  unmixed, 
trailing vegetation, discontinuous, sparsely shaded, partailly canopied, geospectral 
explanatorial covariance weights)  has a univariate normal distribution 
       
            In Jacob et al. [26], the authors also iteratively generated a semiparametric spatial 
filtering approach in SAS/GIS to deal explicitly with probabilistically residually forecasted 
uncertainties in the explicative, S. damnosum s.l. endmember, immature habitat, seasonally 
hyperproductive, trailing vegetation, discontinuous, infrequently canopied,  sparsely  shaded, 
capture point, randomly distributed, forecast, vulnerability  model by reducing the number of 
uncoalesed geo-spectrotemporal radiance  parameters employing spatially lagged 
autoregressive  matrices and simultaneous autoregressive geo-spatialized  paradigms. 
Residual estimates from the off-diagonal elements of a covariance matrix were optimally 
rendered from the spatial filter, fractionalized endmember, eigenevector analysis prior to 
exporting the geo-spectrotemporally geosampled,  immature, capture point, optimally 
parameterizable geospatialized, covariate coefficients  into the  Bayesian estimation 
probabilistic matrix employing WinBUGS®. A backward simulation method was conducted 
for approximating probabilistic inferences from the geosampled data. The method was 
closely related to forward-simulation methods, but was not susceptible to slow convergence 
in the presence of any deterministic endmember quantitated relationships. Fortunately, the 
method was not susceptible to slow convergence due to the presence of highly-likelihood 
evidence estimators Median parameter values, as well as the 95% credibility intervals (2.5 
percentile and 97.5 percentile values), were parsimoniously rendered in the latent, forecasted 
autoregressive, endemic, transmission-oriented,  optimally parameterizable, regressor dataset. 
As the eco-georeferenceable, narrow, tributrary agro-village complex, riverine, S. damnosum 
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s.l., hyperproductive, capture point, geo-sampled sites increased based on the explanatorial, 
geospatialized covariate Percent of trailing vegetation, the median log-count of immatures 
increased. The adjusted geo-spectrotemporal model quantized the independence amongst the 
explicative eco-georeferenceable, time series dependent, field and remote, elucidatively 
geosampled endemic, transmission-oriented, expositive proxy, LULC biosignature covariates 
eco-geographically representing the seasonal immature counts. The authors noted that the this 
model fit better that the model that adjusted for correlation within the eco-epidemiological, 
agro-village, narrow tributary, agro-village,study site based on the  root means squre error. 
 

The authors in Jacob et al. [26] proved that that, if X, Y are finite,-multi-dimensional 
real linear spaces and F : X → 2Y is a multifunction that has the pseudo-Lipschitz property at 
an eco-georefernceable,  seasonal, immature habitat, hyperproductive, trailing vegation, tubid 
water, discontinuous, partially canopied, sparsely shaded, narrow, tributary, agro-village 
complex, Similium capture point   (x0, y0) ∈ Graph(F) in ArcGIS. Essentialy according to the 
authors, for every ε > 0 there existed a Lipschitz multifunction Vε: N(ε) → 2Y . These  
explanatorily decomposable  variables could  be orthogonally robustly defined for an eco-
georeferenceable, hyperproductive, eco-epidemiological,  capture point,   complex 
neighborhood N(ε) of x0, such that (i) Vε has compact convex values, (ii) Vε(x0)  = {y0}, and 
(iii) for every x ∈ N(ε), Vε(x) was a subset of the convex hull co(Fε(x)) of the intersection 
Fε(x) of F(x) with the closed ε-ball centered at y0. In mathematics, the convex hull or convex 
envelope of a set X of points ( eco-georeferenceable, S. damnosum s.l. narrow African, ago-
village riverine, tributary complex, immature habitats) in the Euclidean plane or Euclidean 
space is the smallest convex set that contains X.[24] In particular, this implied the existence 
of an elucidative,  Lipschitz, single-valued selection fε of co(Fε) near x0 satisfying fε(x0) = y0. 
Lipschitz continuity, is a strong form of uniform continuity for the computed , S. damnosum 
s.l. habitat  functions. In so doing, multiple geo-spectrotemporal, moderate resolution, 
uncoalesced, bio-geophysical foreastable explanators for unknowns, un-geosampled, 
hyperproductive, explanative, trailing vegetation, discontinuous, infrequently canopied, S. 
damnosum s.l. capture point, immature habitats were parsimoniously accomadated in a 
stochastic iterative interpolator.   

 
The underlying concept of the numerical computation in ArcGIS is a perturbation 

technique based on a forward difference approximation which may reduce the computation of 
the tangent moduli in an explanative, eco-georeferenceable, seasonally explanative, 
hyperproductive, S. damnosum s.l. moderate resolution, eco-epidemiological, geo-
spectrotemporal, uncoalesced, wavelength, transmittance,geospatial,autoregressive, forecast-
oriented, vulnerability paradigm.  A multiple, endmember eigenvector  stress computation in 
an AcGIS geodatabase may also precisely iteratively quantitate,iteratively interpolatable 
probabilistically   regressable  datasets of uncoalesced S. damnosum s.l.,  moderate resolution, 
trailing vegetation, turbid water, eco-georeferenceable, discontinuous, infrequently canopied, 
unbiased explanatorial estimators, for optimally identifying unknown, un-geosampled, 
hyperproductive,  narrow riverine, tributary, agro-village, ecosystem, eco-
epidemiological,capture point, immature habitats. The iterative, interpolative, sub-algorithmic 
procedure is material-independent and may be optimally outlined for a Lagrangian in a 
fractionalized, moderate resolution, S. damnosum s.l. endmember, eigenvector, moderate 
resolution, forecast-oriented, vulnerability model. A mathematical function called the 
Lagrangian is a function of the generalized coordinates, their time derivatives, and time, and 
contains the information about the dynamics of the system [24]. 
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   An sub-algorithmic procedure for qualitatively quantitating a fractionalized,  
endmember eigenvector,  material-independent,  Eulerian framework may be optimally 
constructed  in ArcGIS  for geometrically processing explanative,  seasonally, 
hyperproductive, eco-georeferenceable, S. damnosum s.l. capture point,  trailing vegetation, 
turbid water, immature, habitat surfaces and their intermittently canopied, discontinuous 
foliations. The leaves of a foliation consist of integrable subbundles of the tangent bundle in 
differential geometry [24].  

        The tangent bundle of a differentiable manifold is a manifold  , which assembles 
all the tangent vectors in [25].The tangent bundle comes equipped with a natural topology 
(not the disjoint union topology) and smooth structure so as to make it into a manifold in its 
own right. The dimension of TM is twice the dimension of M. Each tangent space of an n-
dimensional manifold is an n-dimensional vector space. If U is an open contractible subset of 
M, then there is a diffeomorphism from TU to U × Rn which restricts to a linear isomorphism 
from each tangent space TxU to {x} × Rn . As a manifold, however, TM is not always 
diffeomorphic to the product manifold M × Rn. When it is of the form M × Rn, then the 
tangent bundle is said to be trivial.       

Every smooth manifold has a tangent bundle , which consists of the tangent 
space at all points in . Since a tangent space is the set of all tangent vectors to 

at , the tangent bundle is the collection of all tangent vectors, along with the information 
of the point to which they are tangent. The tangent bundle is a 
special case of a vector bundle. As a bundle it has bundle rank , where is the dimension of 

. A coordinate chart on provides a trivialization for . In the coordinates, ), 
the vector fields , where , span the tangent vectors at every point (in the 
coordinate chart). The transition function from these coordinates to another set of coordinates 
is given by the Jacobian of the coordinate change. For example, on the unit sphere, at the 
point there are two different coordinate charts defined on the same hemisphere, 

an , 

with 
and . The map between the coordinate 

charts is .  

           The Jacobian of is given by the matrix-valued function 

which has determinant and so is invertible on . The 
tangent vectors transform by the Jacobian. At the point in , a tangent vector 
corresponds to the tangent vector at in . Given a set of equations in  

variables , ..., , written explicitly as or more explicitly as  
These two are just different versions of the same element of the tangent bundle.  

          In topology, a branch of mathematics, a topological manifold is a topological space 
(which may also be a separated space) which locally resembles real n-dimensional space. A 
topological space X is called locally Euclidean if there is a non-negative integer n such that 
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every point in X has a neighborhood which is homeomorphic to the Euclidean space En (or, 
equivalently, to the real n-space Rn, or to some connected open subset of either of two) In the 
mathematical field of topology, a homeomorphism or topological isomorphism or bi 
continuous function is a continuous function between topological spaces that has a 
continuous inverse function[25]. Formally, an isomorphism is bijective morphism[25]. 
Informally, an isomorphism is a map that preserves sets and relations among elements. "  is 
isomorphic to " is written . Unfortunately, this symbol is also used to denote geometric 
congruence. 

           Given a function , its inverse is defined by [25] 
Therefore, and are reflections about the line . In the Wolfram Language, 
inverse functions are represented using InverseFunction[f]. function f from the real numbers 
to the real numbers possesses an inverse as long as it is one-to-one, (i.e. as long as the graph 
of y = f(x) has, for each possible y value only one corresponding x value, and thus passes the 
horizontal line test( (http://mathworld.wolfram.coml). In so doing, the predictive equation y = 
f(x) would optimally define the graph of f, in a S. damnosum s.l. moderate resolution, except 
that the roles of x and y have been reversed. Thus the graph of f −1 from a eco-
georeferenceable, can be obtained from the graph of f by switching the positions of the x and 
y axes. This is equivalent to reflecting the graph across the line y = x. There is a symmetry 
between a function and its inverse. Specifically, if f is an invertible function with domain X 
and range Y, then its inverse f −1 has domain Y and range X, and the inverse of f −1 is the 
original function f. In symbols, for functions f:X→Y and g:Y→X [25].Multiple standardizable 
functions are available for constructing a robust S. damnosum s.l. immature habitat 
geolocation, endmember signature, probabilistic paradigm (see Table 2). 

Table 2. Standard functions and their inverses that may be applicable for a 
decomposable, orthogonal, moderate resolution, trailing vegetation, narrow, African 
riverine, agro-village, hyperproductive, eco-georeferenced, S. damnosum s.l. immature 
habitat. 

Function f(x) Inverse f −1(y) Notes 
x + a y − a  
a − x a − y  
mx y/m  m ≠ 0 
1/x (i.e. x-1) 1/y (i.e. y-1) x, y ≠ 0 
x2 √y (i.e. y1/2) x, y ≥ 0 only 
x3

 

3√y (i.e. y1/3) no restriction on x and y 
xp p√y (i.e. y1/p) x, y ≥ 0 in general, p ≠ 0 
2x lb y y > 0 
ex ln y y > 0 
10x lg y y > 0 
ax loga y y > 0 and a > 0 

 

 As noted by Feynman (1997), the notation is unfortunate because it conflicts with 
the common interpretation of a superscripted quantity as indicating a power, i.e., 
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. It is therefore important to keep in mind that the symbols , , 
etc., refer to the inverse sine, inverse cosine, etc., and not to , , 
when regressively and cartographgically examining S. damnosum s.l. seasonal 
hyperproductive habitats.(see Figure 3) The inverse sine is the multivalued function 

(Zwillinger 1995, p. 465), also denoted (Abramowitz and Stegun 1972, p. 79; 
Harris and Stocker 1998, p. 307; Jeffrey 2000, p. 124), that is the inverse function of the sine. 
The variants (e.g., Bronshtein and Semendyayev, 1997, p. 69) and are 
sometimes used to refer to explicit principal values of the inverse sine, although this 
distinction is not always made (e.g,. Zwillinger 1995, p. 466). The inverse cosine is the 
multivalued function (Zwillinger 1995, p. 465), also denoted (Abramowitz and 
Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; Jeffrey 2000, p. 124),  that is the inverse 
function of the cosine. The variants (e.g., Beyer 1987, p. 141; Bronshtein and 
Semendyayev, 1997, p. 69) and are sometimes used to refer to explicit principal values 
of the inverse cosine, although this distinction is not always made (e.g,. Zwillinger 1995, 
p. 466). 

         A function admits an inverse function (i.e., "  is invertible") iff it is bijective[26]. A 
map is called bijective if it is both injective and surjective. A bijective map is also called a 
bijection. A function admits an inverse (i.e., "  is invertible") iff it is bijective( 
http://mathworld.wolfram.com/Bijective.html). Two sets and are called bijective if there is 
a bijective map from to  [1]. In this sense, "bijective" is a synonym for "equipollent" (or 
"equipotent"). Bijectivity is an equivalence relation on the class of sets.  

 However, inverse functions are commonly defined for elementary functions that are 
multivalued in the complex plane. In such cases, the inverse relation holds on some subset of 
the complex plane but, over the whole plane, either or both parts of the identity 

may fail to  hold. A few examples are illustrated above and in the 
following Table 3 

Table 3: and  for constructing a S. damnosum s.l. forecast vulnerability map 

 

 

 

 

 

 

 

 

    

 

 

 

 

  

 

 

 

 

 

 

      An additional counterintuitive property of  inverse functions for modeling S. damnosum 

s.l. data  is that so the expected identity does 
not hold along the negative real axis. Figure 5 reveal inverse function for elementary 
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functions for constructing a moderate resolution, geo-spectrotemporal,  S. damnosum s.l. 
regression graph ( Figure 5). 

The function f(x)=x2 may or may not be invertible in a eco-georeferenceable, 
hypeproductive, capture point, S. damnosum s.l.  depending on what kinds of numbers are 
being considered (the "domain").If the domain is the geo-spectrotemporally geosampled 
clinical, field or remote dataset then each possible result y (except 0) would corresponds to 
two different starting points in X – one positive and one negative in the oviposition paradigm, 
and so this function would not be invertible: as it is impossible to deduce an input from its 
output. Such a function is called non-injective or information-losing.If the domain of the 
function is restricted to the nonnegative reals then the function is injective and invertible.\[26]  
If f is a function mapping elements of a set X to elements of a set Y,the source, X would be 
the domain of f and the target ( hyerproductive seasaonl S. damnosum s.l. habitat), Y would 
be the codomain. The codomain may contains the range of f as a subset, and would part of the 
definition of f in the probability model, optimaizable, residual forecasts. 

When using codomains, the inverse of a function fx →y in a forecasting vulnerability, 
S. damnosum s.l. oviposition, moderate resolution, model, the estimators may be required to 
have domain  Y and codomain x. In mathematics, an image is the subset of a function's 
codomain which is the output of the function from a subset of its domain[25].Evaluating a 
function at each element of a subset X of the domain, produces a set called the image of X 
under or through the function (http://mathworld.wolfram.com). The inverse image or 
preimage of a particular subset S of the codomain of a function is the set of all elements of 
the domain that map to the members of S. [26].Image and inverse image may also be defined 
for general binary relations in a S. damnosum s.l model, not just functions. 

 For the inverse to be defined on all of Y every element of Ymust lie in the range of 
the function f[ 26].A function with this property is called surjective. The function is surjective 
(onto) if every element of the codomain is mapped to by at least one element of the domain 
(That is, the image and the codomain of the function are equal.) Thus, a function with a 
codomain in a S. damnsoum s.l. forecasting, vulnerability geo-spectrotemporal, geospatial, 
endmember,, narrow African, riverine tributary, trailing vegetaion, turbid water, habitat 
model for targeting prolic, seasaonl, oviposition sites on moderate resolution, geoclassifiable 
LULCs  is invertible if and only if it is both injective (one-to-one) and surjective (See Figure 
7). Such a function may be optiamlly defined as a one-to-one correspondence or a bijection, 
and will have the property that every element y∈ Ycorresponds to exactly one element x ∈ X. 
In mathematics, a bijection, bijective function or one-to-one correspondence is a function 
between the elements of two sets, where each element of one set is paired with exactly one 
element of the other set, and each element of the other set is paired with exactly one element 
of the first set. 

Figure 7. Inverse functions which are defineable for elementary functions that are 
multivalued in a complex plane for remotely quantitating  a  georeferenceable, 
hypeproductive,  seasonal,  S. damnosum s.l. trailing vegetation, turbid water, capture 
point 
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Contrary to current Eulerian methods employable in graphics, ArcGIS employs 
conservative methods and a variational interpretation, offering a unified framework for 
routine surface operations such as smoothing, offsetting, and iterative endmember 
quantitative interpolation. In graph theory, an Eulerian trail (or Eulerian path) is a trail in a 
graph which visits every edge exactly once. By employing discretized S. damnosum s.l. 
immature habitat, capture point,eco-georferenceable,  differential equations the value of the 
unknown, prolific  habitats  at fixed points in space may be qualitatively quanatized . 

 
             Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail which starts and 
ends on the same vertex [24]. Computations may be performed on fixed, orthogonal, grid 
matrices in ArcGIS without recourse to Lagrangian techniques such as triangle meshes, or 
path tracing. In each case, a mathematical function called the Lagrangian is a function of the 
generalized coordinates, their time derivatives, and time, and contains the information about 
the dynamics of the system [http://mathworld.wolfram.com/.html]. In mathematical 
optimization, the method of Lagrange multipliers is a strategy for finding the local maxima 
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and minima of a function subject to equality constraints.For instance consider the 
optimization problem in a S. damnosum s.l. habitat model whose maximize f(x, y) is subject 
to g(x, y) = 0.In such circumstances both f and g  have continuous first partial derivatives. A 
medical entomologist or experimenter can introduce a new variable (λ) called a Lagrange 
multiplier and study the Lagrange function (or Lagrangian) defined bywhere the λ term may 
be either added or subtracted. If f(x0, y0) is a maximum of f(x, y) for the original constrained 
problem, then there exists λ0 such that (x0, y0, λ0) is a stationary point for the Lagrange 
function (stationary points are those points where the partial derivatives oare zero). However, 
not all stationary points yield a solution of the original problem. Thus, the method of 
Lagrange multipliers in a forecast, vulnerability, S. damnosum s.l. habitat model yields a 
necessary condition for optimality in constrained problems. Sufficient conditions for a 
minimum or maximum also exist. 

The method of Lagrange multipliers can be extended to solve problems with multiple 
constraints using a similar argument in a endmember decomposed dataset of eco-
georeferenceable, S. damnosum s.l., trailing vegetation, hyperproductive, seasonal, geo-
spectrotemporally geosampled, in a narrow, African, riverine tributary agro-village complex. 
Consider a paraboloid subject to two line constraints that intersect at a single 
ecogeorferenecable capture point. As the only feasible solution, this point is obviously a 
constrained extremum. However, the level set would not be clearly parallel to either 
constraint instead, it would be  a linear combination of the two constraints' gradients. In the 
case of multiple seasonal, S. damnsoum s.l., eco-georferenceable, moderate resolution, proxy 
signature  LULC oviposition paradigm constraints, employing the method of Lagrange will 
seek  unknown, un-geosampled, prolific capture points not at which the gradient is multiple 
of any single constraint's gradient necessarily, but in which a linear combination of all the 
constraints' gradients are quanatizable. 

 At the core of the approach is the use of the Coarea Formula to express area integrals 
over iso-surfaces as volume integrals. This enables the simultaneous processing of multiple 
isosurfaces in ArcGIS, while a single interface may be eco-cartographically treated as the 
special case of a dense, sparsely shaded, intermittent, moderate resolution, discontinuous 
dataset of canopy foliation, with their uncoalesced, iteratively interpolative, explicatively 
geoclassifiable, proxy, LULC signature, paramterizable covariate, wavelength, frequencies 
Spatial and temporal information on plant functional traits are lacking in ecology,which 
limits our understanding of howplant communities and ecosystems are changing. This 
problemis acute in  remote tropical regions, where information on plant functional traits is 
difficult to ascertain.  

 
Asner et al. (20140 employed  Carnegie Airborne Observatory visible-toshortwave 

infrared (VSWIR) imaging spectroscopy with light detection and ranging (LiDAR) to assess 
the foliar traits of Amazonian and Andean tropical forest canopies. Lidar (also called LIDAR, 
LiDAR, and LADAR) is a surveying method that measures distance to a target by 
illuminating that target with a pulsed laser light, and measuring the reflected pulses with a 
sensor( www.esri.com).The authors  calibrated and validated the retrieval of 15 canopy foliar 
chemicals and leaf mass per area (LMA) across a network of 79 1-hectare field plots using a 
new VSWIRLiDARfusion approach designed to accommodate the enormous scale mismatch 
between field and remote sensingstudies. The results indicate that sparse and highly variable 
field sampling can be integrated with VSWIRLiDARdata to yield demonstrably accurate 
estimates of canopy foliar chemical traits. he lidar abilities to detect subtle topographic 
features such as river terraces and river channel banks, to measure the land-surface elevation 
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beneath the vegetation canopy, to better resolve spatial derivatives of elevation, and to detect 
elevation changes between repeat surveys have enabled many novel studies of the physical 
and chemical processes that shape landscapes (https://en.wikipedia.org/wiki/Lidar)This 
optimization method may be a powerful alternative to conventional geometric representations 
in other software packages for quantitating highly reflective seasonal, hyperproductive, S. 
damnosum s.l., trailing vegetation, narrow, African , riverine tributray, agro-village complex, 
eco-epidemiological, partially canopied, discontinuous, surface-oriented, fractionalized, 
endmember eigenvectos. In so doing,  vulnerability, forecast mapping variables (e.g., 
iteratively unbiasedly, stochastically, kriged estimators) generated in ArcGIS (e.g., 
Geospatial Analyst TM ) may reveal unknown, un-geosampled uncoalesced, moderate 
resolution illuminative,  transmittance emissivities  of hypeporductive seasonal S. damnsousm 
s.l. capture points and their weighted offsetting ( see Figure 8). 
 
Figure 8 A Eulerian, trail-oriented ArcGIS, wavelength, transmittance emissivity graph 
of a moderate resolution IR imaged, hyperproductive within  canopied, geo-
spectrotemporally uncoalesced, S. damnosum s.l. trailing vegetation, eco-
epidemiological, capture point, frequency-oriented, eco-georeferenceable, immature, 
discontinuous oviposition isosurface  
 

 
 
Foliation smoothing of the  forecasted eco-georefernceable, geo-spectrotemporal, 

geospatialized,  discontinuously canopied, trailing vegetation, turbid water, sparsely shaded,  
parameterized variables thereafter can quantaite propagational interpolation probabilistic 
uncertainties. Treating overdispersed erroneous explicative, biophysical, eco-
geophysiological ,radiance covariates may help spatiall adjust erroneous kriging regression  
variables for which the S. damnsoum s.l. capture points interpolated  uncoalesced , proxy 
signature values may be mispecified  employing a  Gaussian process governed by prior 
covariances, as opposed to a piecewise-polynomial spline for optimizing smoothness of the 
fitted  values. In mathematics, a spline is a numeric function that is piecewise-defined by 
polynomial functions, and which possesses a high degree of smoothness at the places where 
the polynomial pieces connect (which are known as nodes). In interpolating problems, spline 
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interpolation is often preferred to polynomial interpolation because it yields similar results to 
interpolating with higher degree polynomials while avoiding instability due to Runge's 
phenomenon In the mathematical field of numerical analysis, Runge's phenomenon is a 
problem of oscillation at the edges of an interval that occurs when using polynomial 
interpolation with polynomials of high degree over a set of equispaced interpolation 
pointsUnder suitable assumptions on the priors, Kriging render s the best linear unbiased 
prediction of the intermediate values. Interpolating methods based on other criteria such as 
smoothness need not always yield the most likely intermediate value [24] 
 

 Above the proportional limit the tangent modulus varies with strain and is most 
accurately found from test data [24]. Consequently, LSMA-based methods  for optimally, 
geo-spectrotemporally, explanatorily  uncoalescing a seasonally hyperproductive, narrow, 
African, tributary, S. damnosum s.l., eco-georefernceable, agro-village complex, 
hyperendemic, foci for facilitating targeted eco-epidemiological, forecast-oriented, 
vulnerability maps for implementing onchocerciasis control startegies [e.g., Intergrated 
Vector Management(IVM)] in narrow African, tributary, agro-village riverine, complex 
ecosystems may be  overtly unconstrained  thus rendering  solutions that do not necessarily 
reflect  true  abundance fractions of  the the partially canopied, unmixed, trailing vegetation, 
or turbid water endmember materials. As such, an LSMA can only be employable for the 
purposes of material detection for optimal discrimination of geoclassified, LULCs of 
explanative, seasonally hyperproductive, moderate resolution, images, immature habitats  but 
not for fractionalized,  sub-mixel,eigenvector, regressor quantitation. 
 

A fully  ArcGIS, constrained least squares (FCLS) linear, spectral mixture analysis 
method may qualitatively  quantitate  empirical datsets of eco-georfernceable,  fractionalized, 
endmember eigenvector materials rendered from an explicative, hyperproductive, geo-
spectrotemporally extractable, seasonally eco-georeferenceable, S. damnosum s.l., capture 
point, immature habitat, moderate resolution  mixel.  Since no closed form can be derived for 
this method, an efficient algorithm in ArcGIS may be alternatively developed to yield optimal 
solutions. In order to further apply the designed algorithm to unknown narrow, African, agro-
village, eco-georeferenceable,  riverine tributary, trailing vegation, intermittently canopied, 
turbid water, discontinuously canopied, moderate resolution, geoclassifiable LULC,  image 
scenes, a least squares, error (LSE)-based method  in ArcGIS may be  proposed to extend the 
FCLS method in an unsupervised manner. A series of computer simulations and real 
hyperspectral data experiments may be thereafter ideally conducted in ArcGIS (e.g.,  
Geospatial Analyst TM )to demonstrate the  feasibility of the proposed FCLS-LSMA approach 
in material, endmember eigenvector, qualitative quantitation of an orthogonally, 
explicatively, fractionally decomposable, seasonally hyperproductive, eco-epidemiological,  
capture point, S. damnosum s.l., immature, eco-georeferenceable habitat. The recognition that 
mixels of interest for  medically improtant entomological vector arthropods are frequently a 
combination of numerous explanative disparate components (e.g., endmember fractionalized, 
infrequently canopied, trailing vegetation, sub-mixel explicative regressors), introduces a 
need to quantitatively decompose, or “unmix,” infrequently shaded, object mixtures in 
ArcGIS and other software products[25]. 
 

A set of taxonomies that organize and specify iterative algorithms in ArcGIS  and 
Environment for Visualizing Images ENVI [e.g. Spectral Information Divergence (SID),  
Spectral Angle Mapper (SAM)] can hyperspectrally unmix an eco-georefernceable, eco-
epidemiological, robustifiable dataset of  uncoalesced, moderate resolution imaged, 
seasonally hyperproductive, S. damnosum s.l., geo-spectrotemporally geosampled,weighted  
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wavelength,transmittance, frequency-oriented, emissivities of fractionalized, endmember 
eigenvector regressors. The motivation would be to collectively organize and relate viable 
algorithms in  these software packages in order to assess the current state-of-the-art in 
mappable geo-databases in ArcGIS and ENVI to facilitate objective comparisons between 
unmixing methodologies for optimal, iterative interpolation (e.g., co-kriging) of uncoalesced, 
proxy biosignatures  for identifying unknown, eco-georefernceable, seasonally 
hyperproductive, immature Similium habitats  geo-spectrotemporally geosampled in narrow, 
African, riverine tributary, agro-village, complex ecosystems. Subsequently, the eco-
epidemiological, optimally unbiasedly, iteratively interpolatable, vulnerability, elucidative, 
proxy uncoalesced orthogonally decomposed, proxy signature, residual forecasts (e.g., kriged 
eco-georeferenceable targets of Hyperendemic, capture point, agro-village, narrow, tributary, 
riverine foci) would be  qualitatively  diagnostically quantitated for sub-mixel non-
normalites. Mixing models have been widely used to separate the different components of a 
hydrograph, but their effectiveness suffers from endmember autocorrelation [22].  

The Iso Cluster tool employs a modified iterative optimization clustering procedure, 
also known as the migrating means technique. The algorithm separates all cells into the user-
specified number of distinct unimodal groups in the multidimensional space of the input 
bands. This tool is most often used in preparation for unsupervised endmember 
classifications.The iso prefix of the isodata clustering algorithm is an abbreviation for the 
iterative self-organizing way of performing clustering (www.esri.com). This type of  
fractionalized endmember, eco-geographic, hierarchical clustering would employ a process in 
which, during each  iteration, the orthogonally decomposed, moderate resolution imaged, 
seasonally hyperproductive, explanatorial, S. damnosum s.l., geo-spectrotemporally 
uncoalesced,  moderate resolution, weighted, wavelength, transmittance, emissivity, 
frequency-oriented, eigenvector, regressor geo-samples are assigned to existing eco-
georefernceable, cluster centeroids in each intervention or control agro-village complex. In so 
doing, robust new means could be recalculated for every trailing vegation, intermittently 
canopied, turbid water, geoclassifiable, seasonally, explanatorial discontinuously canopied 
LULC class in ArcGIS. It may be advisable to enter a conservatively high number of broad 
geoclassiable, LULCs initially to topographically analyze the S. damnosum s.l., clusters, so as 
to eventually rerun the function with a reduced number of classes. 

            The iso cluster algorithm in ArcGIS employs iterative processes for computing the 
minimum Euclidean distance when assigning each candidate cell to a cluster (www.esri.com). 
The process starts with arbitrary means being assigned by the software, one for each cluster 
(e.g., positive autocorrelated eco-georeferenceable, explanative. hyperproductive, S. 
damnosum s.l., narrow, tributary, agro-village complex, seasonal, turbid water, breeding 
sites). Every cell is assigned to the closest of their geo-spatialized polygonized means thus 
creating eco-cartographic, fractionalizd, variables ( e.g.,  uncoalesced forecastable, sparsely 
shaded, varied, discontinuous canopied, trailing vegetation, endmember eigenvectors) in  
multidimensional attribute space. New means would then be optimally recalculated for each 
cluster based on the attribute distances of the cells that belong to the eco-georferenceable 
cluster after the first iteration. The process is repeatable for optimal endmember radiance 
geoclassification (e.g., riffle water cell being assigned to the closest mean  in an uncoalesced 
dataset of linearizable combinations of   hyperproductive, S. damnosum s.l., habitat IR/red 
ratio, the square root of the IR/red ratio, the IR-red difference, the vegetation index, or the 
transformed, vegetation, LULC proxy biosignatures) in multidimensional attribute space). In 
so doing, new means would be optimally calculatable for each eco-georferenceable, 
explanative,  immature habitat, eco-epidemiological, capture point, based on the membership 
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of cells from the iteration. The number of iterations of the process can be specified through 
Number of iterations coefficient text file (www.esri.com).  

In a seasonally explanative,  eco-epidemiological, hyperproductive, capture point, 
immature, turbid water, sparsely shaded, intermittently canopied, S. damnosum s.l., forecast, 
vulnerability, endmember model this computated value should be large enough to ensure that, 
after running the specified number of iterations, the migration of cells from one  eco-
georeferenceable, African, agro-village, narrow, riverine, tributary  cluster to another is 
minimal. In so doing, all the clusters would be geospatially stablized (mimimal endmember 
random noise) in a moderate resolution scene. When increasing the number of clusters, the 
number of iterations should also increase(www.esri.com). 

          The Edit Signatures tool in ArcGIS is designed to modify an existing seasonally 
hyperproductive, capture point, moderate resolution, S. damnosum s.l. signature file. Most 
frequently, this tool is employed to reduce the number of geoclassifiable, LULC classes in an 
endmember eigenvector, herusitically optimizable, empirical dataset. To determine which  
LULC class proxy signatures should be changed to produce a more accurate geo-
classification of geospatially, ecohydrologically, meandering, flooded, sub-mixel, 
hyperendemic, narrow African, riverine tributary, agro-village complex,immature habitats, 
for example, a tree diagram with the Dendrogram tool in ArcGIS may be employable. 
Dendrogram is a tree diagram frequently used to illustrate the arrangement of geospatial 
clusters produced by hierarchical clustering[24]. An ArcGIS or Math LAB dendrogram tree  
can generate a plot of non-zero autocorrelated, S. damnosum s.l..,   seasonally 
hypeproductive, eco-epidemiological, capture point, immature, turbid water, trailing 
vegetation, partially canopied, eco-georeferenceable, breeding sites in a binary, elucidative, 
cluster tree. A dendrogram consists of many U-shaped lines that connect data points in a 
hierarchical tree(www.esri.com). The height of each U  in explicatively  forecasted, eco-
hydrologic, geo-spectrotemporal, eco-epidemiological, capture point, S. damnosum s.l. 
dendrogram would  represent the explicatively quantitable, Euclideanized, distance 
measurements between any  two elucidatively, geosampled, fractionalized  endmember , eco-
georferenceable, data points [e.g., uncoalesced, intermittently canopied red and IR radiances, 
experimental plot biomass, leaf water content, chlorophyll(chl)- discontinuous gaps etc.]  
being geo-spectrotemporally geospatially connected in finite multidimensional regression 
space. Unfortunately, according to Jacob et al. [22] if there are more than 31 geosampled, 
geospatially optimally parameterizable hyperproductive,  ecogeorefernceable S. damnosum 
s.l., immature  breeding site, fractionalized  endmembers, the dendrogram  would collapse to 
lower discontinuous, canopied branches so that there would be  30 leaf nodes;hence, sub-
mixel autocorrelation would occur in any  uncoalesced photosynthetic variables. As a result, 
some sporadic canopy leaves in the capture point plot may correspond to more than one 
explanatorial, forecasted, geo-spectrotemporally uncoalesced geolocational, proxy 
biosignature, data point.  
        The algorithms employed thus far in the  literature to  geo-spectrotemporally quantitate 
fractionalized  moderate resolution, linearizable, image endmember irradiance abnormalities  
in medical entomological, vector, arthropod-related, immature, habitat capture point,  eco-
epidemiological, forecast, vulnerabity models implicitly or explicitly assume a “convex 
geometry” for all mixing paradigms. In mathematics, convex geometry is the branch of 
geometry studying convex sets, mainly in Euclidean space[25]. In geometry, a two- or three-
dimensional space in which the axioms and postulates of Euclidean geometry apply; also, a 
space in any finite number of dimensions, in which points are designated by coordinates (one 
for each dimension) and the distance between two points is given by a distance formula.  
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        Geometric random walks are maturing into a powerful tool for algorithm designin 
ArcGIS. Their analysis hinges on isoperimetric inequalities for the state space. For all 
partitions of the state space into measurable subsets occurs with a fixed proportion of 
measure. Thus, minimum possible measure of the separating seasonally hyperproductive, 
capture point, moderate resolution, trailing vegetation, turbid water, eco-georefernceable, S. 
damnosum s.l. infrequently canopied,  discontinuous, surface may be quantitated  to 
determine  a convex body K and any partition(e.g.,  S1, S2, S3,). It is known that volume(S3) ≥ 
(2 d(S1,S2)/Diameter(K)) min{volume(S1), volume(S2)} where d(S1,S2) is the smallest distance 
between points in S1 and S2. [25]. While this bound is tight in terms of the diameter, it has 
been conjectured that the coeffient (2/Diameter(K)) may  be replaced by c/√λ where c is an 
absolute constant and λ is the largest eigenvalue of the  a gridded matrix  in rcGIS fro eco-
cartographically illustrating of K, (i.e. E(XXT) for a random geo-spectrotemprolly geosampled 
hyperproductive,  S. damnosum s.l.,  capture point X from K.  

          Another direction ofcurrent ArcGIS research involves a different areas of geometry, 
such as Riemannian manifolds. Consider the following random walk: at S. damnosum s.l. a 
point x on a manifold, where a random point in the unit ball occurs in the tangent space and 
then  to a moderate reolstion, ecogeorfernceable, narrow,  African, riverine tributary, geo-
village ecosystem compled image of this on the manifold. The walk rapidly mixed for any 
manifold may be attributable to a nonnegative curvature in the immature habitat, forecasting, 
vulnerability model.  Even for convex bodies,in the agro-village scene (i.e.,  x), a random 
capture point y could be quantized wmploying  some fixed radius, in the direction of y till y is 
reached or hit the boundary of the body; in the latter case,  the reflected wavelength, 
frequency-oriented habitat point about the tangent at the boundary would  continue till the 
boundaries of the agro-village complex.. Convexity itself leads to new questions, about 
research hypothesis testing iteratively interpolative fractionized endmber eigenvectors from 
moderate resolution uncoalesced, proxy LULC biosignatures for identying un-geosampled, 
unknown seasonally hypeproductive, eco-georfernceable,  S. damnosum s.l. habitats (e.g., can 
quantiating convexity of a compact set in Rn be efficiently testedy testing random low-
dimensional sections of  a trailing vegetation, discontinuous, infrequently canopied, 
hyperproductive, capture point, ecogeorefernceable, S. damnosum s.l. turbid water , immature 
habitat. 

 Probably the most commonly used unmixing methodology is the Boardman 
algorithm which  employs theconvex hull in his analysis of spectrometry data, In 
mathematics, the convex hull or convex envelope of a set X of points in the Euclidean plane 
or Euclidean space is the smallest convex set that contains X. For instance, when X is a 
bounded subset of the plane, the convex hull may be geovisualized as the shape enclosed by a 
band stretched around X {24}. This methodology presents three steps: spectral reduction 
using the Minimum Noise Fraction (MNF) , spatial reduction using the Purity Pixel Index 
(PPI), and an n dimensional visualization [25]. The MNF transform is used to determine the 
inherent dimensionality of image data to segregate noise in the data and to reduce the 
computational requirements for subsequent processing (www.esri.com). The PPI is computed 
by repeatedly projecting n-D scatter plots on a random unit vector. ENVI records the extreme 
pixels in each projection (those pixels that fall onto the ends of the unit vector) and it notes 
the total number of times each mixel is marked as extreme. (www.exelisvis.com). 

  In other disciplines unmixing algoithms have been strategically employed for 
distinguishing geo-spectrotemporal, geo-spatialized, missing eco-georeferenceable 
endmember, moderate resolution,   forecastable, variables in ArcGIS and ENVI. For 
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example, long-term evolutionary dynamics have been approached through fractionalized, 
endmember, quantitative, forecast-related, vulnerabilty analysis of the fossil record, but 
without explicitly taking its incompleteness into account within these software packages. Lu 
et al. (2006) explored the temporal covariance structure of per-genus origination and 
extinction rates for global marine fossil genera throughout the Phanerozoic, both before and 
after corrections for qualitatively quantitating the incompleteness of the fossil record. 
Employing uncorrected data based on Sepkoski’s compendium, the authors found   
significant autocovariance within origination and extinction rates, as well as covariance 
between extinction and origination, not on one, but two, intervals thereby corroborating 
evidence of unexplained temporal gap found by past studies. Sepkoski’s compendia of 
marine fossil families and genera have been central to the analysis of the long-term patterns 
of origination, extinction, and overall diversity of marine animals throughout the 
Phanerozoic. However, these effects vanished when the data were corrected for the 
incompleteness of the fossil record. Instead, the authors observed significant covariance only 
between extinction and origination in the geosampled data immediately following intervals. 
The gap in the response of the biosphere to extinction in the uncorrected fossil record thus 
appeared to be an artifact of the incompleteness of the fossil record, specifically due to 
episodic variation in the probability that taxa  was preserved, on time scales comparable to 
the temporal resolution of Sepkoski’s data. The results indicated that a temporal resolution 
changed in origination and extinction for longer than one interval, except for quantitated 
elevated origination rates immediately after extinction which lasted for more than a single 
interval. Thus, although certain individual cases deviated from the overall pattern, the authors 
found that in general the endmember biosphere’s response to perturbation was immediate 
geologically and usually short-lived. 

An endmember,moderate resolution, orthogonal eigenvector, decompositional, spatial 
filter analyses in ArcGIS may remove any geospatial ambiguity, geo-spectrotemporal 
trepidations or uncommon variance amongst geo-spectrotemrpoally geosampled, 
uncoalescable expositively fractionalized, precisely parameterizable S. damnosum s.l., 
covariate coefficient interaction terms  employing standardized (e.g., Pearson product-
moment correlation coefficient to a univariate series). In probability theory and statistics, 
variance is a non-negative measures of how far a set of discrete integers are spread out [25]. 
Pearson's correlation coefficient is the covariance of the two variables divided by the product 
of their standard deviations. The form of the definition involves a "product moment", that is, 
the mean (i.e., the first moment about the origin) of the product of the mean-adjusted random 
variables; hence the modifier product-moment in the name. The covariance between two 
jointly distributed, real-valued, seasonally explanative, hyperproductive, turbid water, S. 
damnosum s.l., trailing vegetation,  discontinuous, infrequently canopied, sparsely shaded, 
eco-epidemiological, capture point, geo-spectrotemporally uncoalesced empirical datasets of 
explicatively geo-spatialized, capture point, seasonal, immature habitat, randomized variables 
X and Y  geosampled, in a narrow, riverine tributary, African agro-village, complex 
ecosystem with finite second moments  may be  computable in ArcGIS and/or ENVI  
as  where E[X] is the expected value of X, also known as 
the mean of X. By employing the linearity property of expectations, this equation can be 
simplified to 
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In so doing the units of  moderate resolution fractionalized, endmember, S. damnsoum s.l., 
capture point, immature habitat, eco-georeferenceable, decomposable, fractionalized 
eigenvector measurements of the covariance Cov(X, Y) would be  those of X times those of Y. 
By contrast, correlation coefficients of the explanative, eco-georeferenceable, narrow 
African, agro-village, complex ecosystem, prolific, immature habitats would depend on the 
covariance, which would be a dimensionless measure of linear dependence. (i.e.,a normalized 
version of the covariance). Correlation refers to any of a broad class of statistical 
relationships involving dependence, though in common usage it most often refers to the 
extent to which two variables have a linear relationship with each other[25].  

Eigenvector spatial filtering (ESF) may furnish a methodology that accounts for 
dependency in an expositorial, eco-georeferenceable, heuristically optimizable,  eco-
epidemiological, dataset of moderate resolution, sub-mixel, geo-spectrotemporally 
uncoalescable, capture point, seasonal, discontinuous, infrequently canopied, 
hyperproductive, sparsely shaded,  turbid water, trailing vegetation, S. damnosum s.l., 
immature habitat, wavelength transmittance, frequency-oriented, emissivity, correlation 
coefficients in ArcGIS which, may be also explanatively elucidatively quantitable within the 
domain of a spatial autoregressive (SAR) model covariance matrix.  In probability theory and 
statistics, a covariance matrix (also known as dispersion matrix or variance–covariance 
matrix) is a matrix whose element in the i, j position is the covariance between the i th and j th 
elements of a random vector [24].The fundamental idea would be to exploit the orthogonal, 
eigenfunction, endmember decompositional, fractionalized analyses for optimal quantitation 
of an empirical dataset of  eco-georeferenceable, geo-spectrotemporally geospatially 
regressable, heuristically optimizable,  capture point,  S. damnosum s.l., unmixed, seasonally 
hyperproductive, immature habitat, explanatorial, eco-cartographic variables  in ArcGIS, into 
the following three components: trend, spatially structured random component (i.e., spatial 
stochastic signal), and random noise. In so doing, the explicatively decomposed,  spatially 
structured, endmember, discontinously canopied, capture point,  random components from 
both trend and random noise would furnish  sounder statistical inferences whilest 
simultaneously providing optimal geo-visualizations of the elucidatively  geo-
spectrotemporally geosampled, seasonally hyperproductive, S. damnosum s.l. immature 
habitat, illuminatively, optimally  parameterizable unmixed eigenvector, coefficient values in  
finite multidimensional, regression space. In other words, ESF would  optimally employ an 
empirically, geo- robustifiable dataset of explanatively uncoalesced, eco-georeferenceable, 
synthetic, proxy, moderate resolution, fractionalized endmember, proxy signature  variables 
in ArcGIS (e.g., Geostatitscal Analyst TM)  of a seasonally hyperproductive, narrow, African, 
riverine tributary, agro-village complex, capture point, trailing vegetation, turbid water, 
discontinuous, infrequently canopied, agro-village, ecosystem complex, sparsely shaded, eco-
epidemiological, immature habitat, which could then be extracted as orthogonalized 
eigenvectors from a spatial connectivity matrix. In so doing, the eco- geographic geo-
spatialized, eco-georfernceable geo-biophysical objects would be ‘tied’ together in finite 
regression space, thus rendering vectors as control variables within an eigenfunction 
decompositional algorithmic, explanatorial, iterative, interpolative, model specification in 
ArcGIS. These control variables may isolate the stochastic, sub-mixel, explicative, 
dependencies amongst eco-georeferenceable, fractionalized, S. damnosum s.l. immature 
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habitat, moderate resolution, explanatorial, fractionalized eigenvector regressors, thus 
allowing model building to proceed as if the capture point observations were independent.  

 
Because ESF model specification is flexible in ArcGIS, it can be utilized to describe 

geo-spectrotemporal, geo-spatialized, uncoalesced, eco-georeferenceable, sub-mixel, 
fractionalized, S. damnosum s.l., immature habitat, moderate resolution, explanatorial, 
eigenvectors following various types of distributions, including the Gaussian, Poisson, and 
binomial [24]. The binomial distribution applies when there are dichotomous outcomes (e.g., 
logistic regression S. damnosum s.l.., binary, response model where immature productivty 
counts are log-transformed as 0=0 and all density values >1 =1). In probability theory and 
statistics, the Poisson distribution is a discrete probability distribution that expresses the 
probability of a given number of events(e.g.,  eco-geographic  field-geosampled, eco-
georefernceable, narrow, African, ago-village complex, tributary, trailing vegetation, 
discontinuous, infrequently canopied, turbid water, capture point, riverine hyperendemic foci)  
occurring in a fixed interval of time and/or space by assigning a probability to each 
measurable subset of the possible outcomes of a random experiment, survey, or procedure of 
statistical inference,. Examples are found in experiments whose sample space is non-
numerical, where the distribution would be a categorical distribution (e.g.,  fractionlized, 
moderate resolution, endmember eigenvectors eco-cartographically illustrating  eco-
hydrologic, eco-cartographic, hyperproductive, S. damnosum s.l.,  eco-epidemiological, 
capture point, capture point immature habitats,  discontinuoulsy canopied, geo-biophysical, 
sparsely shaded,  trailing vegetation, turbid water, experiments) whose sample space is 
encoded by discrete, elucidative, geo-samplable, expositorial, random variables where the 
distribution can be specified by a probability mass function (PDF)]. In probability theory, 
PDF or density of a continuous random variable, is a function that describes the relative 
likelihood for a random variable to take on a given value.  
      

According to Jacob et al. [22] experiments with sample finite multidimensional 
regression spaces encoded by continuous, explanatively geo-spectrotemporally, expositive, 
trailing vegetation, turbid water, heterogeneously canopied, geoclassifiable LULC, 
randomized variables, can be specified by a PDF. The Gaussian endmember distribution 
applies when the outcome is expressed as a parameterizable covariate coefficient that can 
have a metaheusritically robustifiable, fractionalizable, endmember, sub-mixel, explanatorial 
value. If there are numerous reasons why any particular sub-mixel measurement is different 
than the mean in a probabilistically regressed dataset of eco-georeferenceable, trailing 
vegetation, turbid water, discontinuous, infrequently canopied, agro-village, ecosystem 
complex,seasonally hyperproductive, narrow, African, riverine tributary, agro-village 
complex, sparsely shaded, eco-epidemiological, capture point, S. damnosum s.l. immature 
habitat, orthogonal eigenvectors, the distribution of the fractionalized measurements will tend 
to follow a Gaussian bell-shaped distribution. 

 
Different ESF endmember specifications may be compared with other specifications, 

such as the spatial autoregressive (SAR) paradigms for optimally determing an eco-
epidemiological, eco-georeferenceable, heuristically optimizable, explanatorial, vulnerability 
dataset of fractionalized, geo-spectrotemporally uncoalesced, iteratively, interpolative, 
quantitative geospatial, moderate resolution, wavelength,  transmittance. In so doing, 
foreastable, emissivity, endmember, eigenvector frequencies may be qualitatively  rendered 
from an unmixing algorithm for optimally  eco-cartographically illustrating unknown, un-
geosampled, explanatively, orthgogonally  decomposable, sparsely shaded, discontinuous, 
infrequently canopied, trailing vegetation, capture point, narrow, African, riverine, agro-
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village, tributary complex, seasonally eco-georeferenceable, hyperproductive, S. damnosum 
s.l. habitats in a stochastic or deterministic iterative interpolator in ArcGIS.   

 
Although eigenvector spatial filtering has become more popular in addressing 

fractionalized, endmember autocorrelation latent in eco-georeferenced data in ArcGIS, the 
quality of ESF-based explanators has not been thoroughly investigated for qualitatively, auto-
regressively, probabilistically quantitating an empirical eco-epidemiological, dataset of  geo-
spectrotemporally geosampled, uncoalesceable, moderate resolution, seasonally imaged, S. 
damnosum s.l. narrow, African, riverine, tributary, agro-village, complex ecosystem, 
immature habitat and the capture point’s within, discontinuously canopied, trailing 
vegetation, turbid water, , unmixed probabilistic uncertainties for iteratively, optimally, 
quantitatively interpolating a proxy signature for explanatively eco-cartographically 
identifying  unknown, un-geosampled, seasonal,  hyperproductive habitats. The statistical 
qualities of these ESF-based estimators, including unbiasedness, efficiency, and consistency, 
thus also remain un-explored for aiding in developing and implementing control 
strategies[Integrated Vector Management(IVM)] for onchocerciasis.  Such a quality 
assessment of ESF-based explanatively fractionalized, endmember, canopy surface, 
irradiance, eigenvector estimators may bolster the efficacy of spatial filtering methodologies 
in ArcGIS for optimally identifying  moderate resolution, orthogonally decomposeable sub-
mixel, elucidative, eco-geographical, bio-geophysical, trailing vegetation, sparsely shaded, 
latent, explicatively geo-classifiable, eco-georefernceable, illuminative, LULC descriptors, 
expositively eco-geographically illustrating  seasonal hyperproductive, turbid water, 
positively autocorrelated, capture point, hyperporductive  S. damnosum s.l. habitats, and their 
parameterizable, covariate coefficients estimators. In so doing, robust seasonally 
ecohydrologically, empirically regressed datasets of heuristically optimizable, explanatorial, 
eco-georeferenceable, field-operationizable, eco-epidemiological descriptors (e.g., forecast, 
seasonal, vulnerability maps targeting unknown, un-geosampled, seasonally hyperproductive, 
S. damnosum s.l. capture point, hyperendemic, foci) may be parsimoniously  devised within 
generalizable, gridded, hierarchical, geo-spatialized algorithmic iterative frameworks in  
AUTOREG for optimally  developing and implementing onchocerciasis, larval control  
strategies in  narrow African, riverine tributary, eco-georeferenceable ,agro-village, complex 
ecosystems.  

        Jacob et al. [26] employed the AUTOREG procedure estimates and forecast linear 
regression model outputs for qualitatively quantiating an empirical geo-spectrotemporally, 
geospatialized, time series, seasonally hyperproductive, eco-georeferenceable datset of , 
turbid water, capture point, positively autocorrelated, S. damnosum s.l. habitats, and their 
empirically optimally parameterizable, covariate coefficients estimators geosampled in  pre-
established eco-epidemiological, narrow, riverine tributary, geoclassified LULC  sites in Togo 
. An autoregressive uncertainity probabilisc model  was used to correct for autocorrelation, 
and the generalized autoregressive conditional heteroscedasticity (GARCH) model and its 
variants were used to model and correct for any uncommon variance in the moderate 
resolution derived residual wavelength, transmittance frequency-oriented estimators. The 
AUTOREG procedure offers estimation and forecasting of autoregressive conditional 
heteroscedasticity (ARCH), generalized autoregressive conditional heteroscedasticity 
(GARCH), integrated GARCH (I-GARCH), exponential GARCH (E-GARCH), and 
GARCH-in-mean (GARCH-M) models (http://support.sas.com.) Exact gradients were 
employed for optimal, GARCH-type, model estimation in AUTOREG. ARCH and GARCH 
models were combined with autoregressive models, with explanatorial, moderate resolution, 
remotely sensed, time series, field-operational eluidative, orthogonal regressors. An 
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autoregressive moving average model (ARMA model) was  assumed for quantizing error 
variance. A  GARCH (p, q) model where p was the order of the GARCH terms and q was 
the order of the ARCH terms (i.e.,  )following the  

notation f was optimally geo-spectrotemporally geospatially rendered by 
 where 

When time series 
data are used in endmember regression analysis, often the error term is not independent 
through time. Instead, the errors are serially correlated or autocorrelated. [25]. If the error 
term is autocorrelated in  an endmember, geospectrotemporal, geospatial, decomposable, 
autorgressive, weight matrix,  the efficiency of ordinary least-squares (OLS)optimally 
parameterized  covariate coefficient estimates is adversely affected and standard error 
estimates may be biased.  The SAR model corrected for serial correlation in the S. damnosum 
s.l. SAR model. The AUTOREG procedure fit the autoregressive probabilistic error models 
which coincidentally also fit multiple subset, seasonal, hyperproductive, explanative, S. 
damnosum s.l.-related, autoregressive models. A stepwise autoregression was specified to 
select the autoregressive error model automatically in AUTOREG. 

To diagnose erroneous autocorrelation coefficients, Jacob et al. {xxx} employed the 
AUTOREG procedure to produce an optimizable dataset of generalized Durbin- Watson 
(DW) statistics and their marginal probabilities (see Appendix 2). Exact p-values were 
reported for generalized DW tests for any specified expositively, geoclassifiable geo-
spectrotemporal geosampled, autoregressively, illuminatively parameterizable, clustering, 
trailing vegetation,  narrow, African, riverine tributary, turbid water, seasonal, 
hyperproductive, geo-spectrotemporal, S.  damnosum  s.l., uncoalesced, geoclassifiable 
LULC explanatorial, uncoalesced, iteratively interpolative, covariate coefficients  in the 
model. For models with lagged dependent paramterizable regressors, AUTOREG performed 
the Durbin t-test and the Durbin h-test for the first-order autocorrelation and reported their 
marginal significance levels. 
 

The AUTOREG procedure solved probabilistic uncertainties in the first order-
autocorrelation, S. damnosoum s.l. immature habitat, vulnerability paradigm by augmenting 
the regression model with an autoregressive model for the random errr, thereby accounting 
for the autocorrelation of the errors in the geo-spectrotemporal, geosampled, endmember 
datasets. Instead of the usual regression model, the following autoregressive geo-
spectrotemporal, geospatialized, elucidative, error model was used:  
, and . The notation  
indicated that each  was normally and independently distributed with mean 0 and variance 

. The autoregressive model specified that the output variable was dependent linearly on its 
own previous computed values and on a stochastic term (i.e.,  an imperfectly predictable 
parameterized trailing vegetation, discontinuous, infrequently canopied, covariate interaction 
term); thus the model was in the form of a stochastic difference equation.  

       Stochastic differential equation (SDE) is a differential equation in which one or more of 
the terms is a stochastic process, resulting in a solution which is also a stochastic process. 
SDEs are used to model various phenomena such as unstable stock prices or physical systems 
subject to thermal fluctuations. Typically, SDEs contain a variable which represents random 
white noise that is calculated as the derivative of Brownian motion or the Wiener process.  
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The Wiener process is a continuous-time stochastic process often called standard 
Brownian motion, which is one of the best known Lévy processes (i.e., càdlàg stochastic 
processes with stationary independent increments) which  occurs frequently in pure and 
applied mathematics, economics, quantitative finance, and physic models [25]. However,  
other types of random behaviour  may be regressively quantifiably possible, such as jump 
processes. A jump process is a type of stochastic process that has discrete movements, called 
jumps, rather than small continuous movements [25]. In physical science, SDEs are usually 
written as Langevin equations. In statistical physics, a Langevin equation (Paul Langevin, 
1908) is a stochastic differential equation describing the time evolution of a subset of the 
degrees of freedom.Those forms consist of an ordinary differential equation containing a 
deterministic function and an additional random white noise term. A second form includes the 
Smoluchowski equation or the Fokker-Planck equation. These are partial differential 
equations which describe the time evolution of  PDFs. The third form is the Itô stochastic 
differential equation, which is most frequently used in mathematics and quantitative finance. 
This is similar to the Langevin form, but it is usually written in differential notation. SDEs 
are denoted in two varieties, corresponding to two versions of stochastic calculus. 

Jacob et al [26] used a the Navier–Stokes equation constructed in an ArcGIS 
cyberenvironment to, describe the motion of   a narrow African, riverine, agro-village,eco-
georefernceable complex and its  substances (e.g., trailing vegetation, discontinuous, 
infrequently canopied, turbid water, hyperproductive, eco-epidemiological, capture point, 
hyperproductive, Landsat 7 TM 15m S.damnsoum s.l. immature, clustering habitats for a 
narrow  riverine tributray ,agro-village complex in Togo  .  

The Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) Calibration Parameter 
File (CPF) provided all radiometric and geometric calibration coefficients needed for 
processing of the raw, uncorrected Landsat 7 ETM+ image data for the co-epidemiolgical, 
agro-village.. study site The primary features on Landsat 7 are a panchromatic band with 15 
m spatial resolution, an on-board full aperture solar calibrator, 5% absolute radiometric 
calibration and a thermal IR channel with a four-fold improvement in spatial resolution over 
TM.Landsat 7 collects data in accordance with the World Wide Reference System 2, which 
has catalogued the world’s land mass into 57,784 scenes, each 183 km wide by 170 km long. 
The ETM+ produces approximately 3.8 gigabits of data for each scene. An ETM+ scene has 
an Instantaneous Field Of View (IFOV) of 30 meters x 30 meters in bands 1-5 and 7 while 
band 6 has an IFOV of 60 meters x 60 meters on the ground and the band 8 an IFOV of 15 
meters (http://landsat.gsfc.nasa.gov/) 

   Balance equations arise from applying Newton's second law [25] Newton's second 
law of motion pertains to the behavior of objects for which all existing forces are not 
balanced. The second law states that the acceleration of an object is dependent upon two 
variables - the net force acting upon the object and the mass of the object. Hence, assumed 
they could qualitatively quantiate the narrow riverine eco-georferenceable, explanatorial, 
flow variables. The main difference between Navier–Stokes equation and the simpler Euler 
equations is that Navier–Stokes equations are not conservation equations, but rather a 
dissipative system, in the sense that they cannot be put into the quasilinear homogeneous 
form(e.g., .)  

The incompressible Navier–Stokes equationswith conservative external field is the 
fundamental equation of hydraulics. [25].  The domain for these equations is commonly a 3 
or less euclidean space, for which an orthogonal coordinate reference frame is usually set to 
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explicit the system of scalar partial derivative equations to be solved. In 3D orthogonal 
coordinate systems are 3: Cartesian, cylindrical, and spherical. Expressing the Navier-Stokes 
vector equation in Cartesian coordinates in ArcGIS  is quite straightforward and not much 
influenced by the number of dimensions of the euclidean space employed, and this is the case 
also for the first-order terms (like the variation and convection ones) also in non-cartesian 
orthogonal coordinate systems. But for the higher order terms (the two coming from the 
divergence of the deviatoric stress that distinguish Navier–Stokes equations from Euler 
equations) some tensor calculus is required for deducing an expression in non-cartesian 
orthogonal coordinate systems. 

 Navier–Stokes equations may be useful because they may measure a hyperproductive 
seasaonl S. damnosum s.l. habitat using  the weather, , riverine water flow in a tributray 
around an ecogeorferenceable, agro-village S. damnsoum s.l. oviposition site on a moderate 
resolution LULC. The Navier–Stokes momentum equation may be derived as a particular 
form of the partial differential equation in Calculus Methode/MapServerTM (see Figure 9). A 
first-order PDE for an unknown function is said to be linear if it can be expressed in the 

form The PDE is said to be quasilinear if it can 

be expressed in the form  Quasilinear 
equation, a type of differential equation where the coefficient of the highest order derivative 
does not depend on the derivative of the unknown function A PDE which is neither linear nor 
quasi-linear is said to be nonlinear.For convenience, the symbols , , and are used 
throughout this tutorial to denote the unknown function and its partial derivatives. 

 

 

 

 

 

 

 

Figure 9. Hypothetical, Navier–Stokes differential equations used to simulate  an narrow 
African tributary riverine flow around an turid water, hyperproductive , S. damnosum 
s.l. capture point geosampled  in Togo using a Cauchy momentum equation . 
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      Therefater, an estimation method was used to construct multiple first-order autoregressive 
error matrices using the Yule-Walker (YW) method. The YW method returns normalized 
autoregressive (AR) parameters corresponding to a model of order p for the input array, x. If 
x is a vector, then the output array, a, is a row vector. If x is a matrix, then the parameters 
along the nth row of a model, the nth column of x. a has p + 1 columns. p must be less than 
the number of elements (or rows) of x[25]. The Yule–Walker equations in AUTOREG 
optimally defined the first order autorrelation coefficients in the S. damnsoum s.l. datasets 

employing the following set of equations where 
m = 0, ..., p, yielding p + 1 equations. Here  was the autocovariance function of Xt, was 
the standard deviation of the input noise process, and was the Kronecker delta function. 
In mathematics, the Kronecker is a function of two variables, usually just positive 
integers[25]. The full autocorrelation function was then optimally derived by recursively 
calculating the geo-spectrotemrpoally geospatialized, uncoalesced, S. damnosum s.l., trailing 
vegetation, turbid water, capture point, immature habitat, parameterizable weighted, 
wavelength, frequency-oriented, transmittance, emissivity covariate estimators.  The YW 
equations were γ1 = φ1γ0 + φ2γ−1 and γ2 = φ1γ1 +φ2γ0 when γ−k = γk. The equations 
yielded and the recursion formula rendered in the residual variance.The equations defining 
the AR processes in the models were then optimally defined. 

Thereafter the authors in Jacob et al {26} multiplied both sides by Xt − m and impute 
the expected, immature, habitat, fractionalized, endmember, covariate coefficient, regressed 
values.  They noted that E[XtXt−m] = γm was the autocorrelation function in the S. 
damnosum s.l. model. The values of the noise function in the model was independent on each 
other and Xt − m was independent of εt when m was greater than zero. The autoregressive 
estimates revealed for m >0,E[εtXt − m]=0 in the forecasted  capture point, regression 
residuals. This equation was also rendered when m ≥ 0 Thereafter, the authors  employed  m 
∧ 0.They then let φ represent the vector of the residual elucidatively, optimally 
parameterized, fractionalized, endmember covariate estimators, φ = (φ1,φ2,⋯,φm)′, where 
the variance matrix of the error vector was v = (v1,⋯,vN)′Σ, E(vv Σ=σ2v). If the vector of 
autoregressive parameters φ is known, the matrix v can be computed using regression-based, 
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explanatorial estimators and Σ which can then delineate σ2v[25]. Given Σ the efficient 
estimates of the eco-georeferenceable, capture point, S. damnosum s.l., larval habitat, 
regression parameters, β was computed using a Generalized Linear Square (GLS) algorithm. 
The GLS yielded the unbiased estimate of the variance σ2 in the forecasts. 
 

The calculation of v from for the generalized autorgressive, S. damnosum s.l., larval 
habitat, endmember analyses was complicated as it was completely dependent on the number 
of   geosampled categorical observations in both models. Instead of actually calculating v and 
performing GLS in the usual way, the authors in Jacob et al. [26] used a Kalman filter 
algorithm to transform the geospectrotemporal Landsat 7 TM data and compute the GLS 
results through a recursive process. The Kalman filter, also known as linear quadratic 
estimation, is analgorithm which uses a series of measurements observed over time, 
containing noise (i..e, random variations) and other inaccuracies, which produces estimates of 
unknown variables that tend to be more precise than those that would be based on a single 
measurement alone [24]. The Kalman filter operated recursively on streams of the noisy 
input, narrow, tributary, uncoalesced, immature, riverine habitat, eco-georeferenceable, 
decomposed, iteratively interpolative, 5m data to produce statistically optimizable 
estimators.The Shapiro-Wilk test was then employed to test the null hypothesis that the 
geosampled, riverine habitat illuminative estimators x1,⋯,xn. came from a normally 
distributed population.  
 

The Shapiro–Wilk test utilized the null hypothesis principle to check whether a 
sample x1, ..., xn came from a normally distributed S. damnosum s.l., immature habitat, 

geosampled population. The test statistic employed was  where (with 
parentheses enclosing the subscript index i) was the ith order statistic, (i.e., the ith-smallest 
number in the sample; )was the sample mean;and the constants were 

given by in AUTOREG where  and 
 were the expected values of the order statistics of independent and identically 

distributed random variables geo-spectrotemporally sampled from the standard normal 
distribution, and  was the covariance matrix of those order statistics. 
 

The DW statistics were then employed to determine whether the OLS regression 
estimates indicated significant serial uncertainty correlation with an estimated order of a 
lagged covariance of 1 in the immature habitat,capture point,  forecast,  vulnerability models. 
The AUTOREG procedure corrected for the serial correlation using the YW method. The 
DW statistics indicated that uncertainty correlation was only slightly significant in the YW 
corrected models. The YW estimates for the first-order serial autocorrelation model indicated 
a R2=0.574, F statistics of 37.159. 
 

The elucidative, residualized, weighted, riverine, immature habitat, parameterized 
endmember, covariate estimators were then validated using weighted cumulative models in 
ArcGIS. The approach was implemented following the line of goodness of fit testing. 
Initially, a test statistic employing a cumulative residual formulation was developed which 
was generalized to binary/discrete data with proper link functions. The authors in Jacob et al 
(26) aimed for parsimony and plausibility of the predicted, auto-regressiv,e residualizede, 
intra-cluster-based error estimates. Under the null hypothesis that the outcome was 
independent of the riverine larval habitat data, the authors generated [i.e., (si, ri)], which was 
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conditional on the geosampled data attributes (Xi). The authors assumed that the outcome 
could be verified using where β was a p × 1 vector of the regression-based algorithm. 

 
Collecting data from the expositorily fractionalized, endmember eigenvectors, 

spatially filtered, spectral band datasets of moderate resolution sensor data may demonstrate 
the capability of orthogonally performing spectral unmixing in ArcGIS since  the spatial 
resolution of the sensor may be   sufficient  for illuminating disparate materials in an eco-
georeferenceable, empirically regressable  dataset of uncoalesced, hyperproductive, trailing 
vegetation, turbid water, seasonally explanative, sparsely shaded,  eco-epidemiological, 
narrow, African, riverine tributary,  agro-village, S. damnosum s.l. capture point, immature, 
habitat,  within-canopied objects (e.g.,sedge). Analysis of the sensitivity of absorbed light and 
incident light profile of these discontinuous architectural components and stand conditions 
may reveal ground based estimation of the vertical distribution of moderate resolution, 
trailing vegetation, leaf area density values [22].   These data may jointly occupy a single 
mixel; the resulting spectral measurement may be some composite of the individual, 
fractionalized, geo-spectrotemporally uncoalesceable, immature habitat, endmember 
eigenvector, derivative spectra. Mixels can result when distinct materials are combined into a 
homogeneous mixture[24] 
 

  Another criterion for optimally evaluating the dependence of a expositorial, 
regressable, eco-epidemiological, uncoalesced dataset of moderate resolution,  geo-
spatialized, trailing vegetation, discontinuously canopied, sparsely shaded, seasonally 
hyperproductive,turbid water, S. damnosum s.l.,eco-epidemiological,  capture point, 
iteratively, quantitatively, interpolatively forecastable, sub-mixel, eigenvector explanators  
extracted from an eco-georefernceable, narrow, African, riverine agro-village, complex 
ecosystem,  geo-spectrotemporal signature may be probabilistically imparted in ArcGIS by 
the nugget/sill ratio. This ratio would indicate how much of overall variation is spatially 
random; the larger this ratio, the less spatial dependence would   exist in the geosampled, 
immature habitat, eco-epidemiological dataset. Theoretically, at zero separation distance (lag 
= 0), the semivariogram representing an explanative, eco-georefernceable seasonally 
hyperproductive, S. damnosum s.l., eco-epidemiological, capture point value is 0. In 
geostatistics, the active lag distance specifies the range over which semivariance can be 
computated, which is usually about half of the maximum separation distance. The variogram 
reports the mean semivariance at each lag h - extreme values which can boost this mean. So 
optimizable, seasonally, hyerproductive, orthogonally explanatively decomposable, 
iteratively  interpolative, eco-georeferenceable,  S. damnosum s.l., immature habitat, 
regression, variance values that appear to be extreme in  a forecasting, vulnerability, ArcGIS-
derived, endmember eigenvector, fractionalized, radiance,  model residual output may not 
actually represent uncharacteristic, moderate resolution imaged, discontinuous, infrequently 
canopied,quantitable surface irradiance, uncoalesceable, wavelength, frequency-orinted, 
transmittance, emissivity frequencies.  

On occasion due to  the remotely  infinitesimally small quantitable immature  
Similium habitat, eco-georefernceable, separation distances in an eco-epidemiological,  
prediction, risk map targeting seasonally hyperproductive, hyperendemic narrow, African, 
riverine tributary,discontinuous, infrequently canopied, trailing vegetation, turbid water, 
agro-village foci, this semivariogram may exhibit a nugget effect, which may be eco-
cartographically optimally described  as some value greater than 0 in ArcGIS. For example, if 
an explanative, eco-epidemiological, hyperproductive, narrow, agro-village riverine tributary, 
S. damnosum s.l., eco-epidemiological, capture point, foreasting, vulnerability model 
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semivariogram intercepts the y-axis at 2, then the nugget would be  2. The nugget effect can 
be attributed to measurement errors or spatial sources of variation at Euclidean distances 
smaller than the sampling interval or both. Variation at microscales smaller than the capture 
point sampling distances will appear as part of the nugget effect. Before collecting geo-
spectrotemporally uncoalesced,  S. damnosum s.l. narrow, African, agro-village, riverine 
tributary, hypeproductive,  S. damnosum s.l., eco-georeferenceable, capture points  in ArcGIS 
it is important to gain some understanding of the scales of spatial variation.  
 
       Jacob et al [22] examined the variogram cloud in ArcGIS  which the authors found to be 
a useful qualitative approach to understanding the variability of the semivariance prior of an 
iteratively, explanatively,  quantitatively interpolative geo-spectrotemporally uncoalescable, 
endmember geo-spatializable eco-georeferenceable, dataset of eco-epidemiological, capture 
point,  trailing vegetation, turbid water, discontinuous, infrequently canopied, sparsely 
shaded, hyperproductive, immature habitats geosampled in a nnarrow African riverine 
tributary, agro-village ecosystem in Burkina Faso. The semivariogram/covariance cloud 
allowed examining the spatial autocorrelation between the measured sample points. To do so, 
the  semivariogram value,  was iteratively  interpolatively computed by the authors which 
was subsequently quantitated as the difference squared between the decomposed  values of 
each pair of eco-georefernceable, explanative,  seasonally hyperproductive, S. damnosum s.l., 
immature, trailing vegetation, discontinuous, infrequently canopied, turbid water, eco-
epidemiological, capture point, geosampled, narrow riverine tributary, hyperendemic, 
immature habitat. This data    was subsequently eco-cartographically plotted on the y-axis 
relative to the distance separating each pair on  the X-axis in ArcGIS. (Figure 2). 

 In spatial statistics the theoretical variogram is a function describing the 
degree of spatial dependence of a spatial random field or stochastic process [24]. In 
probability theory, a stochastic endmember process, or often random process, is a collection 
of deomposed random variables (e.g., geospectrotemporally uncoalesced sub-mixel dataset of 
heursitically optimizable, eco-georeferenceable, seasonally hyperproductive, discontinuous, 
sporadically canopied, trailing vegation, turbid water, narrow riverine tribuitary, African, 
agro-vaillge complex ecosystem seasonal capture point)  representing the evolution of some 
system of random values over time. This is the probabilistic counterpart to a deterministic 
process or deterministic system. Instead of describing a process in a seasoanlly geosampled S. 
damnsoum s.l., prolific, immature habitat, forecasting vulnerability paradigm) which can only 
evolve in one way (as in the case, for example, of solutions of an ordinary differential 
equations), in a stochastic, or random sampled immature habitat  process there may be some 
some indeterminacy: even if the initial condition ( immatuyre productive rate) of the seasonal 
capture point  is known, there are several (often infinitely many) directions in which the 
process may evolve in an iteratively interpolated uncoalesced, proxy LULC biosignature  

        In the simple case of discrete time, as opposed to continuous time, a stochastic process is 
a sequence of random variables. (see Markov chain, also known as discrete-time Markov 
chain.) In probability theory, a stochastic process, or often random process, is a collection of 
random variables representing the evolution of some system of random values over time. This 
is the probabilistic counterpart to a deterministic process (or deterministic system)[24].The 
random variables corresponding to various times may be completely different, the only 
requirement being that these different random quantities all take values in the same space 
(e.g., the codomain of the optimizable, eco-georeferenceable, seasonally hyperproductive, 
discontinuous, sporadically canopied, trailing vegation, turbid water, narrow riverine 
tribuitary, African, agro-vaillge complex ecosystem seasonal capture point function). One 
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approach may be to model these random variables as random functions of one or several 
deterministic arguments (in most cases, the time parameter). Although the random values of a 
stochastic process at different times may be independent random variables, in most 
commonly considered situations they exhibit complicated statistical dependence 

          One way to optimally identify geo-spectrotemporal uncoalesced, geospatially 
geosampled, hyperproductive, immature, seasonal, eco-epidemiological, capture point S. 
damnosum s.l. discontinuous, infrequently canopied, sparsely shaded, trailing vegtaion, turbid 
water,immature  habitat  for qualitatively quantitating inflation is to calculate the variance for 
the square root of the absolute value of the differences in ArcGIS using a variogram. The 
variogram is defined as the variance of the difference between field values at two locations 
(  and ) across realizations of the field (Cressie 1993): 

If the spatial random field 
has constant mean , this is equivalent to the expectation for the squared increment of the 
values between locations and  [24] (where and are not coordinates but points in space): 

where itself is called the semivariogram. In the case of a 
stationary process, the variogram and semivariogram can be represented as a function 

of the difference between locations only, by the following 
relation: If the process is furthermore isotropic, then the variogram and 
variogram can be represented by a function of the distance  
where only [24]. Note that the experimental variogram is an empirical 
estimate of the covariance of a Gaussian process. As such, it may not be positive definite and 
hence not directly usable in kriging, without constraints or further processing. This explains 
why only a limited number of variogram models are used: most commonly, the linear, the 
spherical, the Gaussian and the exponential models.  

          PROC VARIOGRAM can use a variety of theoretical semivariogram models. 
Specifically, a list of such models can be used for fitting a dataset of geo-spectrotemporally 
geosampled, moderate resolution, S. damnosum s.l. in the MODEL statement of the 
VARIOGRAM procedure. The VARIOGRAM procedure computes sample or empirical 
measures of spatial continuity for two-dimensional eco-georeferenceable seasonally 
explanatorial,  hyperproductive, S. damnosum s.l., turbid water, trailing vegetation,  capture 
point, geo-spectrotemporally uncoalesced endmember, moderate resolution, orthogonalized 
eigenvector geospatialized, explicatively geosampled empirical, metaheuristically 
optimizable datasets. The continuity measures from theses robustifiable models can render 
the regular semivariogram, a robust version of the semivariogram, and the covariance in 
Geospatial Analyst TM. The continuity measures may be written to an output Similium 
explanatorial, sub-mixel, endmember  dataset, allowing for plotting or parameter estimation 
for theoretical semivariogram or covariance models. Both isotropic and anisotropic measures 
are available. The VARIOGRAM procedure can produce two additional output datasets that 
are useful in the analysis of pairwise immature habitat distances in the original data. The 
OUTPAIR= dataset can contains one geo-spectrotemporally geosampled, observation for 
each pair of capture points. The coordinates, distance, angle, and values of the analysis 
variables may be written to this probabilistic regressable dataset. The OUTDISTANCE= 
dataset will  contains histogram information on the count of  immature habitat pairs within 
explanative distance intervals in a geo-spectrotemporally geosampled, eco-georeferenceable, 
narrow tributary, African riverine, ecosystem which may be also  useful for determining unit 
lag distances. The variogram is the key function in geostatistics as it will be used to fit a 
model of the temporal/spatial correlation of the observed phenomenon [24]. Thus , in 
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actuality, an ecologist, entomologist or other researcher  is making a distinction between the 
experimental variogram that is a geo-visualisation of a possible spatial/temporal correlation  
in  a dataset of empirically regressable geo-spectrotemporal, moderate resolution, iteratively 
interpolative, proxy, geo-spatialized  LULC bsignature endmember eigenvectors and the 
variogram model that may be  further used to define the  uncoalesced trailing vegation, 
discontinuous canopied, sparsely shaded, turbid water, wavelength, transmittance, frequency-
oriented, emissivity weights of the kriging function. Note that the experimental variogram is 
an empirical estimate of the covariance of a Gaussian process. As such, it may not be positive 
definite and hence not directly usable in  kriging uncoalesced, moderate resolution,  
S.damnosum s.l., capture point, proxy, LULC biosignatures without constraints or further 
processing in ArcGIS. This explains why only a limited number of variogram models are 
used: most commonly, the linear, the spherical, the Gaussian and the exponential models for 
geo-predictive eco-epidemiological, forecast, vulnerability  paradigms of this this riverine 
black fly specie ( see Table 4). 

Table 4. Permissable theorectical seasonal ,trailing vegetetation, georeferenceable, 
capture point,  probabilistic, S. damnosum s.l.  oviposition semiovarigrams 

Exponential  

 

Gaussian  

 

Power  
 

Spherical  

 

Cubic  

 

Pentaspherical  

 

Sine hole effect 

 

Matérn class  

 

If the random empirically regressable geo-spectrotemporal, moderate resolution, 
iteratively interpolative, proxy, geo-spatialized  LULC biosignature endmember eigenvector 
trailing vegation, turbid water, discontinuosly canopied, sparsely shaded S. damnosum s.l. 
seasonal,  hypeproductive geosampled capture point,forecast variable X represents samples 
generated by a elucidative continuous distribution with probability density function f(x), then 
the tabulated, optimizable  population variance may be  given 
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b where is the expected narrow 

tributray, African agro-village, immature habitat, count  value, and where the 
integrals are definite integrals taken for x ranging over the fractionalized, endmember 

eiegenvector , wavelength, range of X. A definite integral is an integral with upper 
and lower limits. If is restricted to lie on the real line, the definite, moderate resolution, eco-
georferenceable, explanative transmittance, frequency-oriented, emissity, integral is known as 
a Riemann integral (which is the usual definition encountered in elementary textbooks). An 
integral is a mathematical object that can be interpreted as an area or a generalization of area. 
Integrals, together with derivatives, are the fundamental objects of calculus.However, a 
general definite integral is taken in the complex plane, resulting in the contour integral 

with , , and in general being complex numbers and the path of integration from 
to known as a contour. The first fundamental theorem of calculus allows definite integrals 

to be computed in terms of indefinite integrals, since if is the indefinite integral for a 

continuous function , then [24]. 

 In its most general form, under some conditions (which include finite variance), it 
states that averages of random variables independently drawn from independent distributions 
converge in distribution to the normal, that is, become normally distributed when the number 
of random variables is sufficiently large[http://mathworld.wolfram.com/]. Distributions with 
infinite variance are heavy-tailed; there are lots of outliers, and can have unusal properties 
[e.g.,  the sample mean of samples drawn from a Cauchy,  hyperproductive,seasonal,  S. 
damnosum s.l., immature capture point, uncoalesced geo-spectrotemporal distribution has the 
same (Cauchy) distribution as the individual geospatialized geosampled samples]. This is 
quite different from the usual belief that the sample mean is a better "estimator" than any 
individual, immature, trailing vegtaion, turbid water, discontinuously canopied, narrow, 
tributary, African agro-village, eco-georefrenceable, complex ecosystem, immature habitat, 
explanatory sample. Suppose that Xn, n ∈ ℕ+ and X are real-valued eco-georferenceable, 
operationizable, randomly unmixed, empirically, probabilistically regressable,  e moderate 
resolution, geo-spectrotemporal, geo-spatialized, proxy, LULC signature endmember 
eigenvector, S. damnosum s.l. seasonally  hypeproductive, geosampled capture point,forecast-
oriented variable with biophysical, eco-physiological, explicative unmixed, distribution 
functions Fn, n ∈ ℕ+ and F,respectively. Then the geo-spectrotemporally geosampled, sub-
mixel, trailing vegetation, turbid water, discontinuously canopied, sparsely shaded, regressed 
moderate reoslution, wavelength, distribution of Xn may converge to the distribution of X as 
n → ∞ if Fn( x) → F( x) as n → ∞ for all x at which F is continuous. 

 
By graphing the boxplot and looking for extreme transmittance frequency-oriented, 

emissity  values in Geospatial Analyst TM , Jacob et al. [26] quantitated the complexity of an 
empirically, elucidative, metaheuristically optimizable, probabilistically regressable dataset 
of  explanative, orthogonally decomposeable, moderate resolution, eco-georeferenceable, 
hyperproductive, trailing vegetation, discontinuously canopied, sparsely shaded, turbid water, 
narrow, African, riverine tributary, eco-cartographic, S. damnosum s.l., eco-epidemiological, 
capture point,  moderate resolution, geo-spectrotemporally  uncoalesced, diffuse, elucidative,  
moderate resolution, wavelength, frequency-oriented, fractionalized, endmember, 
eigenvector, transmittance, emissivities, which was spatially diluted   so as to optimize 
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iterative trial runs .In descriptive statistics, a box plot or boxplot is a convenient way of 
graphically depicting groups of numerical data through their quartiles. The quartiles of a 
ranked set of data values are the three points that divide the data set into four equal groups, 
each group comprising a quarter of the data[26]. Let Xn = 1nfor n ∈ ℕ+ and let X = 0 and  let 
f n and f be the corresponding density functions and let Fn and F be the corresponding 
distribution of a empirically regressable dataset of  geo-spectrotemporally geosampled, 
seasonal  S. damnosum s.l., forecasting, vulnerability paradigm, capture point,  inverse 
functions. Then a differential geometrical elucidative, ArcGIS, seasonally explanative, 
hyperproductive, S. damnosum s.l., capture point, eco-epidemiological, eco-georeferenceable, 
immature habitat, may reveal pertinent cartographic variables in a semiovariogram of 
hyperproductive eco--georeferenceable,trailing vegetation, turbid water, discontiouous 
canopied, seasonal capture points  if  n( x) a. → 0 as n → ∞ for all x ∈ ℝFn( x) → {0, x ≤ 01, 
x > 0b. as n → ∞c. Fn( x) → F( x) as n → ∞ for all x ≠ 0. 

 The theory of plane and space curves and surfaces in the three-dimensional Euclidean 
space formed the basis for development of differential geometry In geometry, Euclidean 
space encompasses the two-dimensional Euclidean plane, the three-dimensional space of 
Euclidean geometry, and certain other spaces. It is named after the Ancient Greek 
mathematician Euclid of Alexandria.[1] The term "Euclidean" distinguishes these spaces from 
other types of spaces considered in modern geometry. Euclidean spaces also generalize to 
higher dimensions. 

Classical Greek geometry defined the Euclidean plane and Euclidean three-
dimensional space using certain postulates, while the other properties of these spaces were 
deduced as theorems. Geometric constructions are also used to define rational numbers. 
When algebra and mathematical analysis became developed enough, this relation reversed 
and now it is more common to define Euclidean space using Cartesian coordinates and the 
ideas of analytic geometry. It means that points of the space are specified with collections of 
real numbers, and geometric shapes are defined as equations and inequalities. This approach 
brings the tools of algebra and calculus to bear on questions of geometry and has the 
advantage that it generalizes easily to Euclidean spaces of more than three dimensions. 

From the modern viewpoint, there is essentially only one Euclidean space of each 
dimension. With Cartesian coordinates it is modelled by the real coordinate space (Rn) of the 
same dimension. In one dimension, this is the real line; in two dimensions, it is the Cartesian 
plane; and in higher dimensions it is a coordinate space with three or more real number 
coordinates. Mathematicians denote the n-dimensional Euclidean space by En if they wish to 
emphasize its Euclidean nature, but Rn is used as well since the latter is assumed to have the 
standard Euclidean structure, and these two structures are not always distinguished. 
Euclidean spaces have finite dimension.          

Euclidean -space, in an uncoalesced,  eco-georferenceable,  hyperproductive, 
seasonal, trailing vegetation, discontinuously canopied, S. damnosum s.l. immature habitat is  
the space of all n-tuples of real geo-spectrotemporally geosampled geoclassifiable, 
explanatorial LULC, ( , , ..., ). Such -tuples are sometimes called points, although other 
nomenclature may be used). The totality of -space in the habitat forecasting vulnerability 
model  is commonly denoted , although older literature uses the symbol (or actually, its 
non-doublestruck variant ; O'Neill 1966, p. 3). is a vector space and has Lebesgue 
covering dimension [25].The Lebesgue covering dimension is an important dimension and 
one of the first dimensions investigated. It is defined in terms of covering sets, and is 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

145 
Copyright © acascipub.com, all rights reserved.  

therefore also called the covering dimension (as well as the topological dimension)( 
http://mathworld.wolfram.com/). 

A space has Lebesgue covering dimension if for every open cover of that space, 
there is an open cover that refines it such that the refinement has order at most . 
Consider how many elements of the cover contain a givenhypeproductive seasonal S.  
damnosum s.l. immature habitat point in a base space. If this has a maximum over all the 
habitat geosampled points in the base space, then this maximum would be based on the order 
of the cover. If a habitat space does not have Lebesgue covering dimension for any , it 
would have an  infinite dimensional. Results of this definition in ArcGIS would reveal  for a 
capture point decomposed S. damsnoum s.l. prolific seasaonl, oviposition site on a moderate 
resolution geoclassified LULS could reveal: 1. Two homeomorphic spaces have the same 
dimension, 2. has dimension , 3. A topological space can be embedded as a closed 
subspace of a Euclidean space if fit is locally compact, T2, second countable, and is finite-
dimensional (in the sense of the Lebesgue covering dimension), and 4. Every compact 
metrizable -dimensional topological space can be embedded in . For this reason, 
elements of are sometimes called -vectors. then would be  the set of r S. damnosum 
s.l. geosamepled parameterizable, orthogonally decomposable,  LULC covariate coefficients 
where is the Euclidean plane. In Euclidean space, covariant and contravariant quantities are 
equivalent so [25].  

Prediction of the spatially random field (S RF)values at un-geosampled, seasonally 
prolific , moderate resolution, S. damnosum s.l.  oviposition,geolocations  by techniques such 
as ordinary kriging requires the use of a theoretical semivariogram or covariance model. 
random field is a generalization of a stochastic process such that the underlying parameter 
need no longer be a simple real or integer valued "time", but can instead take values that are 
multidimensional vectors, or points on some manifold[26] lLnear Gaussian random field 
models for both geostatistical and areal (lattice) datamay  model the spatial dependence via a 
parametric covariance function for articulating parameterized precision (inverse covariance) 
matrix estimators, and for considering Bayesian inference and prediction[2] For example, 
consider the exponential covariance with parameters Θ = (ψ, κ, φ), with ψ, κ, φ > 0. The 
exponential covariance Σ(Θ) in a SRF has the form Σ(Θ) = ψI + κH(φ), where I is the identity 
matrix, the i, jth element of H(φ) is exp(−ksi − sjk/φ), and ksi − sjk is the Euclidean distance 
between locations si , sj ∈ D. Alternatives to Euclidean distance may be useful, for instance 
geodesic distances are often appropriate for spatial data over large regions ( African  narrow 
riverine tributaries).This model may be interpreted as follows: the “nugget” ψ is the variance 
of the non-spatial error, say from measurement error or from a micro-scale stochastic source 
associated with each capture point location( e.g., discontinuously canopied, trailing 
vegetation foci), and κ and φ dictate the scale and range of the spatial dependence 
respectively. Clearly, the SRF will assume the covariance and hence dependence between two  
black fly capture locations decreases as the distance between them increases. 

 In mathematics, a manifold is a topological space that locally resembles Euclidean 
space near each point. More precisely, each point of an n-dimensional manifold has a 
neighbourhood that is homeomorphic to the Euclidean space of dimension n. 
(http://mathworld.wolfram.com/).  Due to the randomness involved in stochastic processes, 
the theoretical semivariance cannot be computed (www.sas.edu). Instead, it is possible that 
the empirical semivariance can provide an estimate of the theoretical semivariance, which 
can then be used to characterize the spatial structure of a hyperproductive decomposeable, 
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explanatively seasonally hyperproductive, trailing vegetation, discontinuously canopied, 
capture point, oviposition process. It is critical to note that the empirical semivariance 
provides an estimate of its theoretical counterpart only when the SRF satisfies stationarity 
conditions. These conditions imply that the SRF has a constant (or zero) expected value may 
quanatie parameterizable covariates for optimal iterative interpolation of a datset of geo-
spectrotemporally uncoalesces, eco-georeferenced, S. damnosum s.l. hyperproductive, 
seasonal habitat. Consequently, a S. damnosum s.l. capture point, orthogonally , explanatively  
decomposed data needs to be geosampled from a trend-free random field and need to have a 
constant mean( Figure 10).  

Figure 10: Semiovariogram of spatial resolution SRF map of a  an seasonal 
hypeproductive, trailing vegetation, discontinuously canopied, turbid water, S. 
damnosum s.l. habitat ,  narrow riverine agro-village complex ecosystem,  capture point 
(x) in Burkina Faso with forecasted  unknown, un-geosampled. immature habitats 
based on a proxy Rapid Eye TM  5m signature  

  

Further, a suitable active lag distance of the quantitatively iteratively quantitatively, 
explanatorily interpolated, uncoalesced, unbiased, proxy biosignature, explicative, sub-mixel 
estimators may be optimally deduced. In so doing, a relatively stable and better-fitting 
theoretical semivariance without a priori knowledge may be rendered in Geostatistical wizard 
TM. Spatial outliers in a moderate resolution, optimally derived, sub-mixel, trailing vegetation, 
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discontinuous, infrequently canopied, sparsely shaded, seasonally hyperproductive, eco-
georeferenceable, eco-epidemiological, capture point, geo-spectrotemporally  uncoalesced, 
turbid water, optimizable S. damnosum s.l. estimators  often make the semivariogram exhibit 
erratic behavior [22]. Ordinary Kriging layer inGeostatistical wizard TM can also create a geo-
prediction standard error map (Figure 11).  
 
 
Figure 11 Geo-spectrotemporally forecasted S. damnosum s.l.  capture point, immature 
habitat semivariogram/covariance probabilistic error model  dialog in  Geostatistical 
wizard 
 

 

 
Whilest multispectral sensing has largely succeeded at elucidatively geo-classifying 

whole geo-spectrotemporally uncoalesced,  sub-mixel, fractionalized moderate resolution, 
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endmember eigenvectors, further residual, sub-mixel analysis of the constituent substances  
of an, eco-georefernceable,  eco-epidemiological, explanative, trailing vegetation, 
discontinuous, infrequently canopied, sparsely shaded, seasonally hyperproductive, turbid 
water, capture point, geospatially geosampled in an narrow African,  riverine tributary, agro-
village complex may be limited by a relatively  high number of sporadic, meterological   
measurements. One of the major causes of endmember probabilistic uncertainties when 
predicting climate fluctuations in moderate resolution,  seasoanl, hyperproductive, capture 
point,  S. damnosum s.l., eco-epidemiological, vulnerability models   comes from   non-
quantitating carbon-cycle feedbacks, which roughly double physical feedbacks in narrow 
African, tributary, riverine environments. Most of this endmember, unquantitable 
eigenvector, probabilistic uncertainties may be a result of the multiple pathways and time 
scales at which theses ecosystems interact with the climate system. For example, Jacob et a. 
[22] found that the  relationship between uncoalesced,  moderate resolution [i.e., Rapid Eye 
TM 5m visible and NIR] remotely sensed,  leaf nitrogen and the carbon cycle  was important 
to many infrequently, seasonally, sparsely shaded, discontinuously canopied, 
hyperproductive, explanative, eco-georefernceable, capture point, trailing vegetated, turbid 
water, geo-spectrotemporally geosampled,  S. damnosum s.l., capture point, immature habitat, 
sub-mixel, decompositional, algorithmic processes as  canopy photosynthesis provides the 
energy and carbon-cycle molecules for growth, reproduction and decomposition for nutrient 
cycling. Ecologists have long recognized that nitrogen is the most limited nutrient for plant 
growth in remote sensensed models [25].  

 
Qualitatively, explicatively, quantitating, discontinuous canopy, nitrogen content  in 

an expositively fractionalizable, moderate resolution, fractionalized, endmember, 
eigenvector, autoregressive, forecasting, vulnerability paradigm may provide  direct 
information about, precisely geospatializing, seasonally explanative, eco-georeferenceable, 
geo-spectrotemporal, uncoalescable, narrow, riverine tributary, African, agro-village, eco-
epidemiological, prolific,  capture point,trailing vegetation, turbid water, sparsely shaded, S. 
damnosum s.l. immature, habitat, elucidative, endmember regressors. In so doing, a method 
may be optimally devised in ArcGIS to efficiently detect and monitor explanatorial, 
geoclassifiable, LULC changes in response to climate forcing. Further, significant literary 
contributions of these entomological, vector arthropod, entomological, eco-epidemiological, 
immature, habitat  models and their productive count, capture point, suitability, may be 
quantitated in response to moderate resolution, airborne and spaceborne imaging 
spectroscopy. 

  
Several ArcGIS contributions have reported direct detection of canopy nitrogen from 

airborne imaging spectrometers. For example, Ollinger (2011) argues that selective pressure 
on plant competition for light, water, and nutrients should result in suites of explanatorial, 
biochemical and structural traits that integrate their functional strategies. Thus, quantitatively, 
orthogonally decomposable,  expositively fractionalized, moderate resolution, fractionalized,  
endmember, eigenvector, structural traits affecting light scattering “over scales ranging from 
cells to canopies” in an eluidative, eco-georeferenceable,  seasonally   hyperproductive, 
trailing vegetation, turbid water, sparsely shaded, discontinuously canopied, eco-
epidemiological, S. damnosum s.l., immature habitat, capture point, geo-spectrotemporally 
geosampled  in a narrow, African, riverine tributary, agro-village complex, will be 
convergent with its biochemical traits. Hence, explicitly testing whether regression 
endmember assumptions exist  in an explanative,  seasonally eco-georeferenceable, 
hyperproductive, capture point, immature habitat’s, discontinuous, unmixed, geo-spatialized, 
non-homogenous, canopy structure cannot be  be ignored when eigenvector, forecast, 
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vulnerability mapping  employing moderate resolution, orthogonally decomposeable data. 
These paradigms may neccessiate qualitatively quantifying sub-mixel, biochemical 
compositions with a detailed residualizable, fractional radiance, endmember eigenvector, 
frequency-oriented, wavelength, transmittance, emissivity analysis of the geo-biophysical, 
geo-spectrotemporal, eco-georeferenceable processes of photon scattering from leaves and 
plant canopies in ArcGIS.  

 
The effects of changes in temperature, CO2, light intensity and nitrogen nutrition on  

photosynthesis, in an heuristically optimizable  eco-epidemiological dataset of seasonally 
geo-spectrotemporally uncoalescable, geospatially geosampled, eco-georeferenceable, 
explanative, seasonally hyperproductive, capture point, trailing vegetation, turbid water, 
elucidative,optimally  parameterizable, moderate resolution, S.damnosum s.l., immature 
habitat, moderate resolution,  endmember, reflectance wavelength, transmittance, frequency-
oriented, moderate resolution, emissivity, covariate, coefficients may be based in ArcGIS 
experiments involving gas exchange and fluorescence techniques on discontinuous canopy 
plants grown at different climate and nitrogen nutrient conditions. Short-term irradiance 
responses of photosynthesis and long-term acclimation to CO2 and temperature may be 
ecohydrologically, efficiently examined in an unmixed eco-georeferenceable, eco-
epidemiological datasets of illuminatively, geo-spectrotemporally uncoalesced, 
discontinuously canopied, expositively fractionalized,  synthetic, orthogonal,  endmember, 
time series, eco-cartographic, spatial filter eigenvectors in ArcGIS. Scaling up from the leaf 
to the geospatialized canopy level may be optimally simulated, thereafter, in ArcGIS 
employing the sun-shade and big-leaf model employing an iteratively, quantiative, 
interpolative algorithm in Geospatial Analyst TM for parsimoniously  tabulating, seasonal, 
diurnal, canopy, assimilation rates employing parameters from the single leaf light and CO2 
responses from an  eco-georefernceable, explanative,  capture point, immature, narrow, 
riverine agro-village tributary habitat.  

 
Sun-shade models in ArcGIS have  proved to be simple, fast and reliable tools for 

estimating eco-hydrologic fractions of absorbed PAR (fAPAR) and the photosynthesis of low 
and simple canopies (e.g. seasonally eco-georeferenceable, explanative, hyperproductive, 
eco-epidemiolgical, capture point, trailing vegetation, turbid water, elucidatively 
parameterizable, S.damnosum s.l., immature habitat). Photosynthetically active radiation, 
often abbreviated PAR, designates the spectral range (waveband) of solar radiation from 400 
to 700 nanometers that photosynthetic organisms are able to use in the process of 
photosynthesis [25].The fraction of incident PAR absorbed by the canopy ( fAPAR) is central 
for eco-physiology: it drives most soil–vegetation–atmosphere transfer (SVAT) models  and 
allows interpretation and gap-filling of eddy-covariance measurements of gross primary 
productivity at the scale of the ecosystem. The eddy covariance (also known as eddy 
correlation and eddy flux) technique is a key atmospheric measurement technique to measure 
and calculate vertical turbulent fluxes within atmospheric boundary layers [25]. 

 
 fAPAR of a seasonal hyperproductive, ec-georeferenceable, eco-epidemiological, 

African, agro-village complex, narrow, riverine tributary, capture point, also be optimally 
estimated  by uncoalesced,  moderate resolution, remote sensing visible and NIR  data in 
ArcGIS in order to run regional, trailing vegetation, discontinuously canopied, turbid water, 
eco-georefernceable, eco-epidemiological, simulation, risk models of net primary 
productivity. The fAPAR depends on the canopy structure, vegetation element optical 
properties, atmospheric conditions, and angular configuration [25]. To overcome this latter 
dependency, a daily integrated FAPAR value may be  assessed for a eco-georeferenceable, 
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trailing vegetation, turbid water, discontinuous, infrequently, sparsely shaded, canopied, S. 
damnosum s.l., immature , capture point, hyperproductive, narrow, African, riverine , 
tributary, agro-villag ecosystem campled, seasonal habitat Applications on  canopies, or non-
ideal canopies (e.g. azimuthal heterogeneity, clumping, non-spherical leaf angle distribution, 
large proportion of non-green elements) for these immature habitats have been limited so far 
in ArcGIS literature.   

In recent years it has been shown that models for the tropospheric delays based on 
data from numerical weather models in ArcGIS improve the accuracy of station coordinates 
derived from differntially corrected DGPS analysis on a global as well as a regional scale. 
However, there is no recommendation in terms of azimuthal asymmetries, as far as 
tropospheric (hydrostatic and wet) gradients are concerned for  mapping seasonally 
hyperproductive, eco-georeferenceable, trailing vegetation, turbid water, discontinuous, 
infrequently, sparsely shaded,  canopied, S. damnosum s.l., immature , capture points 
employing moderate resolution data. As such, it may be interesting to remotely investigate 
the non-homogeneous behaviour in azimuth for slant tropospheric delays in order to enhance 
the gradient models for precision seasonal DGPS processing, for hyperendemic, narrow, 
African, riverine tributary, agro-village ecosystems.  This is a region where DGPS 
measurements are under influence of exterme meteorological measuremnts (e.g., riverine 
flooding, droughts).  

The GIPSY software may be used to treat observations with the precise-point-
positioning (PPP) procedure and the GAMIT software which applied in a classical way for 
comparison. In so doing, Complex eco-georeferenceable, trailing vegetation, turbid water, 
discontinuous, infrequently, sparsely shaded, canopied, S. damnosum s.l., immature habitat, 
capture point, geo-spectrotemporally, geospatially weighted, uncoalesced, moderate 
resolution, wavelength, transmittance, frequency-oriented, emissivity models may 
qualitatively quantitate  geometric effects  of dry and wet troposphere mapping functions 
(GPT, GMF, VMF, Niell). The final goal and perspective would be to assess current methods 
for S. damnosum s.l.  capture point, forecast, endmember, vulnerability modeling and to 
eventually propose a new tropospheric model to better take into account the azimuthal 
tropospheric heterogeneity in  hyperendemic, narrow, African, riverine  tributary, agro-
village ecosystems.  

Moderate resolution reterived, discontinuous, canopy gap fractions for a seasonal 
hyperproductive, ec-georeferenceable, eco-epidemiological, African, agro-village complex, 
capture point, S. damnosum s.l., immature  habitat may present a stronger upslope/downslope 
asymmetry if retrieved from levelled narrow, riverine tributary, seasonal acquisitions. As a 
result, gap dispersion index and clumping index may be proved to be significantly higher for 
levelled acquisition (P < 0.001). Immature Similium productivity count estimates adjusted to 
horizontal, narrow, riverine tributary may be significantly different, when retrieved from 
levelled or tilted acquisitions, up to 30% slopes, for example. From levelled tributary 
acquisitions, fixed and variable riverine agro-village, path lengths may not yield significantly 
different LAI estimates along the whole slope gradient. From tilted LULC, riverine 
acquisitions, immature, count values may be noteably greater than from levelled acquisitions. 
The stronger the slope, the higher the difference may be in seasonal hyperproductive habitats 
immature counts. Mean leaf angles do not differ significantly (P > 0.05) for fixed vs. variable 
path lengths along the slope gradient up to 33.3% when quantiating eco-georeferenceable, 
trailing vegetation, turbid water, discontinuous, infrequently canopied, S. damnosum s.l. 
immature, capture point, seasonal  habitat slope-related 3-D coefficients. 
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For more severe seasonal Africa, riverine, tributary, pre-flooded and flooded 

meandering LULC slopes, variable path lengths may yield lower mean leaf angle values 
which may be then geo-spectrotemporally, geospatially associated with immature, S. 
damnosum s.l., seasonal, habitat density, count values. The interpretation of results from 
tilted LULC acquisitions remains uncertain for geospectrotemporally geosampledingAfrican, 
agro-village complex, ecosystem, narrow tributary, trailing vegation, discontinuously 
canopied, turbid water, infrequently shaded, eco-epidemiological, capture point, eco-
georeferenceable, immature  habitats. As a preliminary study, no preference is suggested for 
the levelled or tilted acquisition technique. Further investigation is needed and indirect 
moderate resolution, geometrically, optically, derived, regression estimates should be 
checked against direct reference measures, in these study sites especially in geoclassifiable 
LULCs where mountainous areas exist.  

The gap fractions of the whole cover, fraction of intercepted PAR ( fIPAR), clumping 
index and leaf orientation have been commonly derived from LAI-2000 (PCA) in literature, 
which have closely matched the simulations of a reference 3-D architectural model (ArcGIS 
3D model ) which have been subsequently used for cross-validation purposes. Discontinuous, 
infrequently, sparsely shaded, seasonal canopied, leaf area mesurements can be 
parsimoniously obtained directly through litter collection, allometric relationships or direct 
harvest of vegetation geoclassified LULCs [25]. To overcome   fractionalized radiance 
endmber eigenvector, iterative interpolation difficulties, indirect geometrical, 
geospectrotemporal, geospatial, optical methods  have been employed such as tracing 
radiation and architecture of canopies (TRAC), LAI-2000 Plant Canopy Analyzer (LI-COR, 
Lincoln, NE) and hemispherical photography for discontinuous canopy, LULC estimation 
due to their fast and non-destructive nature. Most of these methods are based on gap fraction 
and gap size distribution theory. Despite the fact that several methods have been developed 
so far to quantify leaf area indices, the discontinuous canopy geoclassifications  remains 
difficult to estimate accurately, owing to large spatial–temporal foliage dynamics and 
quantiatable, canopied vegetation architectural heterogeneity in eco-georeferenceable, eco-
epidemiological, trailing vegetation, infrequently shaded, capture point, immature S. 
damnosum s.l. turbid water, African, narrow tributary, complex ecosystem, seasonal,  
geosamplable habitats. 

 
A moderate resolution, 3-digital elevation model (DEM) in ArcGIS may however, 

qualitatively quantitate  a relationship for down-scaling the gap-fractions from the whole 
cover to green elements of a. seasonally eco-georeferenceable, eco-epidemiolgical, capture 
point, trailing vegetation, turbid water, elucidatively parameterizable, explanatively 
hyperproductive, S.damnosum s.l., immature habitat, geo-spectrotemporally  geosampled  in a 
narrow, riverine tributary in an African, agro-village, eco-georeferenceable complex. The 
derived sun-shade simulations of fAPAR by trailing vegetation, diffuse, green leaves may 
agree within 5% of a  3-D DEM, targeted eco-epidemiological capture point,  immature, 
habitat, uncoalesced, moderate resolution, weighted, wavelength, frequency-oriented, 
explanative, transmittance based on a half-hourly time-step for 1 year, confirming combined 
PCA and sun-shade methods as a fast and reliable tool, even for tall or complex Similium 
habitat canopies. fIPAR  and plant area index (PAI) may be compared  in ArcGIS with  an 
empirical regressable model for heuristically optimally estimating fIPAR from age and 
canopy plant density. The coefficient of extinction, K, may be adjusted for the regular range 
of plant density in ArcGIS.More complex explanative, eco-georferenceable, 3-D DEM 
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model, S.damsnoum s.l., capture point, immature habita,t reflectance and transmittance 
detailing descriptions of  the discontinuous,immature habitat, sparsely shaded canopies may 
be able to test hypotheses (e.g. the sensitivity analysis of different ecological co-factors 
affecting disocntinuous canopy radiation transfer to validate simpler models). 

 
Three dimensional ArcGIS-derived, African, agro-village complex, ecosystem, 

narrow tributary, trailing vegation, discontinuously canopied, turbid water, infrequently 
shaded, eco-epidemiological, capture point,  eco-georeferenceable, immature, habitats models 
in ArcGIS trace light rays  may calculate their interception by the foliage after eco-
geographical, weather and plant architecture information is entered into the model . These 
models may predict the light intercepted by each habitat canopy leaf. The model estimates 
may require high parameterization which may be suitable for quantiating slope coefficient of 
individual single branches or small canopies only. Other models assume that radiation 
attenuation through canopies can be described by Beer's Law and predict the irradiance at 
different depths in the S. damnosum s.l. discontinuous canopy. The Beer's Law Equation 
(Absorbance = e L c) when given the molar absorptivity constant (or molar extinction 
coefficient) where e is the molar extinction coefficient, L is the path length of the cell holder 
and c is the concentration of the solution [24].The latter models are suited for large canopies 
and assume the existence of homogeneous layers within the canopy with constant irradiance 
at equal cumulative leaf area indexes (LAI). Leaf area index (LAI) is a dimensionless 
quantity that characterizes plant canopies which  defined as the one-sided green leaf area per 
unit ground surface area (LAI = leaf area / ground area, m2 / m2) in broadleaf canopies[25]. A 
3-D DEM of  eco-georeferenceable, trailing vegation, turbid water, S. damnosum s.l. leaf area 
of a hyperproductive, immature habitat,  explanative, discontinuously canopied layer may be  
geo-spectrotemporally geometrically optically assessed in ArcGIS and subsequently 
multiplied by the estimated or measured irradiance of that layer, then summed for all layers. 
In this way, the light intercepted by each layer (e.g., light distribution in a 
preflooded/flooded, sparsely shaded, immature habitat) and the total canopy light interception 
and absorption can be modelled.  
 
      Unfortunately, since irradiance in a geo-spectrotemporally uncoalesced, geo-spatialized 
moderate resolution, seasonally explanative, hyperproductive, S. damnosum s.l., explanative 
habitat, capture point, immature habitat, discontinuous canopy layer is not homogeneous, 
remotely qualitatively quantiating canopy depth  mesurements may be  strenuous. Canopy 
water content vegetation indices in object based technology (e.g. ENVI)  use reflectance 
measurements in the  NIR and shortwave IR regions to take advantage of known absorption 
features of water and the penetration depth of light in the  NIR region to make integrated 
measurements of total column water content.  For example, the stress moisture index is a 
reflectance measurement in ENVI that is sensitive to increasing leaf water content.  
Applications for monitoring hyperproductive, S.damnosum s.l., immature habitat include 
canopy stress analysis, productivity prediction and studies of seasonal, eco-georeferenceable, 
African riverine tributary, agro-village complex, ecosystem physiology. The normalized 
difference  vegetation index (NDVI) employs  a normalized difference formulation instead of 
a simple ratio in ENVI, where the index values increased with increasing water content. 
Applications for optimally, geo-spectrotemporally uncoalescable, S. damnosum s.l., 
empirical, regressable datasets of geosampled, seasonal hyperproductive, immature habitat, 
eco-epidemiological, capture point data include infrequent canopy monitoring, and vegetation 
stress detection. Normalized Difference Water index (NDWI) may qualitatively  quantitate 
canopy depth in a moderate resolution, imaged, hyperproductive, eco-epidemiological, eco-
georeferenceable, capture point, trailing vegetation, discontinuously canopied, turbid water, 
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African narrow riverine tributary, agro-village complex, immature habitat. Applications 
include for canopy stress analysis, LAI studies in densely foliated vegetation and canopy 
plant productivity modeling. Finally there is the Normalized Multi-band Drought Index 
(NMDI). This index may take into account a soil moisture background in an eco-
georefernceable, S. damnosum s.l.  hyperproductive, seasonally explanative, immature, 
African agro-village complex,narrow riverine tributary, ecosystem  habitat  to monitor 
potential drought conditions. Three specific, moderate resolution, unmixed wavebands may 
be optimally selected to quantitate unique response wavelength, transmittance emssivity, 
frequency variations in soil and vegetation moisture. The index uses the difference between 
two liquid-water absorption bands in the shortwave-IR region (1640 and 2130 nm) as a 
measure of water sensitivity in vegetation and soil. This index is also commonly used in 
forest-fire detection 
 

Selecting an appropriate canopy light absorption and photosynthesis  model  for the 
purposes of predictive,  hyperproductive,  S. damnosum s.l., immature  habitat, endmember 
modeling  and  subsequent geo-spatialization may require  optimally remotely  deciphering  a 
trade-off between accuracy and parsimony of parameterization of the geo-spectrotemporally 
uncoalesced,   fAPAR models. These models   may be also optimally geoclassified in ArcGIS 
into (i)‘‘reference’’ models, such as Multi-layer  discrete 2D and 3D models or else 
‘‘simplified models’’, such as single-layer Big-leaf models or sun-shade models (e.g., single-
layer with two leaves). It is generally assumed that reference Multi-layer and 3D models are 
accurate but require a number of calculations, which becomes a drawback for their inclusion 
into eco-epidemiological, Global Circulation,  eco-georeferenceable,  S. damnosum s.l. 
remotely sensed, eco-epidemiological,  forecast, vulnerability  paradigm, covariance matrices 
and SVAT models. Regardless, these models  may be inherently the most promising for 
solving recurrent theoretical problems affecting non-ideal,non-optimizable,  S. damnosum 
s.l., hyperproductive, seasonal canopies: [e.g. row structure with large gaps, azimuthal 
heterogeneity, complex leaf angle distribution function (LADf), distinction between green 
and non-green elements or aggregation (clumping) at different scales]. However, due to their 
complexity in eco-cartographically optimally delineating an accurate number of heuristically 
geo-spectrotemporally parameterizable, explanatively, geo-spatializable, covariate 
coefficients  for  uncoalesced, 3D models only a  few unbiased iterative estimators   and 
canopy plant species, have  been optimally quantitatively iteratively  interpolated in the 
literature. ArcGIS, seasonal, capture point 3D models may offer an outstanding reference for 
testing the performances or for validating simplified models to be applied in non-ideal 
conditions,  
 
          Further, the canopy extinction coefficient for light and nitrogen, canopy nitrogen 
concentration, daily solar irradiance and daily maximum and minimum temperatures may be 
optimally tabulated employing fractionalized,  moderate resolution, remotely sensed, data 
uncoalesced, wavelength, transmittance, frequency-oriented emmissivities. Light interception 
is commonly measured with expensive equipment or estimated with elaborate models; 
simpler and more economical ways of estimation would be advantageous [25]. Since leaf 
mass per unit leaf area (MA) is closely related to long-term light interception by leaves in a 
explanative, eco-epidemiological, sparsely shaded, trailing vegetation, discontinuously 
canopied,   seasonally hyperproductive, S. damnosum s.l.  immature   habitat, eco-
georeferenceable, capture point  the latter can be estimated by measuring MA in ArcGIS. In, 
RosatiI et al. (2001) a partitioning of   leaf area into one of six classes of MA was used to 
estimate canopy light interception and absorption in aubergine (Solanum melongena L.) 
grown with different amounts of  nitrogen fertilizer and with or without artificial shade using 
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moderate resolution data. Although plants grown with ample fertilizer had a greater LAI than 
those grown with less nitrogen, the increase in leaf area occurred in the lower and 
intermediate MA classes, while the leaf area in the two highest MA classes was similar. 
Artificially shaded plants had more leaf area in the lower MA classes and less in the higher 
classes compared to explanative, unshaded plants, showing acclimation to low light 
conditions. The amount of light intercepted daily by leaves in each MA class was estimated 
in ArcGIS employing the previously determined light variables. Canopy light interception 
was optimally calculated as the sum of intercepted light for all MA classes, and canopy light 
absorption was estimated from light interception data assuming a constant absorption 
coefficient (82 %). To validate the results, the estimated values were compared to those 
calculated from independent measurements of light absorption carried out in the same field. 
Results indicate that it is possible to estimate canopy light interception and absorption from 
the partitioning of sparsely shaded leaf area into MA classes. In so doing, for an uncoalesced 
MA model constructed from a dataset of  ArcGIS geo-spectrotemporal, geospatialized, 
explanative dataset of sub-mixel, Rapid Eye TM 5m, elucidative wavelength, trasnmittance, 
frequency-oriented, emissivity regressors, the significance of diffuse radiation, 
discontinuously canopied, parameterizable, assimilation rates may be efficiently qualitatively 
quantized.  
 

 The Farquhar biochemical growth model (Farquhar et al., 1980) calculates 
photosynthesis as a function of demand and supply of CO2. The advantage with this model  
for robustly, parsimoniously quantitating, elucidatively optimally parameterizable, iteratively, 
interpolative, eco-georeferenceable,  geospectrotemporally, uncoalescable, geospatially 
seasonally hyperproductive, eco-epidemiological, narrow, riverine tributary, agro-village 
complex, capture point,trailing vegetation,turbid water, sparsely shaded, discontinuously 
canopied, S. damnosum s.l., immature, habitat, moderate resolution, expositively 
fractionalized, endmember eigenvectors is that photosynthesis is regulated not only by 
radiation and transpiration, but also by air humidity, leaf temperature, CO2 availability and 
leaf nitrogen content. The immature habitat, canopy plants also may experience radiation 
saturation at high levels of radiation. To function properly, driving variables need to be given 
as input to the simulation at least once an hour [23].  
            Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 
canopy plants in an, uncoalesced, endmember eigenvector eco-epidemiological, S. damnosum 
s.l., capture point, moderate resolution, geosampled wavelength, transmittance frequency-
oreinted, endmember eigenvector, forecast, vulnerability model may be integrated to form 
compatible, uncoalesced, time series explanators of gas exchange in discontinuous, immature 
habitat, canopy leaves. These aspects include the kinetic properties of ribulose bisphosphate 
carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and 
photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of 
electron transport on photon flux and the presence of a temperature dependent upper limit to 
electron transport. The measurements of gas exchange with which the model outputs may be 
thereafter compared include temperature and partial pressure of CO2(p(CO2)) dependencies 
of quantum yield, the variation of compensation point with temperature and partial pressure 
of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the 
influence of p(CO2) and irradiance on the temperature dependence of a geo-
spectrotemporally, geospatialized, qualitaively quantized, seasonal, S. damnosum 
s.l.,discontinuous canopy, assimilation rate. Canopy photosynthesis, P in an ArcGIS moderate 
resolution, geo-spectrotemporally  uncoalescable, explantive,  field-operationizable, S. 
damnosum s.l., immature, habitat, geospatialized, weighted, wavelength, transmittance, 
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frequency-oriented, emissivity, fractionalized, endmember eigenvector, forecast, vulnerability 
model  may be calculated as mole carbon per leaf area per second. In the model covariance 
matrix P has to be converted to g carbon per unit, LULC area per day, CAtm→a, at the end of 

the module: where MC is the molar mass of carbon. 
 

Farquhar’s photosynthesis model is only geo-spectrotemporally, geospatially 
applicable to individual, discontinuous canopy immature, habitat leaves instantaneously in 
ArcGIS when qualitatively quantitating regional plant growth and carbon/nitrogen budget 
estimations associated to forecasted, black fly, larval/pupal productivity. For example, in 
Jacob et al. [22], Farquhar’s equations were applied directly to an explanative, eco-
georeferenceable, eco-epidemiological, hyperproductive, trailing vegetation, Precambrain 
rock, S. damnosum s.l., sub-meter resolution, imaged, sparsely shaded, immature habitat, 
discontinuous canopy by assuming the quantitated canopy functions like a big-leaf.   S. 
damnosum breeds mainly in fast flowing, well-oxygenated, riverine bodies where the African 
Precambrian basement rock is exposed to break the flow of water and create rapids[22].  This 
big-leaf approximation was found to be acceptable for estimating seasonal trends of 
discontinuous canopy photosynthesis of the ecogeoreferenced capture point but inadequate 
for simulating day-to-day variations in the immature habitat canopy. The daily variation is 
greatly dampened in big-leaf simulations as the original leaf-level model is partially modified 
through replacing stomatal conductance with canopy conductance [23]. Jacob et al. [22] 
separated the discontinuous, sparsely shaded, turbid water, narrow African, agro-village 
riverine tributary,. Discontinuous, habitat canopy into sunlit and shaded leaf groups and then  
stratified the canopy into multiple layers in ArcGIS.  

 
Because of non-linear response of leaf photosynthesis to meteorological variables 

(e.g., radiation, temperature and humidity), considerable errors  may exist in photosynthesis 
calculations employing geo-spectrotemporally uncoalesced, moderate resolution, 
fractionalized  images of seasonally hyperproductive, eco-epidemiological, capture point, 
endemic, narrow, African, agro-village complex, riverine foci, without considering the 
diurnal variability of the variables. To avoid these non-linear effects, an analytical solution to 
a simplified daily integral of Farquhar’s model may be considered for quantiating the general 
diurnal patterns of quantitable, moderate resolution, meteorological variables in an eco-
egeorferenceable, explanative dataset of trailing vegetation, discontinuously canopied, S. 
damnosum s.l. hyperproductive, eco-epidemiological, sparsely shaded, capture point,   
immature habitat. Ecological parameters such as water temperature, water pH, dissolved 
oxygen, ammonia content, rainfall, current velocity, relative humidity and conductivity 
influence the breeding of S. damnosum complex [13]. Ecological factors which influence the 
adults include wind, humidity and light[7]. This daily model would not only capture the main 
effects of the diurnal variations on the black fly,  discontinuous habitat, canopy 
photosynthesis in an ArcGIS cyberenvironment but would  also computationally be efficient 
for optimally, qualitatively quantitating, large, explanatively, geo-classifiable elucidative, 
LULC area applications (e.g., heuristically, iteratively ,explanatively, iteratively interpolated 
datasets of non-coalesced, moderate resolution, geo-spectrotemporally geospatialized, S. 
damnosum s.l., seasonally hyperproductive, capture points).  The model’s application would 
then be not restricted by availability of sub-daily meteorological data.  

Currently, there is a pressing need to accelerate progress in understanding how 
terrestrial ecohydrologic, and hydrometeorological systems respond to climate forcings for  
precisely quantitating moderate resolution, expositively geo-classifiable, discontinuously 
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canopied, trailing vegation, eco-georeferenceable, explanatively uncoalesced,  seasonal, S. 
damnosum s.l., topographic and non-topographic, geoclassifiable LULC signatures. Eco-
georefernceable, seasonal, pre-flooded, narrow, riverine, agro-village  tributary, meanderings   
may be encompassed in moderate resolution, S. damnosum s.l., eco-epidemiological model’s 
contributions which may aid in moving ArcGIS towards the development of intuitive, 
integrated, explanatorial, surface-atmosphere, prediction systems. These new forecasting 
systems may geospatially represent coupled ecohydrological, biogeochemical, and 
atmospheric processes from bedrock in discontinuously canopied, pre-flooded African, 
narrow, riverine tributary, agro-village ecosystems through the lower atmosphere employing  
advanced ArcGIS, computational, algorithmic frameworks. For example, prediction 
regression-based, signature architectures may be developed in Geostatistical Analyst TM to 
conduct fundamental research on broad, vector, larval control systems [e.g. moderate 
resolution risk maps of seasonally, prolific,immature habitats based on  iteratively geo-
spectrotemporally  iteratively interpolated, uncoalesced, Chlorophyll (Chl) variables] by 
improving predictive capacity of eco-epidemiological, S. damnosum s.l., forecast, 
vulnerability eco-georeferenceable models. In so doing, ArcGIS simulations may allow 
ecologists, entomologists or other researchers  to optimally, quantitate a priori representing 
the most suitable, routine for  rendering, elucidative, bio-geophysical observational, eco-
epidemiological observational predictors of a given, moderate resolution, seasonally 
hyperproductive, trailing vegetation, discontinuously canopied, turbid water, capture point 
geosampled in an hyperendemic, African, agro-village, narrow riverine, agro-village, 
tributary ecosystem regardless of seasonal,  sample frame, climatic conditions. 

Further, geoprocessing tools in the 3D Analyst extension in ArcGIS Pro may simulate 
the effect of various kinds of explicative, seasonal, larval control processes, employing 
empirically probabilistically regressable, uncoalescable, data variables (e.g., slope and 
elevation 3-D coefficients)  of unknown, un-geosampled, eco-georeferenceable, turbid water, 
sparsely shaded, capture point,  S. damnosum s.l., seasonally hyperproductive,moderate 
resolution, imaged, immature habitats by  iteratively quantitatively, explanatively 
interpolating the orthogonally decomposed, trailing vegation, turbid water, discontinuously 
canopied, capture point, proxy signature, fractionalized, endmember eigenvectors. In so 
doing, the sub-mixel variables would eco-cartographically, optimally delineate, seasonally 
explanative, Simulium vector abundance and distribution at an, eco-georferenceable, African, 
agro-village, narrow riverine, tributary, eco-epidemiological, study site. Recognition of the 
model complexities of S. damnosum s.l., endemic, meandering, riverine, foci, covariate 
coefficient, interaction terms   in pre-flooded riverine pathway meandering explanators and 
their autoregressively quantitatable interdependencies may be significantly pertinent to  
implementing larval control strategies in these riverine ecosystems.  

ArcGIS Predictive Analysis Add-In tools may be optimally employed to construct 
decomposable, fractionalized, moderate resolution, emissivity-oriented, geo-
spectrotemporally uncoalesced, endmember, wavelength, transmittance, eigenvectors in 
forecast-oriented, vulnerability paridigms. In so doing,  eco-geographic,  robustifiable, 
explanative, observational, eco-georefernecable predictors delineating optimal eco-
hydrologic, elucidative geolocations of seasonally transitioning, partially canopied, sparsely 
shaded, hyperproductive, narrow, tributary-oriented,   agro-village complex, seasonal, 
remotely sensed, Similium habitat, geo-spectrotemporal, moderate resolution targets may be 
devised using iteratively, quantitatively interpolative, uncoalesced, proxy biosignature 
[Normalized Difference Vegtation Indices (NDVI)] variables may be illuminated. Once these 
models are constructed, Query Builder (available in the Query Analysis Add-In), can then 
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save and load queries for adjusting fractionalized, moderate resolution, endmember 
eigenvectors of  eco-georeferenceable, narrow, riverine tributary, African, agro-village 
complex, immature habitat, proxy signatures  in space in Geospatial AnalystTM .By 
employing an empirically regressed,heuristically optimizable, eco-epidemiological   dataset 
of parameterizable, field-operatizable, moderate resolution, uncoalesced, covariate, 
coefficient, weighted, wavelength, transmittance, frequency-related, emissivity estimators 
rendered from an interpretively, iterative, quantitative interpolator (e.g., co-kriging algorithm) 
distinct mathematical forecasts  may be generated from stochastic models based on  spatial 
variation of the geosampled data. In so doing, a group of single-band explanatorial rasters 
may reveal eco-cartographically explanatively illustratable, seasonally prolific, eco-
hydrologic, eco-georeferenceable, explanative, capture point, immature habitat, clustering 
tendencies in the uncoalesced, empirical  dataset of discontinuously canopied, trailing 
vegetation, sparsely shaded, S. damnosum s.l. habitat, hyperproductive, turbid water, narrow,  
riverine tributary, agro-village geolocations in  hypothetical, eco-geographic and non-eco-
geographic, regression  space. The elucidatively regressed forecasts rendered from the 
iterative interpolator may be subsequently overlaid onto a Google Earth TM map in ArcMap 
TM to geolocate unknown, un-geosampled, hyperproductive, capture point. seasonal, 
immature habitats.  

Geometrical optical (GO) modelling in ArcGIS applies to discontinuous canopies with 
distinct architecture and is particularly appropriate for forest canopies [25]. Although 
sophisticated, 3- D, radiative transfer models have been developed inliterature, GO models 
remain an alternative attractive tool for remote sensing applications for their ability to capture 
the angular and spatial variabilities of moderate resolution, endmember eigenvector 
reflectances employing simple geometries defined by canopy architecture in ArcGIS. 
Geometrical optics, or ray optics, describes light propagation in terms of rays[24]. The ray in 
geometric optics is an abstraction, or instrument, useful in approximating the paths along 
which light propagates in certain classes of  ArcGIS algorthms(www.esri.com) which may  
iteratively, quantitate, unbiased data for identifying unknown, un-geosampled 
discontinuously  canopied interpolated, geo-spatialized, seasonally hyperproductive,  S. 
damnsoum s.l. trailing vegetation, turbid water, sparsely shaded, immature, eco-
georefernceable, eco-epidemiological, capture point, narrow, African riverine, tributary, agro-
village complex, immature habitats. The simplifying assumptions of geometrical optics 
include that light rays:1) propagate in rectilinear paths as they travel in a homogeneous 
medium,2)bend, or split in two, at the interface between two dissimilar media,3) follow 
curved paths in a medium in which the refractive index LULC changes;and,  4) may be 
absorbed or reflected [24].  

Geometrical optics does not account for certain optical effects such as diffraction and 
interference. Nonetheless these illuminative measurements may be useful in optimally 
forecasting, datasets of heursitically robustifiable, eco-georeferenceable , seasonal, capture 
point, S, damnsoum s.l. fractionalized, vulnerability model, moderate resolution,orthogonally 
decomposed, uncoalesced, endmember, date feature, attributes.  The unbiased productivity 
residuals from these models may be an excellent approximation when moderate resolution, 
wavelength frequencies of the ecogeoreferenceable, immature habitat, capture point,  is 
especially small compared to the size of  the uncoalesced,  explanative, discontinuous 
canopied, phosynthetic biochemical structures with which the light interacts ( e.g., leaf 
canopy stomata). The techniques may also be particularly useful in optimally describing 
geometrical aspects of moderate resolution imaged, trailing vegetation, fractionalized, 
sparsely shaded, orthogonalized, endmember eigenvectors, including their optical aberrations. 
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In the case where a geoclassifiable moderate resolution, vegetation LULC cover can be 
regarded as a collection of individual, discrete plant crowns, the geometric-optical effects of 
the shadows that the crowns cast on the background and on one another strongly condition 
the brightness of the vegetation cover as seen from a given viewpoint in the hemisphere[24]. 
An asymmetric hotspot, in which the shape of the hotspot is related to the shape of the plant 
crowns in the scene, (www.esri.com). At large zenith angles illumination shadows may 
preferentially shadow the lower portions of adjacent discontinuous, eco-georeferenceable, 
canopy gaps when iteratively interpolating  a hyperproductive, seasonal, trailing vegation, 
turbid water, discontinuous canopied, sparsely shaded, narrow tributary, African agro-village 
complex, S. damnosum s.l., uncoalesced, capture point, proxy LULC signature.      

              Further, these shadows may be preferentially obscured since adjacent crowns may  
also tend to obscure the lower portions of other crowns in the habitat canopy. This effect 
would render a `bowl-shaped' bidirectional reflectance distribution function (BRDF) in which 
5m scene brightness may increase at the function's edges. The bidirectional reflectance 
distribution function (BRDF;  ) is a quantitatble  function  in an ArcGIS 
cybetrenvironment of four reflectance  variables that defines how light is reflected at an 
opaque surface. The BRDF is employable both in the optics of real-world light, in computer 
graphics algorithms, and in computer vision algorithms. The function takes an incoming light 
direction, , and outgoing direction, (taken in a coordinate system where the surface 
normal  lies along the z-axis), and returns the ratio of reflected radiance exiting along to 
the irradiance incident on the surface from direction . Each direction is itself 
parameterized by azimuth angle and zenith angle , therefore the BRDF as a whole is a 
function of 4 variables. The BRDF has units sr−1, with steradians (sr) being a unit of solid 
angle. 

 Differential Formulas describing the hotspot and mutual-shadowing effects of the 
narrow, riverine tributary, capture point may then be  optimally derived using ArcGIS which 
may show how the shape of the BRDF is dependent on the shape of the discontinuous S. 
damnosum s.l. geospatiotemrpoally uncoalesced, iteratively interpolative, discontinuous 
canopy paramter, their density, their brightness relative to the background, and the thickness 
of the layer throughout which the crown centers  is distributed 

An analytical method is described for predicting the bistatic normalized radar cross 
section of a rough homogeneous layer made up of a rough surface over a flat surface. The 
model is based on iteration of the Kirchhoff approximation to calculate the fields scattered by 
the rough layer, and is reduced to the highfrequency limit in order to obtain numerical results 
rapidly. Kirchhoff's diffraction formula (also Fresnel–Kirchhoff diffraction formula) can be 
used to model the propagation of light in a wide range of configurations, either analytically or 
using numerical modelling [25]. The shadowing effect, significant for larger incidence or 
scattering angles, is taken into account through the use of shadowing functions. The model is 
applicable for moderate to large upper surface roughnesses having small to moderate slopes, 
and for both lossless and lossy inner media. It was validated for a two-dimensional problem 
(with 1D surfaces) in a preceding contribution. Here, the extension of the model to 2D 
surfaces is developed, and results are presented to validate the asymptotic model by 
comparison with a numericalreference method.  
 
            Geometrical optical (GO) models are generally accurate in the visible part of the solar 
spectrum, but less accurate in NIR part in which multiple scattering in plant canopies is the 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

159 
Copyright © acascipub.com, all rights reserved.  

strongest. As a mathematical study, geometrical optics emerges as a short-wavelength limit 
for solutions to hyperbolic partial differential equations [25].At NIR moderate resolution 
wavelengths, the contrast may be  much reduced in a uncoalesced, geo-spectrotemporally 
discontinuously canopied, trailing vegation, sparsely shaded, S. damnosum s.l., immature 
habitat, explanatively hyperproductive, turbid water, capture point, eco-georeferenceable,  
forecast, endmember,  vulnerability model because of the large scattering albedo of plant 
leaves. The Li-Strahler geometric-optical model exploits these shadowing effects by 
modeling a scene or mixel as an assemblage of ellipsoidal tree crowns. Geometric-optics and 
Boolean set theory are used todetermine the areal proportions of shadowed and sunlit canopy 
and shadowed and sunlit background associated with a solar zenith angle. Independent 
characteristic signatures for each component are weighted by these areal proportions and used 
to determine the spectral directional reflectance factor of the canopy at any viewing angle. 
Although these component signatures do not include an explicit treatment of diffuse 
irradiance, canopy multiple scattering or leaf specularity and are applied uniformly to the 
areal proportions, they are reasonable approximations for clear atmospheres and low to 
medium solar zenith angles. The geometric-optical model does incorporate the effects of 
mutual shadowing or the obscuring of tree crowns by one another and takes into account the 
impact bright unshadowed tree tips have on the canopy reflectance at very high view angles. 
By performing a hemispherical integration, the model also providesan instantaneous  
hemispherical reflectance (or spectral surface albedo).  
 

Thus, the accuracy of GO modeling approach would deteriorate at NIR wavelengths. 
Critical to the accuracy would also be the simulation of the radiance exiting from the sparsely 
shaded, discontinuously fractionalized, sparsely canopied, endmember eigenvector, regressed 
components. The reflected radiance from the immature eco-georefernced,  shaded habitat, 
decomposed components may not only be optimally determined by the first-order scattering 
which would separate the sunlit and shaded, sub-mixel eigenvector components, but also 
multiple scattering after the first collision of light with foliage or the background. A beam of 
light can undergo several orders of scattering before it is totally absorbed or reflected back to 
space Olivo and Speller previously used geometrical optics to model the coded aperture XPCi 
system. Their approach used a “forward” technique where photons emitted by the source 
were traced through the system. Photons could be blocked by an aperture, refracted by a 
sample or both. The number of photons reaching a  particular pixel represent the signal 
detected by that pixel. Geometrical optics may be extended to include higher order terms 
which represent what is usually termed diffraction(www.esri.com).  Geometrical optical 
(GO) models have been widely used in remote sensing, irregularly shaped, geospatial, object 
applications because of their simplicity and ability to simulate angular variation of remote 
sensing signals from the earth’s surface[see Figure 12]. 

 

 

 

 

Figure 12 Geometrical optical model describing light propagation in terms of 
multiscattered  rays including optical aberrations from a discontinuous canopied,  eco-
georeferenceable   geolocation 
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       Multiple scattering simulation or approximation is therefore an indispensable part of 
iteratively quantitatively, explanatively  interpolated, empirically regressable datasets of geo-
spectrotemporally, geospatially uncoalesced, S. damnosum s.l. habitat, eco-epidemiological, 
capture point, forecasts, intended for identifying, seasonally hyperproductive unknown, 
ungeosampled narrow tributary, capture points in African, agro-village complex, immature 
habitat, eco-georeferenceable geolocations. Combinations of complex unmixing algorithms in 
ArcGIS such as those based on radiosity using iterative procedures and those based on ray 
tracing using discrete ordinates may theoretically simulate multiple-scattering, moderate 
resolution-derived,  wavelength frequencies of Similium habitat canopies with high accuracy. 
However, the accuracy of a extracted proxy biosignature of the trailing vegation, sparsely 
shaded, discontinuous canopied, endmember architecture description. From moderate 
resolution data would strongly depend on the amount of details considered in the 
geoclassified ArcGIS-derived ,time series eco-georeferenceable, explantive, LULC map.  

            Regardless of the  unmixing algorithms employed for expositorily fractionalizing an 
ecogeorferenceable, geo-spectrotemporal, explanative eco-epidemiological datasets of eco-
georferenceable,  seasonally hyperproductive, trailing vegetation, discontinuously canopied, 
eco-epidemiological, narrow, riverine tributary, turbid water, capture point, S. damnosum s.l., 
geospatial, endemic foci,   a subtle problem may arise when non-differential, orthogonally 
decomposed sub-mixel, geoclassified  uncoalesced, LULC, explanatorial, structural 
measurements of  collinear variables are obtained in hypothetically simulated, regression 
space in ArcGIS. This situation is exponatentially more weighted  in a Poissonian distribution 
with a conditional mean y=exp(β0 + Log1x) where x represents the ‘cause  of y in  the  response 
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count. In probability theory and statistics, the Poisson distribution, is a discrete probability 
distribution that expresses the probability of a given number of events occurring in a fixed 
interval of time and/or space if these events occur with a known average rate and 
independently of the time since the last event..  In Jacob et al. [22], the Poissonan distribution  
was used for determining the number of explanatorial capture point, eco-georeferenced, S. 
damnosum s.l., endemic, foci events  using specified intervals such as uclideanized, habitat 
distance, area  and volume measurements ( see Figure 13). 

 Figure 13  Poisson regression where the  dependent response  variable is the count (0, 1, 
2, …) is a vector field of geosampled occurrences of seasonally hyperproductive, trailing 
vegetation, discontinuously canopied, eco-epidemiological, narrow, riverine tributary, 
turbid water, capture point, endemic foci of immature  S. damnosum s.l., 

 

             Poisson regression and Negative binomial regression are useful for analyses where 
the dependent (response) variable is the count (0, 1, 2, …) of the number of events or 
occurrences in an interval. Although turbid-media radiative transfer (RT) methods have been 
introduced to GO models to cope with the second-order and higher order scattering, the 
problem of non-linear, explanatorial,  canopy geometrical, fractional effects on multiple 
endmember scattering still remains an obstacle in GO model applications[24]. In probability 
theory and statistics, the negative binomial distribution is a discrete probability distribution of 
the number of successes in a sequence of independent and identically distributed Bernoulli 
trials before a specified (non-random) number of failures (denoted r) occurs a Bernoulli trial 
(or binomial trial) is a random experiment with exactly two possible outcomes, "success" and 
"failure", in which the probability of success is the same every time the experiment is 
conducted[24]. 

A second explicatively parameterizable, ecohydrologic, geo-spectrotemporal, 
geospatial, covariate coefficient, fractionalized estimator (e.g., Percent of discontinuously 
canopied, trailing vegetation, sparsely shaded, explanators) may be necessitated in the eco-
georeferenceable vulnerability, forecast model for optimal parameter estimator quantitation. 
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Specifically, if an  explanatively orthogonally decomposable moderate resolution, S. 
damnosum s.l., habitatmodel   statistic is significantly different from 0 at the 0.05 level, then 
the 95% confidence interval will not contain 0 in the endmember eigenvector, fractionalized, 
eco-epidemiological,  LULC forecasts. All values in the confidence interval would thus be 
plausible values for quantitating the geo-spectrotemporally geospatially geosampled trailing 
vegetation, discontinuously canopied,  turbid water sparsely shaded, hyperproductive, eco-
epidemiological, capture point, endmember eigenvector, whereas values outside the interval 
would be  rejected as plausible values for the parameter. In Jacob et al. [22] an elucidatively 
orthogonally decomposed empirical, eco-georeferenceable, seasonally geo-spectrotemporally 
geosampled, explanatorial,  capture point, illuminative S. damnosum s.l. habitat, regressor (s) 
were eco-cartographically illustratable with the  error variance quantitated according to an 
optimal, uncoalesced   dataset of heuristically non-differential, moderate resolution, 
fractionalized endmember eigenvector, weighted, wavelength, frequency, transmittance, 
radiance emissivities in quantitated sampling distribution of means in  ArcGIS (Figure 14). 

Figure 14. Maximum/minimum confidence interval and Standard Error of the Mean 
measurements in a continuous, geoclassifiable, ArcGIS S. damnosum s.l. habitat LULC 
feature regression model 

 
 

It may be shown by means of an ArcGIS simulation elucidative  study that a fittable 
y=exp(β 0 + log1x+ log2x) +W exists when sub-mixel, orthogonally explanatively decomposed,  
regressively, elucidatively qualitatively quantitable, moderate resolution,optimally derived 3-
D eco-hydrologic variable  eco-cartographically illustrating an eco-
georeferenceable,hyperproductive,  S. damnosum s.l., eco-georeferenceable, narrow African  
riverine,  tributary, agro-village complex, ecosystem,capture point,  immature habitat,  
measurement error (e.g., frcationalized endmember multicollinearity) in x is large compared 
to that of W, or whilest x and w are strongly probabilistically correlated in the model ,such 
that log1 x and log 2x are non-significant and significant, respectively. In statistics, 
multicollinearity is a phenomenon in which two or more predictor variables in a multiple 
regression model are highly correlated, meaning that one can be linearly predicted from the 
others with a substantial degree of accuracy[24]. In this situation the uncoalesced, 
parameterizable, optimizable, covariate  coefficient estimates of the multiple regression may 
change erratically in response to small changes in the, moderate resolution-derived, eco-
georeferenceable, narrow, African,  agro-village complex, riverine,  tributary ecosystem,  S. 
damnosum s.l., eco-epidemiological, immature  habitat, discontinuously canopied, trailing 
vegetation-related, turbid water, forecast-oriented, vulnerability, model or the geo-
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spectrotemporally geosampled, immature habitat, uncoalesced data. Multicollinearity does 
not reduce the geo-spectrotemporal predictive power or reliability of the model as a whole, at 
least within the sample data set; it only affects calculations regarding individual observational 
explanators. That is, an explanative, time series,  fractionalized, endmember, multiple 
regression, geo-spectrotemporally optimizable model with correlated sub-mixel, elucidative  
predictors can indicate how well the entire bundle of predictors predicts the outcome variable, 
but it may not give valid results about any individual predictor, or about which predictors are 
redundant with respect to others in the immature habitat model. In case of perfect 
multicollinearity the design matrix is singular and therefore cannot be inverted[24]. 
Unfortunately, for a general linear model [i.e., ], regression  analyses for 
optimally qualitatively  quantitating   explanatorial, eco-georeferenceable, seasonally 
hyperproductive, trailing vegetation, discontinuously canopied, eco-epidemiological, narrow, 
riverine tributary, turbid water, capture point, S. damnosum s.l., endemic foci, ordinary least 
squares [i.e.,  ]estimators does not currently exist. Note that in 
statements of the assumptions in such models the  finding of no multicollinearity may be 
explanatorialy geo-visually  validated amongst the quantitable regressors employing  an 
exact, non-stochastic, linear, geo-spectrotemporal, moderate resolution, eco-cartographic, 
ArcGIS, decompositional model algorithm.  

Dai et al. 2005 distributed an   ArcGIS decomposable, grid-based watershed mercury 
loading model to characterize the spatial and temporal dynamics of mercury from both point 
and nonpoint sources. The model simulated flow, sediment transport, and mercury dynamics 
on a daily time step across a diverse landscape. The model was composed of six major 
components: (1) an ArcGIS interface for processing spatial input data; (2) a basic hydrologic 
module; (3) a sediment transport module; (4) a mercury transport and transformation module; 
(5) a spreadsheet-based model post-processor; and (6) links to other models such as WASP 
and WhAEM 2000 developed by the U.S. Environmental Protection Agency (EPA). The 
model fully employed   the grid processing capacity of the latest ArcGIS technology. The 
water balance, sediment generation and transport, and mercury dynamics were calculated for 
every grid within a watershed. Water and pollutants were routed daily throughout the 
watershed based on a unique and flexible ArcGIS decompositional algorithm that 
characterized an eco-georfernceable, seasonal geospectrotemporal, geosampled watershed 
into many runoff travel-time zones. The mercury transport and transformation module 
optimally geo-spectrotemporally  simulated the following key processes: (1) mercury input 
from atmospheric deposition; (2) mercury assimilation and accumulation in forest canopy and 
release from forest litter; (3) mercury input from bedrock weathering; (4) mercury 
transformation in soils; (5) mercury transformation in lakes and wetlands, including reduction 
and net methylation; (6) mercury transport through sediment and runoff; and (7) mercury 
transport in stream channels. By employing the grid-based technology, flow, sediment, and 
mercury dynamics were robustly examined at any of several points in the watershed. The 
model was capable of supporting large-scale watershed modeling with moderate-resolution 
raster datasets and will be used in mercury research projects sponsored by EPA. The model 
was constructed using visual basic tool in two ArcGIS 9.0 components—ArcView 9 and 
within the unmixingpredictive metaheuristic sub-algorithms in Spatial Analyst extension. 
 

Although x could represent an  significant heuristically optimizable, eco-
georeferenceable, linear explanator in an elucidative dataset of fractionalized endmember,  
moderate resolution,  explanatorial, forecastable regressors as rendered from an  
hyperproductive, seasonal, trailing vegetation, eco-epidemiological, geo-spectrotemporally, 
geospatially uncoalesced, discontinuously canopied, sparsely shaded,eco-epidemiological,  S. 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

164 
Copyright © acascipub.com, all rights reserved.  

damnsoum s.l.,  fractionalized riverine, immature, habitat, endmember eigenvector, moderate 
resolution,  reflectance, capture point, forecast-oriented, weighted, wavelength, transmittance, 
emissivity, vulnerability model, W would actually inhert the causative factor role. Causality 
would thus be ‘transferred’ although a combination of elucidatively quantitable, 
operationizable, ecohydrologic, narrow, eco-georeferenceable, agro-village riverine, 
tributary, geo-spectrotemporal, geospatial,   measurement values and endmember 
multicollinearity would be as well. This phenomenen has been reported by Fuller (1987). 
Measurement error in endmember exposure assessment is unavoidable [24]. Although, 
explicatively empirically regressable geo-spectrotemporally, geospatially uncoalesced, 
moderate resolution (e.g.,  Rapid Eye TM , 5m visible and NIR data), fractionalized, 
wavelength, frequency-oriented, transmittance, emissivity datasets of expositorily 
uncoalesced,  geo-predictive, explanatively orthogonally decomposable, seasonally 
hyperproductive, S. damnsoum s.l., trailing vegetation, discontinuously canopied, turbid 
water,  seasonal  hyperendemic, foci frequencies in hypoethetical space, the precise 
explanatorial, parameterizable covariates may not be specified for a meandering, seasonal, 
pre-flooded, African, agro-village complex, narrow riverine,  eco-georeferenceable,  geo-
samplable pathway.  

       Berkson error model is a description of random error measurement which may resolve 
fractionalized, endmember, eigenvector heteroskedascity in an empirical, geo-
spectrotemporally  geo-samplable,eco-epidemiological  dataset  of explanatively 
discontinuously, sporadically canopied, uncoalescable,  trailing vegtetation, geospatial, 
seasonally hyperproductive, eco-epidemiological, eco-georeferenceable, trailing vegetation, 
turbid water, narrow, African riverine,  tributary, capture point, S. damnosum s.l. sub-
mixel,optimizable  paridigms. Unlike classical error, Berkson error causes little or no bias in 
the measurement. An example of Berkson error arises in exposure assessment in explanative, 
eco-epidemiological, endmember studies. Berkson error may predominate over classical error 
in cases where geo-spectrotemporally uncoalescable, fractionalized, endmember, eigenvector 
exposure, moderate resolution, geo-ecohydrologic, bio-geophysical, robustifiable data are 
highly aggregated but in intervals. Whilest this kind of endmember  uncertainity, 
explanatorial ,probablistic quantitation can improve the power of an empirical explanative 
datset of  seasonally hypeproductive,  African, narrow rivrine, tributary, agro-village, 
complex ecosystems, capture point, probabilistically regressed,  risk estimates, the  eco-
epidemiological eco-georefernceable,wavelength, frequency-oriented, transmittance, 
emissivity  forecasts may not themselves be attenuated such as in circumstances where sub-
mixel, randomized, erroroneous substances  predominates in the  explanatively 
geospatialized, geo-spectrotemporally uncoalesced, capture point, model output. Thus, 
mispecifications may be rampant in iteratively, explanatively, interpotable, eco-
georeferencable,  moderate resolution, proxy signature, uncoalesced datatsets targeting un-
geosampled, unknown, seasonally hyperprodutive, discontinuously canopied, trailing 
vegetation, turbid water, sparsely shaded,  narrow, tributary riverine, African, agro-villge 
complex, hyperproductive foci.  

 
For remotely, metaheuristically optimal, quantitative, explanative geo-

spectrotemporal  empirically regressable datasets of  elucidatively uncoalesced, robust,eco-
georeferenceable, moderate, spatial resolution, hyperproductive, turbid water, narrow riverine 
tributary, African, agro-village, S. damnosum s.l., trailing vegetation, discontinuously 
canopied, ecosystem complex, seasonally geosampled,optimally   parameterizable, covariate 
coefficient, decomposed values, a reasonable customizable model for the measurement errors  
may be the Berkson model  where  X = Z + ᵹ, and where, ᵹ is the unobserved, explanatorial,  
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random, measurement  error. This misspecification would be assumed to be independent of 
the observed, explanatively forecastable, eco-georeferenceable, parsimonioulsy optimizable, 
regression variable Z in ArcGIS. The stochastic structure of the Berkson measurement error 
model in an ArcGIS cyberenvironment is fundamentally different from the classical errors-in-
variables model in other software packages (e.g., SPSS)  where the measurement error is 
independent of X, but dependent on Z. This distinctive feature may lead to completely 
different  explanatively eco-georeferenceable, elucidatively,optimally parameterizable, latent, 
iterative, algorithmic procedures in ArcGIS for robustly regressively qualitatively 
quantitating, an heuristically robustifiable, uncoalescable, explanative  sub-mixel, moderate 
resolution,  geoclassifiable, LULC dataset of time series,  probabilistic, parameterizable, 
fractionalized  eigenvector, geo-spectrotemporal, radiance estimators. In so doing, the eco-
cartographically, elucidatively, illustratable, turbid water, trailing vegetation, optimally 
parameterizable, eco-catographic, covariate coefficients or discontinuous, sparsely shaded, 
sporadically canopied variables may be seasonally deduced and eco-georeferenced to 
seasonal hyperproductive capture points, In so doing, optimal inferences of unknown, un-
geosampled, infrequently canopied, seasonally hyperproductive, agro-village complex, 
African, narrow, riverine tributary,  S. damnosum s.l., immature habitats on moderate 
resolution  geo-classifiable LULCs in ArcGIS may be operationally reterivable employing an 
geospatially interpretive, stochastic or deterministic, quantitative, explanatorial  interpolator.  
 
        For an empirical  dataset of nonlinear, discontinuously,sparsely shaded, partially 
infrequently canopied, fractionalized  endmember, hyerproductive,  eco-georeferenceable, 
eco-epidemiological, capture point, turbid water, trailing vegetation, capture point, S. 
damnosum s.l. forecast vulnerability, African, narrow, tributary, riverine ArcGIS-derivable, 
agro-village model eigenvectors, an approximative method called regression calibration may 
be presented. Recently, Huwang and Huang (2000) studied a univariate polynomial model 
where g(x; ᵹ θ) was a polynomial in x of a known order which intuitively may reveal optimal, 
eco-georefernceable, least squares-related, seasonally explanatively, hyperproductive, capture 
point, S. damnosum s.l., immature habitat, explicatively decomposable LULC datasets of 
iteratively quantitable  interpolative, geospatialized uncoalescable, unbiased geo-
spectrotemporal endmember moderate resolution, wavelength, transmittance, frequency-
oriented explanatorial estimators based on the first two conditional moments of Y given Z is 
consistent. Wang (2003) considered general, univariate,nonlinear, expositive, endmember, 
fractionalized, eigenvector  model outputs  where all random errors were normally distributed 
and showed that the elucidative, minimum distance, endmember  estimators based on the first 
two conditional moments of Y  given Z  is consistent and asymptotically normally 
distributed.  

 
The traditional method of analyzing continuous or ordinal, explanative, fractionalized, 

endmember eigenvector, moderate resolution,  risk factors by categorization or linear 
discontinuously, sparsely shaded, partially canopied, endmember, expositorily  fractionalized,  
hyerproductive,  eco-georeferenceable, turbid water, trailing vegetation, eco-epidemiological, 
capture point, S. damnosum s.l. ArcGIS-derivable, heuristically optimizable,  forecast 
vulnerability models may be improved in ArcGIS cyberenvironments. For example, an 
approach based on transformation and fractional polynomials  which yields simple regression 
models with interpretable curves in ArcGIS may render iteratively interpolatable unknown, 
un-geosampled, seasonal, capture point, hyperproductive, habitats in an narrow African, 
tributary, eco-georeferenceable, riverine, agro-village, complex ecosystem. A methodology  
of  optimally ecohydrologically, geo-spectrotemporally, geospatially  eco-
cartographically,presenting the results from such geoclassifiable, moderate reolution,  LULC 
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models  in ArcGIS may  be to rigriously tabulate  the aggregated mean risks estimated from 
the model at convenient values employing any linear combinationof  eco-biogeophysical  
elucidative co-factors of onchocerciasis( e.g., Levels of seasonal turbidity during preflooding 
in an eco-georferenceable, African, narrow, riverine tributary, agro-village, ecosyem 
complex).  Incorporating several explanatively eco-georeferenceable,  continuous risk and 
confounding geo-spectrotemporal, geospatiazed, moderate resolution, uncoalesced,  S. 
damnosum s.l. forecastable variables within a single model may resolve any moderate 
resoluiton, decomposed, weighted,  wavelength, transmittance, frequency-oriented,  
emissivity,  parameterized covariate,  estimator, probabilistic endmember uncertainty. This 
ArcGIS approach may lead to further categorization of sub-mixel estimators in non-
parametric, optimizable regression, model algorithms. It may be shown that non-linear, 
moderate resolution geo-spectrotemrpoally uncolaesced, ArcGIS, S. damnosum s.l.,   
forecast, vulnerability models fit the data better than linear models. Fractionalized, moderate 
resolution, endmember, eigenvector polynomials synthesized in an ArcGIS cyberenvironment 
may be an important alternative to the traditional approaches for analysis of continuous 
variables in epidemiological onchocerciasis studies in narrow riverine, tributary, 
ecogeorferenceable African agro-village complexes.  

 
In many practical geo-spectrotemrpoally geospatialized, non-linear, seasonal, narrow, 

riverine, tributary, hyperproductive, eco-georeferenceable, S. damnosum s.l., eco-
epidemiological, geo- uncoalesced, moderate resolution, weighted, wavelength, frequency, 
transmittance, forecast-oriented, emissivity, vulnerability, model specifications there may be 
often more than one explanatively decomposable,  sub-mixel, ecohydrologic, geo-biophysical 
variable ( e.g., Percent of dead shaded floating vegetation) which may be subject to 
reflectance measurement errors. Moreover, the random errors " ᵹ” may have distributions 
other than the normalized, expositively fractionalized, probabilistically regressed, 
endmember orthogonalized eigenvector distributions. By generalizing  the results of  the geo-
predictive, elucidatively nonlinear, eco-epidemiological, uncoalescable, moderate resolution, 
weighted, moderate resolution,  wavelength, frequency-orinted, emissivity, eigenvector 
transmittance,  ArcGIS models with multivariate, eco-georefernceable, capture point, narrow, 
agro-village, African, seasonal, riverine, tributary imature habitat, high density foci, the 
measurement error ᵹ  may reveal  a generalizable parametric distribution f_(t; ) ∈ ⊂ Rq,  
where the random error may have  a nonparametric distribution with mean zero and a 
quantizable variance. This output would be geo-visualizable, in the explanatively forecasted, 
geo-spectrotemporally geosampled, residualizable, fractionalized, unmixed, endmember 
eigenvector, multivariate dataset of  explanative, discontinuous,  vegetation-related, partially 
canopied, geoclassifiable, LULC regression variables. As such, the time series dependent, 
latent, fractionalized, explicative eco-epidemiological, endmember eigenvector, heuristically 
optimizable, moderate resolution, dataset  would absolutely eco-cartographically delineate  
semiparametric, geo-spectrotemporally, empirically regressable, ecohydrologic, 
geospatialized datasets of  elucidatively explanative, S. damnosum s.l., hyperproductive, 
uncoalesced, capture point, immature habitat, orthogonally, quantitatively  decomposable,  
wavelength, frequency, transmittance, emissvities  as regressively rendered from an eco-
georefernceable, agro-village,  narrow African, riverine, tributary, forecast, vulnerability 
model. 
     
        The minimum distance estimator of Wang (2003) may be consistent and asymptotically 
normally distributed in ArcGIS  for constructing an elucidative, eco-georefernceable, 
discontinuously, sparsely shaded, infrequently canopied, fractionalized endmember, narrow, 
riverine  tributary, eco-epidemiological, S. damnosum s.l., immature, seasonal, capture point, 
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forecast, vulnerability eco-epidemiological, eigenvector spatial filter, moderate resolution, 
forecast-orinted, vulnerability model.  For the generalizable seasonally, infrequently, partially 
shaded model, however, a computational issue may arise due to  the minimized objective 
function in uncoalesced, geospatially  explicative, eigenvector, riverine, agro-villagenarrow 
tributary, African agro-village,  trailing vegetation, discontinuously canopied, turbid water, 
hypeporductive,  Similium habitat, probabilistically regressable, heuristically optimizable,  
eco-epidemiological, datasets of  the immature habitat, residual forecasts would involve 
important varying multiple integrals (e.g., eco-georefernceable geosampled distance 
measurements between turbid water, discontinuously canopied, hypeproductive, capture point 
immature habitats) for which explicit forms may not always be parsimoniously obtained. 
Given a function f : A R from some set A (i.e.,  real-geosampled empirically orthogonally 
explanatively decomposed, eco-epidemiological, datset of  eco-georefernceable, optimally 
parameterizable geo-spectrotemporally uncoalesced, Similium habitat, moderate resolution, 
time series,  regressed, covariate coefficients) an element x0 in A such that f(x0) ≤ f(x) for all x 
in A ("minimization") or such that f(x0) ≥ f(x) for all x in A ("maximization") may be 
optimally synthesized .To overcome any difficulties during synthesis, an explanative, 
simulation-based, sub-mixel,  elucidatively fractionalizable, heuristically  optimizable, 
ArcGIS linear   estimator may be employed in a moderate resolution, forecast, vulnerability 
map which may be consistent and asymptotically normally distributed under regularity 
conditions for elucidatively qualitatively quantitating a minimum distance endmember, 
fractionalized eigenvector estimator.It may be assumed  that Z,  and ᵹ   are independent in the 
immature habitat, capture point, sub-mixel model and Y  has a finite second moment.  

In addition, the common assumption that quantitated ArcGIS measurement error is 
“nondifferential” may be adopted in a moderate resolution, S. damnosum s.l., capture point, 
immature habitat, orthogonally, quantitatively  decomposable, weighted, wavelength, 
frequency, transmittance, emissvity,  endmember, eigenvector, forecast, vulnerability model   
in the sense that the conditional expectation of Y given X and Z may be  the same as the 
conditional expectation of Y given X is the  eco-epidemiological, residualized forecasts 
targeting the unknown, un-geosampled  narrow African, riverine tributary, agro-village, eco-
georeferenceable, seasonal hyperproductive, immature habitats. In such circumstances, Z 
may be assumed to be an elucidative geospatialized, optimally randomized, seasonally 
explanative, eco-georeferenceable,   hyperproductive, capture point, immature habitat, 
orthogonally decomposable, sub-mixel, intuitive regressor and thus all results would continue 
to hold if the illuminatively, trailing vegetation, turbid water, discontinuously canopied,  
sparsely shaded, fractionalized  expositive, endmember, eigenvector observations of Z, 
Z1,Z2, . . . ,Zn,  in ArcGIS are treated as fixed constants such that the limits limn→∞Pni=1 
Zi/n and limn→∞Pni=1 ZiZ′i/n are finite. 

Further, by building queries in ArcGIS to predict seasonally explanative,  
hyperproductive, eco-epidemiological,  capture point, immature  habitat events (e.g., pre-
flooding and riverine meadering) and control activities (“Slash and Clear”) of  eco-
georefernced, prolific, high density, endemic, African, narrow riverine tributary, agro-village  
capture point, seasonal foci, may be assumed from an endmember eigenvector, residually  
fractional, vulnerability, model  output. These explanatively robustifiable eco-
epidemiological, reflectance eigenvector forecasts may reveal geo-spectrotemporally, 
geospatially  uncoalesceable, bidirectional, moderate resolution, fractionalized, weighted, 
wavelength, transmittance emissivities and frequencies (e.g., trailing vegetation, moderate 
resolution, unmixed, proxy signature, sparsely shaded, riffle, catchment water level 
reflectance) that may be found to be autoregressively optimally eco-hydrologically associated 
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with particular seasonal, eco-geographic, discontinuously, infrequently canopied, eco-
georeferenceable, hyperproductive, riverine, hyperendemic geolocations.  If geosampled, 
seasonal, trailing vegetation of an eco-georeferenced, seasonally hyperproductive, trailing 
vegtation, turbid water, S. damnosum s.l., discontinuously canopied, immature habitat prefers  
non-homogenously,infrequently canopied, sparsely shaded, narrow, riverine, tributary, 
sparsely shaded, hyperendemic, explantive, geoclassifiable, LULC foci, within X distance 
from an ecogeoreferenceable, hyperproductive, eco-epidemiological, capture point, but more 
than Y distance from a populated, narrow, riverine, agro-village, complex centroid, the Query 
Builder can manually construct the query in ArcGIS, then apply it to rasters to see which geo-
spectrotemporal, geospatially geosampled, immature, habitat existing in unknown, un-
geosampled, geolocations satisfy those conditions.  

  
Accorrding to Jacob et al. [22] impreciseness of a biased, auto-probabilitic, 

heuristically, non-optimizable, fractionalized, uncertainty-oriented, geo-spectrotemporally, 
geospatially dependent, explicatively fractionalized, endmember,  elucidative, 
optimizable,regression  variable in an eigenvector, spatial filter, iterative ArcGIS algorithm, 
commonly originates from a sample population whose distribution violates the assumption of 
a normal distribution.  In an heuristically non-optimizable, explanatorily, un-intutively, non-
optimally decomposable, moderate resolution, target-oriented, discontinuous, infrequently 
canopied, seasonal, S. damnosum s.l. eco-epidemiological, agro-village, complex ecosystem, 
hyperproductive, eco-georeferenceable foci, seasonal  centroid, an informative, geo-
spectrotemporally uncoalescable, empirical dataset can lead to non-robust, sub-mixel (i.e., 
fractionalized renderings) as  spatial autocorrelation. As such the correlation amongst values 
of a single geo-spectrotemporally geosampled, S. damnosum s.l., immature habitat, variable 
would be strictly attributable to their relatively close eco-georeferenceable geolocational 
positions on a two-dimensional surface whilest introducing a deviation from the independent 
observations assumption of classical statistics. A variant of conventional correlation is serial 
correlation, which pertains to the correlation between endmember eigenvector coefficient 
values for observations of a single decomposed mixel variable according to some ordering of 
the values [24].   

 
A scatterplot that cannot geo-visualize and autoregressively quantitate, latent, 

explanative, geo-spatiotemporal or geo-spectrotemporal endmember autocorrelation, 
coefficients in a seasonally expositively fractionalized, explanatively forecastable, and 
heuristically optimizable, empiricalized, eigenvector dataset of geosampled, eco-
georeferenceable and orthogonally explanatively decomposable, moderate resolution, 
seasonally imaged, S. damnosum s.l., discontinuously canopied, uncoalesced, capture point, 
hyperproductive, habitats with iteratively interpolative, fractionalized, moderate resolution, 
unbiased, weighted, wavelength, transmittance frequencies employing a conventional 
correlation coefficient in ArcGIS will not be able to describe the direction and strength of a 
non-linear relationship, thus leading to non-normal, emissivity diagnostic, quantile plots of 
the residuals (e.g., biasedly forecasted geocoordinates of geospatial outliers).  

         In statistics, OLS or linear least squares is a method for estimating the unknown 
parameters in a linear regression model, with the goal of minimizing the differences between 
the observed responses in some arbitrary dataset and the responses predicted by the linear 
approximation of the data. Jacob et al. [22] visually plots the sum of the vertical distances 
between each eco-georeferenceable, seasonally hyperproductive, discontinuously canopied S. 
damnsoum s.l., trailing vegetation, turbid water, geoclassified, narrow, African, riverine 
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tributary, agro-village complex,geosampled  data point with the corresponding point on the 
regression line. The authors found that the smaller the differences,the better the model fits the 
geo-spectrotemporally immature geosampled data. The resulting estimator was expressed by 
a simple formula, in ArcGIS employing  a single regressor on the right-hand side of the 
moderate resolution,optimally derived,  elucidatively uncoalesced, forecast-oriented, 
vulnerability model.The S. damnosum s.l. immature, eco-epidemiological, capture point, OLS 
estimator was consistent and  the fractionalized, endmember eigenvector, expositive 
regressors  were exogenous and there was no perfect multicollinearity when the model  was 
validated using a  stepwise backward regression in ArcGIS. The linear, unbiased, forecast 
estimators were of optimal class since the diagnosed non-normalities were homoscedastic and 
serially uncorrelated. The method of OLS provided minimum-variance, mean-unbiased, 
residual estimation of the uncoalesced, geo-spectrotemporal, geospatialized, eco-
georeferenceable, trailing vegetation, turbid water, sparsely shaded, discontinuous, 
infrequently canopied, hyperproductive, S. damnosum s.l. immature habitat since the errors 
had finite variances. Under the additional assumption that the errors are normally distributed, 
OLS is the  ML estimator [25]. Unfortunately, there has been little attention given to 
explicative, diagnostic, residual endmember,  plots for  qualitatively quantiating eco-
georefernceable, uncoalesced, time series regression  paridigms for identifying eco-
georeferenceable,  trailing vegetation, discontinuously canopy, turbid water, seasonally 
hyperproductive, eco-epidemiological, forecasting, African, narrow, riverine tributary African 
agro-village complex ecosystems 

 There are some principal assumptions which justify the usage of  moderate 
resolution, endmember linear  eigenvector regression models in ArcGIS for purposes of 
inference or prediction for targeting un-geosampled,unknown, fractionalized, digitally 
archivable, trailing vegetation, discontinuously canopied, geo-spectrotemporally, 
uncoalesced, S. damnosum s.l., geo-spatialized, capture point, imaged, immature, eco-
epidemiological, eco-georeferenceable, hyperproductive habitats. These  primary assumption 
include quantitating  linearity and additivity relationships  between endmember dependent 
and independent variables where the expected value of dependent variable would be  a 
straight-line function of each geo-spectrotemporally geosampled, trailing vegetation, turbid 
water, sparsely shaded, infrequently, discontinuously canopied, eco-cartographically 
synthesized, independent variable, whilest holding the others fixed.  Secondly, the slope of 
the endmember fractionalized regressed line do not depend on the values of the other 
endmember variables.  The effects of different independent variables on the expected value of 
the dependent sub-mixel, log-transformed variable are additive and  statistical independence 
of the errors. Thus, no correlation may be assumed to exist between consecutive error 
quantitation  in the case of eco-georeferenceable, time series, hyperproductive, immature 
habitats with geo-spectrotemporally uncoalesceable, iteratively interpolative, fractionalized, 
moderate resolution, optimally derived, weighted, wavelength, transmittance, frequency-
orinted  data variables for qualitatively quantitating homoscedastic error coefficients.  
Unfortunately, eco-epidemiological, forecast-orinted,explanatively residually normalized 
outputs rendered from a geo-spectrotemporally geo-spatialized,  trailing vegetation, 
discontinuous, infrequently canopied, S. damnosum s.l., eco-epidemiological, eco-
georeferenceable,  riverine, tributary, capture point, moderate resolution, optimally derived, 
eco-epidemiological, forecast, fractionalized, endmember, eigenvector, vulnerability model 
that violates all of  sub-mixel regression assumptions is likely to be accepted by a naïve user 
on the basis of a large value of R-squared. If endmember regression assumptions is violated 
in an explanative,  eco-georeferenceable, seasonally hyperproductive, capture point,  narrow 
riverine, tributary, African, agro-village complex, S. damnosum s.l., trailing vegetation, 
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discontinuously canopied, eco-epidemioloigical,turbid water, sparsely shaded, seasonal, 
immature habitat, forecast vulnerability  model (i.e., if there are nonlinear relationships 
between quantifiable dependent and independent  explicative variables or the errors in an 
seasonal habitat exhibit correlation, endmember heteroscedasticity, or non-normality), then 
the residual forecasts, confidence intervals, and scientific insights yielded by the  model may 
be at best inefficient or at worst seriously biased or misleading.   

Ideally,  statistical software utilized for constructing  moderate resolution, seasonally 
imaged, uncoalescable, eco-georeferenceable,   seasonally hyperproductive, trailing 
vegetation, turbid water, S. damnosum s.l., discontinuous, infrequently canopied,  eco-
epidemiological, capture point, geo-spectrotemporal, geospatialized, narrow, African, 
riverine, tributary, capture point, agro-village complex, ecosystem, geosampled, 
hyperproductive,immature  habitats with iteratively interpolative, expositively fractionalized,  
moderate resolution, unmixed wavelength, transmittance frequencies will automatically 
provide charts and statistics that test whether endmember regression  assumptions are 
satisfied for any given, eco-epidemiological, forecast-oriented, heuristically optimizable, 
vulnerability model,parameterizable, covariate estimator.  Unfortunately, many software 
packages do not provide such output by default (additional menu commands must be 
executed or code must be written) and some (such as Excel’s built-in regression add-in) offer 
only limited options.   

  Expositorily fractionalized, explanatively discontinuous, infrequently canopied, 
sparsely shaded, uncoalesced, 5m imaged, , RapidEyeTM, geospatially, geosampled, eco-
georeferenceable, trailing vegetation, eco-epidemiological, capture point, sparsely shaded, S. 
damnosum s.l., turbid water,immature habitats, fractionalized  endmember,  moderate 
resolution, eigenvector-related. geo-spectrotemporal ArcGIS, image analysis frequently 
employs model-based, statistical inference, which iteratively interpolatively, quantitates 
based on the dependability of optimally parameterizable, sub-mixel regressors. Subsequently, 
these coefficient renderings are based upon the correctness of posited assumptions about the 
model's error term. In omitted-variable bias (OVB) the "bias" is created when the model 
compensates for the missing factor by over- or underestimating the effect of one of the other 
factors[24]. More specifically, OVB  in a empirical dataset of  geo-spectrotemporally 
geosampled, eco-georeferenceable, eco-epidemiological, uncoalescable, capture point, 
trailing vegetation, endmember, fractionalized, decomposed ArcGIS-derived, moderate 
resolution, geo-spectrotemporal,  geospatialized, S. damnosum s.l. endemic, forecast-orinted, 
vulnerability  model  orthogonalized eigenvectors would may include  the bias that appears in 
the sub-mixel estimators  during a   regression analysis, since the assumed specification 
would be  incorrect in that it would  omit  an independent variable [e.g.,monthly biting 
rate(MBR)]  that may be correlated with both the dependent variable and one or more 
included independent variables. 

         One principal assumption  in these explanatively, seasonally forecastable, elucidatively, 
orthogonally decomposable and heuristically optimizable, vulnerability paradigms is that 
individual explicative,  autoregressive error terms can come from a specified, seasonal, 
geosampled population (e.g., eco-georeferenceable dataset of pre-flooded, eco-
georferenceable, clustering narrow riverine, tributary, African agro-village complex,  S. 
damnosum s.l,. turbid water, heterogeneously canopied, sparsely shaded, trailing vegetation, 
capture point,  immature habitats) whose entries are thoroughly randomly mixed. Moreover, 
another primary assumption of explanatively, orthogonally elucidatively decomposable, 
heuristically robustifiable, geo-spectrotemporal,  geospatialized, clustering data (e.g., 
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seasonally unmixed, discontinuously, infrequently canopied, immature, seasonal, narrow, 
African tributary, riverine, Simulium habitat, bidirectional, moderate resolution, reflectance 
agro-village, eco-epidemiological parameters) is that the explanatively autoregressable error 
term entries will not affect the quantitated probability of a illuminatively parameterizable, 
fractionalized, wavelength, emissivity or, covariate coefficient  frequency taken on by any of 
the remaining error term entries (i.e., the independent observations assumed in classical 
statistics in a forecasting regression-related analyses). Since non-zero, spatial autocorrelation 
in explanatively seasonally, eco-georeferenceable, expositorily, fractionalized, geo-
spectrotemporally geospatially, explanatively  uncoalesced, dataset of sparsely shaded, 
moderate resolution, imaged, trailing vegetation, eco-epidemiological, agro-village, complex 
ecosystem, turbid water, narrow, African, riverine, agro-village, capture point, trailing 
vegetation, immature hyperproductive, tributary habitats interpretively, iteratively, 
quantitative, orthogonally decomposable, iteratively interpolated, illuminative estimators 
rendered from an S. damnosum s.l.,forecast vulnerability model would violate this 
assumption. Only few models with heuristically optimal, eco-epidemiologically forecastable, 
vulnerability residuals (e.g., discontinuous, infrequently canopied, targeted eco-
georefernceable, geolocations of unknown, high density,un-geosampled, riverine foci) would 
exhibit eco-cartographic, geopredictive  latent  expressions when mapped.  Most variables 
exhibit some type of spatial organization across space[24].  
 

Importantly, geo-spectrotemporally geospatially uncoalesced,  moderate resolution, 
weighted wavelength transmittance, emissivity, frequency-oriented, moderate resolution, 
fractionalized,  endmember eigenvector models of immature, seasonal, hyperproductive, 
trailing vegetation, turbid water,  explanative,  eco-georefernceable, S. damnosum s.l., 
riverine, narrow, tributary, capture point, immature habitats, constructed with vulnerability-
oriented,  eco-epidemiological, forecastable geosampled assumptions may  render, unmixed, 
proxy signature, illuminative variables with their probabilistic residual uncertainties. These 
renderings may be quantitated from exploratory, orthogonally explanatively decomposable, 
discontinuously, infrequently canopied, fractionalized, sparsely shaded, geo-spatially geo-
spectrotemporally extractable, immature, narrow riverine, tributary, agro-village, African 
complex, turbid water,uncoalesced, immature habitat, sub-mixel explanators within a linear 
algorithm in ArcGIS based on the proportion-weighted combination of the irradiance, 
derivative spectra. An uncertainty process is a repeating process whose outcomes follow no 
describable, deterministic pattern, but follow an uncertainty distribution, such that the 
propagational measure of the occurrence of each outcome can only be approximated or 
calculated [24]. Probabilistic expostorial, endmember probabilistic, unquantitated 
uncertainities arising from geospatially, geo-spectrotemporal remotely un-rectifiable, 
explanatorial, expositorily, non-fractionalized, non-orthogonally decomposed, uncoalescable, 
moderate resolution, optimally derived, non-paramterizable, regression-related covariates can 
also alter calculated fractionalized eigenvector contributions. The concentration distribution 
for effectively, optimally interpreting iteratively interpolative, heuristically decomposable, 
discontinuous, infrequently, sparsely shaded,  partially canopied, seasonally hyperproductive, 
eco-georeferenceable, immature, capture point, S. damnosum s.l., narrow, African, riverine, 
agro-village complex, expositively fractionalized, orthogonalized, tributary habitat, spatial 
filter  eigenvectors in ArcGIS (i.e., the flux-weighted input of the  habitat endmember data 
stream), requires robustly  quantitating  markedly different waveband proportions from that 
IR especially for sampling flood water stored in the catchment. 
 

Qualitatively remotely, quantitating inconspicuous, clustering tendenicies [i.e., non-
explanative, latent negative autocorrelation) in an empirically regressable datset of  
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illuminatively geospatialized iterative/non-iterative, eco-georeferenceable aggregations of 
dissimilar, discontinuously, infrequently canopied, geo-spectrotemporal,geospatialized 
eigenvector ensembles in geo-space in moderate resolution, seasonally imaged, 
hyperproductive, sparsely shaded, trailing vegetation, S. damnosum s.l., African narrow, 
riverine tributary,  agro-village complex, turbid water, eco-epidemiological, tributary, capture 
points, in ArcGIS [e.g., Geospatial AnalystTM extension] can render non-robust, eco-
hydrologic, eco-cartographic, sub-mixel,  non-decompsoable explanators.Subsequently the 
field-operationalizable, empirically non-Gaussianistic, explicatively parameterizable 
transmittance would autoregressively render geopredictive non-explanative covariates based 
on  mispecified  erroneous, wavelength, frequency emissivities.  

 
Gridded, elucidatively stratifiable, descriptive, fractionalized, endmember,  

orthogonalizable, eigenvectors and their spatial filters may optimally eco-cartographically 
delineate an optimal, autoregressive, uncertainty-oriented, geo-spectrotemporal and/or geo-
spatiotemporal autocorrelation, probabilistic,  geo-spatializable, uncertainty, weighted matrix 
in SAS/GIS (e.g., AUTOREG), in geo-space which may iteratively employ various clustering 
algorithms (e.g., eigenclusters) for data vector quantization and pattern recognition of 
seasonal, S. damnosum s.l. decomposeable, eco-georeferenceable, capture point, immature,  
hyperproductive habitats. Spatial geo-classification of   non-elucidative, eco-
georeferenceable, explanatively geo-spectrotemporally uncoalescable, discontinuously, 
infrequently canopied, sparsely shaded, trailing vegetation, geospatializable,immature, S. 
damnosum s.l., riverine, turbid water, high density, narrow tributary, seasonal, capure point,  
immature habitats may be contructed in AUTOREG. An eigenfunction of a linearly, 
explanatively, orthogonally explanatively decomposable, 5m, RapidEyeTM of immature, 
prolific, Simulium, riverine foci, unmixed,dataset eco-geographically and non-
ecogeographically illustrating autoregressably and expositorily fractionalized, moderate 
resolution, wavelength transmittance, operators, optimally defined on some elucidative 
function space may be represented in space by any non-zero function in that space which 
returns from the operator exactly as is, except for a multiplicative scaling factor in an ArcGIS 
cyberenvironment.  

In ArcGIS, a function space may be represented by a set of functions of a given kind 
from a set X to a set Y .  It is called a space because in many applications it is a topological 
space (including metric spaces), a vector space, or both. Namely, if Y is a field, function in 
ArcGIS with an inherent vector structure in an  heuristically explanatively, expositorily 
fractionalized,  iteratively interpolative, moderate resolution, seasonally imaged, 
discontinuously, infrequently canopied, seasonally hyperproductive, African narrow, riverine 
tributary, trailing vegetation,  S. damnosum s.l., sparsely shaded, turbid water, eco-
epidemiological, capture point,two operations of pointwise addition and multiplication to a 
scalar may be optimally performed. Scalar multiplication is one of the basic operations 
defining a vector space in linear algebra or more generally, a module in abstract algebra [24].  

               In an seasonally explanative hyperproductive, eco-georeferenceable, geo-
spectrotemrporally geospatially geosampled, African, narrow, riverine tributary, S. damnosum 
s.l., vulnerability, forecast-oriented, regression model, an inner product space may be 
optimally a vector space with an additional structure (i.e., inner product). An inner product 
naturally induces an associated norm, thus an inner product space is also a normed vector 
space. A complete space with an inner product is called a Hilbert space. The mathematical 
concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean 
space. It extends the methods of vector algebra and calculus from the two-dimensional 
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Euclidean plane and three-dimensional space to spaces with any finite or infinite number of 
dimensions An (incomplete) space with an inner product is called a pre-Hilbert space, since 
its completion with respect to the norm induced by the inner product is a Hilbert space. Inner 
product spaces over the field of complex numbers are sometimes referred to as unitary 
spaces.As such, additional geo-spectrotemporally geospatially explanatively uncoalesced, 
elucidative, discontinuously canopied, fractionalized endmember, immature habitat 
decomposable structures may be associated to each pair of uncoalesced, moderate resolution, 
moderate resolution, wavelength, emissivity, frequency vectors in space with a scalar 
quantity. These regression renderings may   optimally map, eco-georeferenceable, 
explicative, narrow riverine, tributary, capture point, hyperproductive foci, radiance–related 
eco-epidemiological, variables based on the  inner product of the vectors. Inner products 
allow the rigorous introduction of intuitive geometrical notions such as the length of a vector 
or the angle between two vectors [24]. . Inner products allow the rigorous introduction of 
intuitive geometrical notions such as the length of a vector or the angle between two vectors 
whilest provide the means of defining orthogonality between vectors (zero inner product). 
Inner product spaces generalize Euclidean spaces (in which the inner product is the dot 
product, also known as the scalar product) to vector spaces of any (possibly infinite) 
dimension, and are studied in functional analysis[25]. Further, in an seasonally explanative, 
hierarchical, eco-georeferenceable, explanatively, orthogonally quantitatively 
decomposable,seasonally hyperproductive, narrow, riverine, tributary capture point, S. 
damnosum s.l., turbid water, trailing vegation, immature habitat autoregressive weighted 
model  with their respective discontinuously, orthogonally decomposed, synthetic, spatial 
filter, eigenvector forecasts could provide   the means of defining orthogonality between 
vectors (i..e, zero inner product) which  may be provided in ArcGIS (Figure  15). The dot 
product of vectors a a and unit vector u u is the projection of a a onto u u , i.e., 
a⋅u=∥a∥cosθ, a⋅u=∥a∥cos θ, where θ θ is the angle between a a and u u[25] . This expression 
does not involve the magnitude of u u in an  eco-epidemiological, ecogeoreferenceable, 
capture point,  S. damnosum s.l   wavelength, trasnmittance, emissivity, forecast, 
vulnerability model since the residuals would be  normalized to be length one 

 

 

 

 

 

 

 

 

Figure 15 Geometric interpretation of the angle between two hypothical, 
hypeproductive, discontinuous,infrequently canopied,  trailing vegtetaion, turbid water, 
S. damnsoum s.l. immature ,  capture point , vectors defined using an inner product in 
geospace 
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          Some authors, especially in physics and matrix algebra, prefer to define the inner 
product and the sesquilinear form with linearity in the second argument rather than the first in 
ArcGIS.  In so doing, the first argument becomes the conjugate  linear response rather than 
the second.  In those discplines the product as  (the bra–ket notation of quantum 
mechanics,) could be optimally written respectively as (i.e., dot product as a case of the 
convention of forming the matrix product AB as the dot products of rows of A with columns 
of B) in ArcGIS. In so doing, the kets and columns  in a orthogonally, quantiatively, 
explanatively decomposable,seasonal, narrow African , riverine tributary, eco-
georefernceable,  S. damnosum s.l., capture point, turbid water, trailing vegetation,prolific,  
immature habitat would be  identified with the vectors of V and the bras and rows with the 
dual vectors or quantized  linear functionals of the dual space V∗, with conjugacy associated 
with duality in an uncoalesced,  immature, hyperproductive, seasonal, immature habitat, 
fractionalized estimators. This reverse order has also been followed in the more abstract 
ArcGIS literature, taking to be conjugate linear in x rather than y. A few researchers 
have found a middle ground by recognizing both and as distinct notations differing 
only in which argument is conjugate linear in a ArcGIS endmember forecasting vulnerability 
paridigm. 

       The vector A i can be optimally written in ArcGIS employing any set of basis vectors 
and corresponding coordinate system. Informally basis vectors are like "building blocks of a 
vector": they are added together to compose a vector, and the coordinates are the numerical 
coefficients of basis vectors in each direction. Two useful eco-geographic, explanative 
representations of a vector are simply a linear combination of basis vectors, and column 
matrices. Employing the familiar Cartesian basis,in an ArcGIS cyberenevironment  a vector 
A may be written  optimally  as 

 where ex, ey, ez denotes 
the Cartesian basis vectors where all geo-spectrotemporally, geospatialized, eco-
epidemiological uncoalesced, datasets of eco-georefernceable trailing vegetation, 
discontinuously, infrequently canopied, S. damnosum s.l., turbid water, hyperproductive, 
immature habitats are orthogonal unit vectors and Ax, Ay, Az are the corresponding 
coordinates, in the x, y, z directions. In a more general notation, for any basis in 3-D ,an 
optimizable, explanatively heuristically, robustifiable, dataset of orthogonally quantiatively 
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decomposable, seasonally , narrow, riverine, tributary, S. damnosum s.l., capture point, turbid 
water, trailing vegetation, immature habitat, S. damnosum s.l., frequency wavelength, 

variables may be optimally regressed using   . 

          Generalizing further, consider a vector A in an N-dimensional vector geospace over  an 
metaheuristically optimizable, elucidative, eco-georeferenceable, explanatorial, field of  geo-
spectrotemporally, geospatially uncoalesced, moderate resolution, weighted, wavelength, 
,frequency emissivities rendered  from an empirical  dataset of  eco-epidemiological, 
seasonally hyperproductive, explanative,  capture point,. S. damnosum s.l., trailing 
vegetation, discontinuously infrequently, canopied, sparsely shaded, fractionalized, immature 
habitat, transmittance-oriented, regressively complex, coefficient values ℂ, If this dataset is 
symbolically stated as A ∈ ℂN., the dimension of a vector space V may be quantaized as  the 
cardinality (i.e. the number of vectors) of a basis of V over its base field.  For every vector 
space in a, S. damnsoum s.l. immature,  capture point there would  exist  a basis  of a vector 
space  for all equal cardinality [2] ]as a result, the dimension of a vector space  in a 
wavlength, trasnmittance emissivity, forecastable, vulnerability model may be  uniquely 
defined 9in ArcGIS  

       We say V is finite-dimensional if the dimension of V is finite, and infinite-dimensional if 
its dimension is infinite[24]. In mathematics, the dimension of a vector space V is the 
cardinality (i.e. the number of vectors) of a basis of V over its base field. For every vector 
space there exists a basis, and all bases of a vector space have equal cardinality as a result, the 
dimension of a vector space is uniquely defined. In mathematics, cardinal numbers, or 
cardinals for short, are a generalization of the natural numbers used to measure the cardinality 
(size) of sets. The cardinality of a finite set is a natural number: the number of elements in the 
set. The transfinite cardinal numbers describe the sizes of infinite sets.We say V is finite-
dimensional if the dimension of V is finite, and infinite-dimensional if its dimension is 
infinite[25] 

      The dimension of the vector space V over the field F can be written as dimF(V) or as [V : 
F] in ArcGIS and then  read  as a "dimension of V over F". When F can be inferred from 
context, dim(V) two finite-dimensional vector spaces in a S. damnosum s.l. immature , eco-
georferenceable, habitat forecasting, vulnerability paradigm may be employed for paramter 
estimator quantiation  if V is a finite-dimensional vector space and W is a linear subspace of V 
with dim(W) = dim(V). In so doing,  W = V.Rn will have  the standard basis {e1, ..., en}, where 
ei is the i-th column of the corresponding identity matrix. Therefore Rn will have a dimension 
n in the narrow riverine, eco-georferenceable, geo-spectrotemrporal, geospatial, tributray 
model Any two vector spaces over F having the same dimension are isomorphic [24]. Any  
bijective, time series, S. damnsoum s.l. eco-epidemiological,  forecast map between their 
bases may be uniquely extended to a bijective linear map between the vector spaces in an 
ArcGIS If B is some set, a vector space with dimension |B| over F  in the disconrinuously 
canopied, sparsely shaded, turbid water, trailing vegetation, capture point, proxy uncoalesced 
biosignature matrix can be constructed by quantizing the set F(B) of all functions f : B → F 
such that f(b) = 0 for all but finitely many b in B. These functions can be added and 
multiplied with elements of F in ArcGIS  for  optimally obtaining a desired F-vector 
space.Therefater,  the vector A could then be conventionally illustratable by a linear 
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combination of basis vectors or a column matrix: even if the coordinates 
are now all complex-valued (Figure 16). 

Figure 16. Plotted 3-D real vector components and bases projection between a vector 
calculus notation and Dirac notation for illustrating uncoalesced, geo-spectrotemporal, 
geospatial, Rapid EyeTM ,5m S. damnosum s.l. riverine habiat capture point  
wavelength, emissivity frequency-oriented, transmittance. 
 

 

        A Hilbert space, may emiological,moderate resolution, imaged,  capture point, riverine 
tributary S. damnosum s.l., trailing vegetation, iteratively interpolative, decompositional, 
signature-oriented, capture point,  vulnerability, forecast, regression, model. A Hilbert space 
is a vector space with an inner product such that the norm defined as a complete metric 
space[24].The residuals  extended the methods of vector algebra and calculus from the two-
dimensional Euclidean plane and 3-D space to spaces with any finite or infinite number of 
dimensions. Unmixed, auto-probabilistically autoregressively explanatively varying and 
constant, eco-epidemiological, uncertainty-oriented, orthogonally decomposable, eco-
georeferenceable eco-geographic bio-geophysical endmember observational, predictors 
rendered from an imaged, 5m, RapidEye™, discontinuously, seasonally canopied, geo-
spectrotemporally, geospatially fractionalized, sparsely shaded and hyperproductive, 
immature Simulium habitats  in Hilbert space, with a high density of clustered foci, (i.e., 
positively autocorrelated, seasonal, immature hyperproductive, capture point eco- 
geolocations) may aid in optimally statistically targeting hot spots using robust multivariate, 
explanatively, orthogonally decomposeable, multi-forecastable, fractionalized, spatial filter, 
synthetic, orthogonal eigenvector.  The resulting proxy signature file may be non-
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parameterically optimally heuristically employed as the input for a classification [e.g., the 
ML Classify function] which may be subsequently rendered using an unsupervised 
classification raster in ArcGIS (see Figure 17). A Hilbert space is a vector space with an 

inner product such that the norm defined by which can turns into a 
complete metric space. 

Figure 17. Discrete components Ak of a complex vector |A⟩ = ∑k Ak|ek⟩, which belongs to 
a countably infinite-dimensional Hilbert space  in a lagged  model where  countably 
infinitely eco-georefernceable, narrow tributary  S. damnosum s.l. forecasted habitat  k 
values and basis vectors |ek  and maximum likelihoods occur  in geospace 

 

 
Maximum likelihood or Bayesianistic estimation inferences can account for 

explanative, geo-spectrotemporal, geospatially quantitable dependencies in a parametric 
framework, whereas recent spatial filtering approaches focus on non-parametrically removing 
endmember autocorrelation. Thus, a semiparametric spatial filtering approach in ArcGIS  can 
optimally explanatively decompose a geo-spectrotemporal, seasonally eco-georeferenceable, 
geosamplable, hyperproductive, immature, orthogonalizable, seasonal, African, narrow, 
riverine, tributary S. damnosum s.l., trailing vegetation, sparsely shaded, discontinuous, 
infrequently canopied, turbid water, capture point, immature habitat, employing 5m, 
RapidEye™, explanatively decomposable, uncoalesced, fractionalized endmember, 
eigenvector dataset of illuminative, moderate resolution, wavelength, frequency-oriented,, 
transmittance emissivities. The decompositional algorithm would optimally allow an 
ecologist, entomologist or other researcher to deal explicitly with probabilistic, autoregressive 
and explanatively uncoalescable, residualized, sub-mixel, frequency-oriented, probabilisic, 
uncertainty estimates.  This decomposable, endmember algorithmic iterative process could 
employ spatially lagged, autoregressive model plots  
 

Bayesianistic probabilistic, eigenvector estimation inferences can account for spatial 
dependencies in a parametric framework whereas recent spatial filtering approaches in 
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ArcGIS  focus on non-parametrically removing spatial endmember autocorrelation. Thus, a 
semiparametric spatial filtering approach for optimally orthogonally explanatively 
decomposing a geo-spectrotemporal, seasonally decomposable, explanatively eco-
georeferenceable, geospatially, geosampled, hyperproductive, immature, orthogonally 
decomposable, seasonally  eco-georefernceable, narrow, riverine, tributary S. damnosum s.l., 
trailing vegetation, sparsely shaded, discontinuous, infrequently canopied, turbid water, 
capture point, immature habitat. The unmixed 5m, RapidEye™, explanatively decomposable, 
fractionalized, endmember eigenvector dataset of illuminatively fractionalized, wavelength, 
transmittance emissivities in ArcGIS  may allow an ecologist, entomologist or other 
researcher to deal explicitly with probabilistic, autoregressive and explanatively 
uncoalescable, fractionalized, residual, endmember, frequency-oriented, eigenvector 
uncertainties.  This decomposable, endmember algorithmic, iterative,interpolative process 
could employ spatially lagged, autoregressive models or simultaneous autoregressive spatial 
model log-graphs in Hilbert space, in ArcGIS ( see Figure 18).  
 
Figure 18. Hypothetical continuous components ψ(x) of a complex vector |ψ⟩ = ∫ 
dx ψ(x)|x⟩, belonging to S. damnosum s.l. habitat infinite-dimensional Hilbert space log-
graph where  there are infinitely many x values and basis vectors |x in geospace 
 
 

 

              
 
  

 Spatial externalities play a central role in the recent emergence of “spatial thinking”in 
the mainstream. For example, in economics, greatly increased attention is being paid to 
models of social interaction, which introduce dependence among actors in a system. 
Similarly, in sociology, the renaissance of the “Chicago School”–type analyses of 
neighborhood processes has led to the introduction of formal notions of spatial spillovers and 
dependence. Empirical verification of such spatial externalities, measurement of their 
strength and range, requires the specification and estimation of spatial autoregressive 
econometric models. 
   
       The standard taxonomy of spatial autoregressive lag and error models commonly applied 
in econometrics  is perhaps too simplistic for constructing  explanatively robust, spatial eco-
georeferenceable, eco-epidemiological, geo-spectrotemporal, geospatially, geosampled, 
seasonally, ecogeoreferenceable, hyperproductive, riverine, habitat, immature S. damnosum 
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s.l., tributary,  trailing vegetation, sparsely shaded, discontinuously canopied, turbid water, 
explanatively uncoalesced, iteratively interpolative, capture points. The endmember, 
vulnerability forecast, time series, eigenvector  model residual projections may leave out 
interesting possibilities for mechanisms through which phenomena or actions at a given eco-
epidemiological, eco-georeferenceable, hyperproductive, capture point,  habitat geolocation 
affect infrequently canopied, interpretively iteratively, interpolative  properties at other 
seasonally explanative, hyperproductive, immature habitat, eco-georeferenceable 
geolocations. 
 

An alternative approach may develop a simple taxonomy of formal models of spatial 
externalities in cross-sectional geo-spectrotemporally, geospatially elucidatively uncoalesced, 
narrow, African, riverine tributary, S. damnosum s.l., immature habitat, endmember, 
discontinuous, sporadically canopied,  regressable data. The primary emphasis would be   on 
distinguishing between a global and a local range of quantitable, dependence in an 
explanative, endmember eigenvector,   seasonally hyperproductive, riverine, habitat, 
immature, S. damnosum s.l., trailing vegetation, sparse shaded, discontinuous, infrequently  
canopied, fractionalized, sub-mixel, turbid water, eco-epidemiological, eco-georeferenceable,  
seasonal, capture point, uncoalesced, moderate resolution, wavelength, frequency-oriented,, 
transmittance, vulnerability, forecast, model estimator and the way in which this translates 
into the incorporation in a regression specification of spatially lagged dependent variables 
(e.g., spatially lagged explanatory variables and spatially lagged error terms). 

 
As in a non-parametric spatial filtering approach, a specific subset of eigenvectors 

from a transformed spatial link matrix in ArcGIS may be parsimoniously employed to 
qualitatively quantitate, intuitively forecastable dependencies amongst   disturbances within a 
fractionalized, time series, endmember, eigenvector, metaheuristically optimizable,  
regression-related, forecast-oriented, vulnerability model. However, the optimal subset in an 
empirical dataset of proposed explanative, filtering discontinuous, trailing vegetation,  
heterogeneously canopied, explanatively uncoalesced, Simulium, turbid water, African, 
narrow,  riverine, tributary, immature habitats and their fractionalized,  moderate resolution, 
wavelength transmittance, forecasting, vulnerability, model, unbiased LULC 
estimators.These elucidatively, optimally parameterizable, covariates may be more intuitively 
diagnosed for erroneous coefficients by an objective function that minimizes spatial 
autocorrelation in ArcGIS rather than maximizes a model fit. The proposed objective 
function has the advantage that it may lead to a robust and smaller subset of selected 
orthogonal eigenvectors. An application of the proposed eigenvector spatial filtering 
approach may be applicable  to forecasting, heuristically optimizable, geo-spectrotemporally, 
geospatially  uncoalesced eco-epidemiological, grid-stratfiiable, moderate resolution,   LULC 
datasets of orthogonally explicative, fractionalized, 5m, imaged, RapidEyeTM, S. damnosum 
s.l. immature habitat, endmember,  eigendecomposed, signatures for robustly parsimoniously, 
interpretively, iteratively,elucidatively interpolating the proxy expositive variables for 
identifying unknown, un-geosampled, prolific and eco-georeferenceable, capture point, 
trailing vegetation, turbid water, sparsely shaded, immature, riverine habitats in an narrow 
tributary, African,  agro-village complex.   
 
        Consider the familiar linear regression model y = Xβ+e, where y would be  an n by 1 
vector of an explanatorial, empirical regressable dataset of geo-spectrotemporally, 
uncoalescable, discontinuously canopied, explanatively , eco-georefernceable, sparsely 
shaded, capture point, immature habitat, narrow African riverine tributary observations on a 
dependent variable, X in  an n by k matrix of observations  employing exogenous variables, 
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with an associated kby 1 vector of regression coefficients. In this paradigm an n by 1 vector 
would be the random disturbance term. An ecologist, entomologist or other researcher could 
then consider the error terms in isolation from the other elements in the seasonally 
explanative, eco-epidemiological, decomposable, capture point, hyperproductive, immature, 
riverine, habitat,eco-georeferenceable,  S. damnosum s.l., trailing vegetation, sparsely shaded, 
forecast-oriented, vulnerability model, residual specification. In so doing, the error variance-
covariance matrix, would then express spatial covariance when the off-diagonal elements are 
nonzero in accordance with a given spatial structure or “spatial ordering” of the geo-
spectrotemrpoally uncoalesced, 5m, proxy biosignature, elucidative variables. The spatial 
ordering could then optimally specify those pairs of eco-georferenceable, explicative, 
seasonally hyperproductive, iteratively interpolative capture point, immature, habitat 
geolocations for which the covariance will be nonzero. One way to obtain this structure is 
directly (referred to in ArcGIS literature as direct representation), by specifying the 
covariance as a function of Euclidean distance measurements that separates any two 
temporally dependent, geo-spectrotemporal, geosptialized,  eco-geographic, forecastable 
habitat  geolocations[22]. 

 A non-linear explanatorial quantitation may be optimally conducted parsimoniously in 
an ArcGIS cyberenvironment using Geostatistical Analyst TM. The robustifiable enedmember 
5m, proxy biosignature, elucidative model would require the S. damnosum s.l. eco-
epidemiological habitat specification to be optimally a smooth, distance, decay function and a 
parameter space that would  ensure  a positive definite, variance, covariance matrix. 
Intuitively, the covariance matrix would generalizes the notion of covariance to multiple 
seasonally explanatively spatially diagnosed, eco-epidemiological, capture point, 
hyperproductive, African,  narrow riverine, tributary immature, eco-georeferenceable,  
explanative, S. damnosum s.l., trailing vegetation, sparsely shaded, discontinuously, 
infrequently canopied, immature habitat, moderate resolution, uncoalesced dimensions in 
ArcGIS  

As an example, let's consider two vectors and  for a 
hyperporductive, eco-georfernced, S. damnsoum s.l. immature habitat. There are four 
covariances to consider: with , with , with , and with . These variances 
cannot be summarized in a scalar. Of course, a 2×2 matrix in ArcGIS is the most natural 
choice to describe the covariance: the first row containing the covariances of with and 

, and the second row containing the covariances of with and . Because the 
covariance of the i th random variable with itself is simply that  random variable's variance, 
each element on the principal diagonal of the covariance matrix  would be the variance of 
each of the elements in the vector. Because , every 
covariance matrix is also symmetric. In addition, every covariance matrix is positive semi-
definite. 

In linear algebra, a symmetric n × n real matrix is said to be positive definite if the 
scalar is positive for every non-zero column vector of real numbers(e.g., eco-
georeferenceable, explanatively, orthogonally decomposed, uncoalesced, hyperproductive, S. 
damnosum s.l. immature, capture point, moderate resolution, wavelength, transmittance, 
frequency-oriented emissivities) . Here would denote the transpose of .More generally, 
an n × n Hermitian matrix  in ArcGIS is positive definite if the scalar is real and 
positive for all non-zero column vectors of complex numbers. Here would denote the 
conjugate transpose of .The negative definite, positive semi-definite, and negative semi-
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definite matrices would  be optimally defined in the same way in ArcGIS, except that the 
expression or is required to be always negative, non-negative, and non-positive, 
respectively.Positive definite matrices are closely related to positive-definite symmetric 
bilinear forms (or sesquilinear forms in the complex case), and to inner products of vector 
spaces. Some authors use more general definitions of "positive definite" that include some 
non-symmetric real matrices, or non-Hermitian complex ones [25]. 

          In probability theory and statistics, a covariance matrix (also known as dispersion 
matrix or variance–covariance matrix) is a matrix whose element in the i, j position is the 
covariance between the i th and j th elements of a random vector (that is, of a vector of random 
variables). Let U and V be two independent, illuminative, geo-spectrotemporally, geospatially 
uncoalesced, trailing vegation, discontinuous, infrequently, canopied, sparsely shaded, eco-
epidemiological, eco-georeferenceable, elucidative,seasonally hyperproductive, explanative,  
S. damnosum s.l. habitat, uncoalesced, 5m, Rapid Eye TM  randomized, seasonal  variables, 
and consider two new random variables X and Y of the form X = aU + bV,Y = cU + dV,where 
a, b, c, d, are some scalars. Each one of the random variables X and Y in the model would be 
normal, since it the residual eco-epidemiological, wavelength, transmittance, frequency 
forecasts would be rendered from a function of the independently normalized , random 
variables. Further, because X and Y would be explanative, geo-spectrotemporal, geospatial, 
immature, habitat, uncoalesced, eco-epidemiological, capture point, the functions of the same 
two independent normalized random variables and their joint probability density function 
(PDF) would take a special form, known as the bivariate normal PDF.  

       In probability theory and statistics, the multivariate normal distribution or multivariate 
Gaussian distribution, is a generalization of the one-dimensional (univariate) normal 
distribution to higher dimensions. In probability theory, the normal (or Gaussian) distribution 
is a very common continuous probability distribution. Normal distributions are important in 
statistics and are often used in the natural and social sciences to represent real-valued random 
variables whose distributions are not known[24]. In its most general form, under some 
conditions (which include finite variance), can generate averages of random variables 
independently drawn from independent distributions converge in distribution to the normal, 
that is, become normally distributed when the number of random variables is sufficiently 
large. The normal distribution is sometimes informally called the bell curve. However, many 
other distributions are bell-shaped (such as Cauchy's, Student's, and logistic) [24]. The terms 
Gaussian function and Gaussian bell curve are also ambiguous because they sometimes refer 
to multiples of the normal distribution that cannot be directly interpreted in terms of 
probabilities 

Physical quantities processes  (e.g., trailing vegation, explanatively coalesceable, 
discontinuously canopied, sparsely shaded, eco-epidemiolgical, seasonally hyperproductive, 
S. damnosum s.l. habiat, vulnerability, eco-epidemiological, eco-georeferenceable, forecast 
model, measurement errors)that are expected to be the sum of many independent endmember 
eigenvector  often have distributions that are nearly normal. Jacob et al. [22] devised a  
standard normal distribution using a dataset of optimally parameterized,  uncoalesced Rapid 
Eye TM 5m, S. damnosoum s.l. African riverine, narrow tributary, agro-village,  pre-flooded, 
hyperproductive independent, eco-georeferenceable, capture point, paramterizable, immature 
habitat, covariate coefficient values where μ=0 and σ=1. The forecast were described by the 

probability canopy, density valaues employing:  If the probability density 
function of a random variable X is given as fX(x), it is possible) to calculate the probability 
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density function of some variable Y = g(X)[24]. This LULC “change of variable” was used to 
generate a random variable of arbitrary shape fg(X) = fY using a known random number 
generator in ArcGIS. Since the function g was monotonic, then the resulting density function 

of the immature capture point was   

         In calculus a monotonic function (or monotone function) is a function between ordered 
sets that preserves the given order[24] .In the habitat model  g−1 denoted the inverse function. 
In mathematics, if a function is injective, exactly one function will exist such 
that , otherwise no such function will exist. In calculus, a function  defined on 
a subset of the real numbers with real values is called monotonic if and only if it is either 
entirely non-increasing, or entirely non-decreasing. That is, as per Fig. 1, a function that 
increases monotonically does not exclusively have to increase, it simply must not decrease. 
The function is called the inverse function of because it "reverses" ; that is to 
say  This followed from the fact that the probability contained in a differential 
hypeporductive capture point  area must be invariant under change of variables. That is, the 
model was metaheuristically optimally quantized as    

or  The factor in this 
expression ensured that the total eco-epidemiologically quantitated discontinuous, 
infrequently canopied,  capture point, immature  habitat area under the curve  was equal 
to one. A map f : X → Y is said to be monotone if each of its fibers is connected i.e. for each 
element y in Y the (possibly empty) set f−1(y) is connected. A monotone function is also called 
isotone, or order-preserving. The dual notion is often called antitone, anti-monotone, or order-
reversing. Hence, an antitone function f satisfies the propertyx ≤ y implies f(x) ≥ f(y),for all x 
and y in its domain. The composite of two monotone mappings is also monotone. The ½ in 
the exponent confirmed that the distribution had a unit variance and therefore also unit 
standard deviation. A function is unimodal if it is monotonically increasing up to some point 
(the mode) and then monotonically decreasing.This function was symmetric around x=0, 

where it attained its maximum value ; and had an  inflection points at +1 ( see Figure 
19). 

 

 

 

 

 

Figure 19 Propagation of uncertainty fitting in an eco-epidemiological, explanative, S. 
damnosum s.l.  hyperendemeic, narrow riverine tributary foci, eco-geopredictive, least 
square  normalized regression map of   Sarakawa  agro-village complex in  Togo. 
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One possible definition for a robust , Rapid Eye TM 5m, independent trailing 
vegetation, geo-spectrotemporally geosptatially uncoalesceable, discontinuously canopied, 
sparsely shaded, eco-epidemiolgical, eco-georeferenceable, explanatively  seasonally 
hypeproductive, eco-georefernceable, riverine, tributary, S. damnosum s.l. habiat, eco-
epidemiological, forecast vulnerability, model  is that a random vector be k-variate normally 
distributed, but only  if every linear combination of its k components has a univariate normal 
distributio ( see Figure 16). Its residual importance would then emphatically be optimally 
derived mainly from the multivariate central limit theorem. The multivariate normal 
distribution is often used to describe, at least approximately, any set of (possibly) correlated 
real-valued random variables each of which clusters around a mean value. Jacob et al. [22] 
employed a bivariate normal PDF for robustly parsimoniously quantitating an empirically 
regressed dataset of geo-spectrotemporally, geospatially, eco-georeferenceable, uncoalesced, 
trailing vegation, Precambrain rock and riffle water sub-meter resolution mixel properties in 
Togo ( see Figure 20). 

 

Figure 20 Forecast-oriented, eco-epidemiological, discontinuously canopied, sparely 
shaded, eco-georefernceable, fractionalized, oviposition, PDF model sub-meter 
resolution, S. damnosum s.l. habiat wavelength,  parameter estimators geosampled  in as  
Sarakawa narrow  riverine agro-village complex in  Togo.  
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                   In the PDF, quantiation of a datatset of metaheursitically optimizable, 
explanatively continuous, randomized,  geo-spectrotemporally, geospatially uncoalesced 
Rapid Eye TM 5m, riverine, tributary, S. damnosoum s.l., African riverine,agro-village,  pre-
flooded, hyperproductive independent, eco-georeferenceable, capture point, immature  
habitat, eco-epidemiological  parameterized,covariate coefficients  would render   a function 
that describes the relative likelihood for the random variable to take on a given value. In 
Jacob et al. [22], the probability of this  random, eco-georferenceable, immature habitat 
capture point, eco-epidemiological, seasonally hyperproductive, geosampled dataset of  geo-
spectrotemporally regressed endmember variables falling within a particular range of values 
was given by the integral of the variable’s density over that range—that is, it was given by the 
area under the density function but above the horizontal axis and between the lowest and 
greatest values of the range in the model distribution. The  PDF was nonnegative everywhere, 
and its integral over the entire space was equal to one. 

The normal distribution is the only absolutely continuous distribution whose 
cumulants beyond the first two (i.e., other than the mean and variance) are zero[24]. It is also 
the continuous distribution with the maximum entropy for a specified mean and variance. The 
normal distribution is a subclass of the elliptical distributions. The normal distribution for an 
ecogeoreferenecable, trailing vegetation, turbid water, seasonal, hyperproductive, S. 
damnsoum s.l. discontinuous canopied, seasonal capture points is symmetric about its mean, 
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and is non-zero over the entire real line[22]. As such, it may not be a suitable model for 
variables that are inherently positive or strongly skewed, such as changing covariance 
weightages of an explicative, regression-related parameterizable, geo-spectrotemporally 
uncoalesced, eco-georefernceable, capture point. Such variables may be better described by 
other distributions, such as a bivariate Gaussian PDF , eco-epidemioloigcal, forecast, 
vulnerability model ( see Figure 21). 

Figure 21 A bivariate Gaussian probability density function centered at (0, 0) in a eco-
epidemiological, S. damnosum s.l., trailing vegetation, sparsely shaded, riverine 
tributary, agro-village complex capture point,,hyperproductive, foci in Burkina Faso  
with covariance matrix  

 

The box plot in ArcGIS is a quick way of examining one or more sets of data 
graphically. Box plots may seem more primitive than a histogram or kernel density estimate 
but they do have some advantages. Jacob et al. [22] employed as kernel density estimation 
(KDE) is a non-parametric way to estimate the  PDF of a random variable for optimally 
determining unknown, un-geosampled, African, narrow  riverine tributary, seasonally 
hypeproductive, S. damnsoum s.l. habitats in ArcGIS.          Kernel density estimation is a 
fundamental data smoothing problem where inferences about the population are made, based 
on a finite data sample[24]. Let (x1, x2, …, xn) be an independent and identically distributed 
sample drawn from some distribution with an unknown density ƒ in a  regressable ArcGIS 
dataset ( e.g., uncoalesced, Rapid Eye TM 5m  eco-georferenceable, S. damnsoum s.l. 
discontinously canopied, trailing vegetation, sparsely shaded, turbid water,immature habitat, 
capture point, seasonal, forecast, vulnerability model endmember eigenvectors). the kernel 

density estimator would be   where K(•) is the kernel — a 
non-negative function that integrates to one and has mean zero — and h > 0 is a smoothing 
parameter (i.e.,bandwidth). A kernel with subscript h is called the scaled kernel and defined as 
Kh(x) = 1/h K(x/h)[24]. Intuitively, a ecologist, entomologist or oher researcher could t choose 
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h as small as the geosampled uncoalesced, empirical dataset of the trailing vegetation, 
discontinuous, infrequently canopied, turbid water, sparsely shaded, S. damnosum s.l. 
immature capture point, hyperproductive, African, agro-village complex, narrow riverine, 
tributary data allows; however, there will always be a trade-off between the bias of the 
estimator and its variance.  

     In ArcGIS non-parametric statistics, a kernel is a weighting function employable in non-
parametric estimation techniques. Kernels are  employed  in kernel density estimation to 
estimate random variables' density functions, or in kernel regression to estimate the 
conditional expectation of a random variable[24]. Kernels are also used in time-series, in the 
use of the periodogram to estimate the spectral density where they are known as window 
functions in ArcGIS. The bandwidth of the kernel is a free parameter which exhibits a strong 
influence on the resulting estimate. To illustrate its effect, we take a simulated random 
sample from the standard normal distribution (plotted at the blue spikes in the rug plot on the 
horizontal axis). The grey curve is the true density (a normal density with mean 0 and 
variance 1). In comparison, the red curve is undersmoothed since it contains too many 
spurious data artifacts arising from using a bandwidth h = 0.05, which is too small An 
additional use is in the estimation of a time-varying intensity for a point process where 
window functions (kernels) are convolved with time-series ArcGIS-derived data. A range of 
kernel functions are commonly used:   uniform, triangular, biweight, triweight, 
Epanechnikov, normal, and others 

        In Jacob et al. [22] the Epanechnikov kernel tabulated in an ArcGIS/SAS 
cyberenvironment was optimal for metaheusitically, qualitatively quantitating a geo-
spectrotemporally, geospatially uncoalesced, dataset of hyperproductive, S. damnsoum s.l., 
forecast, vulnerability model-related, fractionalized endmember, moderate resolution, 
expositively parameterized, covariate, eigenvector Rapid EyeTM estimators geosampled in 
Burkina Faso, in the mean square error sense for (see Figure 17). The kernel of a reproducing 
kernel Hilbert space is useable in the suite of techniques known as kernel methods to perform 
tasks such as statistical classification, regression analysis, and cluster analysis on data in an 
implicit space[24]. In functional analysis (a branch of mathematics), a reproducing kernel 
Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a 
continuous linear functional [http://mathworld.wolfram.com/html]. Roughly speaking, this 
meant that if two eco-georferenceable, explanative , seasonal hyperproductive, capture point,  
S. damnsoum s.l., forecast, functions f and g in the RKHS were close in norm,( i.e., ||f-g|| is 
small, then f and g were also pointwise close, and  |f(x)-g(x)| was small for all x. The 
quantated means  in the model was K(x) = ϕ(x), where ϕ was the quantitable standardized, 
normalized, density function .A  standard normal 5m, endmember  wavelength, S. damnosum 
s.l. habitat, emissivity, frequency-related,  normalized distribution with zero mean ( ) and 
unit variance ( )was  rendered by the  PDF and a  distribution function  which was 

equivalent to , = over the domain .( See Figure 22). The 
explanatorial, kernel model, residual forecasts  in ArcGIS inclued  the mean, variance, 
skewness, and kurtosis excess which was given by =0, =1, =0, =0.The first quartile of 
the standard normal distribution occurred   when , which was 

= = Skewness is a measure of symmetry, or more precisely, 
the lack of symmetry while kurtosis is a measure of whether the data are heavy-tailed or 
light-tailed relative to a normal distribution[24]. 
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Figure 22. Kernel density estimation of 50 normally distributed random log-
transformed  immature S. damnsoum s.l. validtion denssity counts employing different 
smoothed, 5m, Rapid Eye TM  bandwidths and their uncertainties  for  field verifying 
kriged geo-spectrotemporally uncoalesced,  pre-flooded, trailing vegetation, 
discontinuous, infrequently canopied, turbid water immature seasoanlly 
hyperproductive capture point. 

 

              In Jacob et al. [22] descriptive statistics were derived using  a box plot in ArcGIS. A  
boxplot is a convenient way of graphically depicting groups of numerical data through their 
quartiles in ArcGIS( www.esri.com) . Box plots had lines extending vertically from the boxes 
(i.e., whiskers) indicating variability outside the upper and lower quartiles[24] . Outliers were 
plotted as individual, S. damnosum s.l. habitat, explicative, eco-geographic, eco-cartographic 
points. The box plots were non-parametric.  An outlier is defined as a data point that 
emanates from a different model than do the rest of the data [24]. The data appeared to come 
from a linear model with a given slope and variation except for the outlier which appeared to 
have been generated from the geospatial configuration of the data. Outlier detection is 
important for effective modeling(www.esri.com). If all the geosampled S. damnosum s.l. data 
here are included in a linear regression, then the fitted model will be poor virtually 
everywhere [24]. If an eco-georeferenceable, seasonally hyperproductive, trailing vegetation, 
turbid water,sparsely shaded, geo-spectrotemporal outlier is omitted from the fitting process, 
then the resulting fit will be excellent almost everywhere (for all capture points except the 
outlying point) displaying variation in samples of a  geosampled S. damnosum s.l. habitat  
immature population without making any assumptions of the underlying statistical 
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distribution in ArcGIS. In Jacob et al. [22], the spacings between the different parts of the 
box indicated the degree of dispersion (spread) and skewness in the geo-spectrotemporally 
geosampled dataset, and also revealed geospatial endmember outliers. In addition to the 
capture points themselves, the ArcGIS model  allowed visually estimating various L-
estimators, notably the interquartile range, midhinge, range, mid-range, and trimean. 
Boxplots were drawn horizontally and  vertically in ArcGIS of all quantiated prolific S. 
damnosum s.l. hyperproductive, narrow , tributray, agro-village complex in Burkina Faso  ( 
see Figure 23). 

Figure 23. Boxplot and probability density functions of a normalized  trailing vegetaion, 
discontinuously canopied, seasoanlly hyperproductive, S. damnsoum s.l. habitat  
distribution N(0, σ2). 

 

 

In Jacob et al. [22] the binomial distribution with the trailing vegetation, 
discontinuously canopied, sparsely shaded, parameters n and p was the discrete probability 
distribution of the number of successes in a sequence of n independent  binary experiments, 
each of which yielded success with probability p. ( see Figure 24).The binomial normalized 
distribution is the basis for the popular binomial test of statistical significance[24].The 
binomial distribution  was used to model the number of successes in a sample of size n drawn 
with replacement from a geo-spectrotemporally uncoalesced, heuristically optimizable, Rapid 
Eye TM  dataset of elucidatively, eco-georeferenceable, trailing vegetation, turbid water, 
discontinuous, infrequently canopied, geospatially geosampled,   S. damnosum s.l. agro-
village, narrow tributary,  complex ecosytem, capture point, hyperproductive 
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immature,habitat, population of size N. If the sampling is carried out without replacement, the 
draws are not independent and so the resulting distribution is a hypergeometric distribution, 
not a binomial one 

Figure 24. A comparison of probability density functions in Jacob et al. [22], p(k) for the 
sum of different  uncoalesced, geo-spectrotemporally, geospatially geosampled, S. 
damnosum s.l. , trailing vegetation, discontininuously canopied, immature,  predicted 
immature, hypeproductive,  habitats  n  to show their convergence to a binomial non-
normalized distribution with increasing n, in accordance to the central limit theorem. 

  

            For N much larger than n, the  S. damnosum s.l. habitat, normalized binomial 
distribution is a good approximation, and widely used sub-mixel  
. In so doing, it was possible to see that when the sample size of the forecasted,explanative, 
hyperproductive, trailing vegetation, discontinuous canopied, sparsely shaded, S. damnosum 
s.l. habitat  capture point increases, the mean distribution tend was more centered and with 
thinner tails. Binomial proportion confidence interval is a confidence interval for a proportion 
in a statistical population[24]. An important result about dimensions is given by the rank–
nullity theorem for aeco-georferenceable S. damnosum s.l.  linear maps. If F/K is a field 
extension, then F is in particular a vector space over K. Furthermore, since every F-vector 
space V is also a K-vector space in a S. damnsoum s.l. capture point , forecasting 
vulnerability paradigm the dimensions would  related by the formula dimK(V) = dimK(F) 
dimF(V). In particular, every complex vector space of dimension n encompassing all 
geospectrotemrpoally uncoalesced moderate resolution paramterizable varaibel would be 
areal vector space of a dimension 2n. Some simple forumals in ArcGIS may quantiate a real 
vector space  with the cardinality of a base field   whereby the cardinality  would be the space 
itself. Hence,  if V is a  quanatitable vector spce in a  trailing vegetation, discontinuoulsy 
canopied, turbid water, sparsely shaded, narropw tributra , agro-village complex, S. 
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damnsoum s.l., unmixed,  proxy geospectrotemporal biosignature, then  V would be  a vector 
space over a field F . As such. denoting the dimension of V by dim V in  these  models would  
reveal If dim V is finite, then |V| = |F|dim V or iIf dim V is infinite, then |V| = max(|F|, dim V) in 
ENVI  Jacob et al. [26] proportionally estimated a statistical sample which allowed for 
sampling errors to be mapped employing object-based, iteratrively interpolative,  geo-
classified  S. damnosum s.l. Rapid Eye Tm 5m, fractoionaliozed radiance endmembers ( see 
Figure 25) 

 Figure 25  A  simulation with binomial distribution employing  0 and 1 with their 
means calculated for 6 canopied sparsely shaded geo-spectrotemporal geospatial 
seasonal, trailing vegetation, S. damnosum s.l. immature  habitat geosampled  leaf area 
canopy indices  

 

 
 
         Alternatively, the precise nature of the distance decay function can be left unspecified 
in an eco-epidmeological, eco-georferenceable, trailing vegetation, discontinuously canopied, 
trailing vegetation, turbid water, narrow tributary, agro-village complex tributary,  S. 
damnsoum s.l., decomposeable, immature, hyperproductive habitat, fractionalized,  proxy  
signature,  forecast, vulnerability, model  and approximated by a step function, in a 
nonparametric fashion. For this model output to robustly identify unknown, un-geosampled, 
hyperproductive, narrow tributary, African, agro-village riverine, transmission foci, the 
nature of the spatial covariance would have to be  be smooth and relatively constant in a 
small number of distance bands from which it can be estimated, as in Conley (1999). The 
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direct representation approach would require developing a general taxonomy that  would 
apply to spillovers for all the variables in the model. 
 
 
          A second fundamental strategy for robustly quantitating a geo-spectrotemporally 
uncoalesced, heuristically optimizable, moderate resolution, dataset of elucidatively, eco-
georeferenceable, trailing vegetation, turbid water, discontinuous, infrequently canopied, 
geospatially geosampled,   S. damnosum s.l. agro-village, narrow tributary,  complex 
ecosytem, capture point, hyperproductive immature, habitats is to obtain the spatial structure 
of the nonzero elements in the variance-covariance matrix in a trailing vegation, 
discontinuously canopied, sparsely shaded, 5m imaged, RapidEyeTM, fractionalized, S. 
damnosum s.l., habitat signature is by employing an   indirect technique. This would be 
implementable when a spatial stochastic explanative process is specified that relates the value 
of a random variable at an eco-georeferenceable, seasonally explanative,  eco-
epidemiological, hyperproductive, Similiuum, capture point geolocations is geo-
spectrotemporally  geospatially related to the values of random variable at neighboring 
habitat geolocations. Instead of linking all pairs of the seasonally explanative, capture point, 
hyperproductive, immature, habitat observations through a distance decay function, the 
neighbors for each individual geolocation may be specified by means of a so-called spatial 
weights matrix. Spatial statistics integrate geospace and spatial relationships directly into 
their mathematics (e.g., quantiazation of geo-spectrotemporally geospatially uncoalesced, 5m 
imaged, RapidEyeTM, S. damnsoum s.l. immature habitat area, distance, length, or proximity) 
which may be optimally defined formally through spatial weights structured values which 
may be archived as a spatial weights matrix file. A spatial weights spatial weights matrix 
quantifies the spatial relationships that exist among uncoalesced, endmember features in an 
optimizable dataset or at least it can quantify conceptualizations of spatial decompositional 
sub-mixel relationships. While the physical format of the spatial weights matrix file may 
vary, the conceptual idea is a table with one row and one column for every feature in the 
dataset (www.esi.com). The cell value for any given row/column combination is the weight 
that quantifies the spatial relationship between those row and column features. There are a 
multitude of fractionalized, endmember eigenvector weighting possibilities including inverse 
distance, fixed distance, K nearest neighbors, contiguity, and geospatial interactions that are 
capable in a   imaged, RapidEyeTM, S. damnosum s.l. eco-epidemiological, immature habitat, 
eco-georeferenceable ,capture point, 5m scene, for example. The conceptualization selected 
to model spatial relationships for a particular analysis can impose a structure onto spatial data 
[24]. Consequently, selecting a conceptualization that best reflects how the uncoalesced, 
riverine, habitat features being analyzed actually interact with each other in an African, 
narrow, riverine tributary,  agro-village, eco-georeferenceable complex. At a very basic level, 
however, weights are either binary or variable. Binary weighting, used with fixed distance, K 
nearest algorithms ca qunataite  a  trailing vegetation, discontinuously canopied, sparsely 
shaded, hyperproductive, 5m imaged, RapidEyeTM, S. damnosum s.l., eco-epidemiological, 
immature habitat, capture point, eco-georeferenceable neighbors, and contiguity spatial 
relationships, for example,in Geospatial Analyst TM will, for a particular capture point, 
immature habitat target feature,  assign a value of 1 to neighboring features and 0 to all other 
uncoalesced, habitat features. For inverse distance or inverse time spatial relationships, 
weights fall into a range from 0 to 1 with nearby neighbors getting larger weights than 
neighbors farther away. Spatial weights are often row standardized, particularly with binary 
weighting strategies. Row standardization is used to create proportional weights in cases 
where features have an unequal number of neighbors. Row standardization involves dividing 
each neighbor weight for a feature by the sum of all neighbor weights for that feature, and is 
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recommended whenever the distribution of your features is potentially biased due to sampling 
design or an imposed aggregation scheme (www.esri.com). 
 
     Forecasting anisotropy and bidirectional reflectance distribution function (BRDF) of 
unmixed, eco-georeferenceable, sparsely shaded, turbid water, seasonally explanative, 
hyperproductive, S. damnosum s.l., immature, narrow tributary riverine habitats with 
decomposed discontinuous vegetation canopies in ArcGIS may help consider the angular 
distribution of leaves and the geolocation and size of individual subcanopies (e.g., widely 
spaced rows of trailing vegetation). Further, uncoalesced,  geo-spectrotemporal and 
geospatially explanative, fractionalized, endmember eigenvector, directional frequencies 
based on uncertainty properties of leaves (e.g., multiple scattering) may also be 
autoregressively seasonally quantitated for eliminating propogational, residual forecast 
misspecifications. As such, an emissivity, endmember eigenvector, 5m, forecast, 
vulnerability model may relate unmixed, elucidative, biophysical, sparsely shaded, iteratively  
interpolatable,  discontinuously, decomposable,  canopied foliage attributes to down-looking 
RapidEyeTM radiation measurements based on seasonal, immature, black-fly productivity. 
This radiance paridigm can employ nadir and off-nadir viewing angles of the moderate 
resolution sensor for optimally and interpretively decomposing, uncoalesced, wavelength, 
frequency-oriented, transmittance model, parameterizable, covariate estimators. Inversion of 
this remote sensing model may provide statistically regressable discontinuously canopied, 
immature, explanative, fractionaized, immature habitat, uncoalesced, endmember surface, 
eigenvector, geo-spectrotemporally, geospatially  proxy signature patterns for seasonally, 
remotely, and autoregressively targeting, iteratively  interpolatable, unmixable, S. damnosum 
s.l. turbid water, eco-epidemiological, capture point that have been seasonally geosampled 
and ecogeoreferenced as high density foci. Such a model also may help to evaluate 
atmospheric limitations of RapidEyeTM red and NIR data for imaging decomposable, 
explanative, immature, capture point,  S. damnosum s.l., immature Rapid Eye TM   eco-
georeferenceable, trailing vegetation, turbid water, geospatially geosampled,   S. damnosum 
s.l. agro-village, narrow tributary,  complex ecosytem, capture point, hyperproductive 
immature,habitat, population habitats by providing a good proxy surface boundary 
assessment for many different kinds of sporadically seasonal, discontinuous, canopy 
configurations for obtaining optimizable and uncoalesced, sub-surface, parameterizable, 
covariates [evapotranspiration (ET) rates]. Assessing the energy balance while employing 
some surface properties, such as albedo, LULC canopy cover, and surface temperature, is the 
principle of ET estimation by remote sensing [25]. Further, this intuitive forecast, non-
continuous,vulnerability model may relate fractionalized, endmember eigenvector estimates 
of nadir reflectance of these habitats, which may be approximated to hemispherical 
reflectance by computing total energy budgets of the 5m imaged, discontinuously, sparsely 
shaded, discontinuous, canopy-vegetated, geoclassifable, LULC surfaces.  

Jacob et al. [22] exegetically, quantitatively, and auto-probabilistically autoregressed 
an uncoalesced, geo-spectrotemporal remote, multivariate, dataset of geospatialized, eco-
epidemiological,  empirical, elucidative, 5m, RapidEyeTM spatial resolution, non-Gaussian, 
explanatively parameterizable, eco-georeferenceable, photosynthetic, 5m, wavelength, 
frequency orthogonally decomposable, emissivity covariates for optimally characterizing 
seasonally hyperproductive, iteratively interpolative, explicatively geo-classifiable, trailing 
vegetation-related, sparsely shaded, S. damnosum s.l., turbid water, geosampled riverine, 
narrow tributary, habitats in an African agro-village in Burkina Faso. An eigenfunction 
decomposition algorithm in Geostatistical AnalystTM computed spatial eigenvectors.  These 
spatial eigenvectors were optimally defined by their decomposed spatial structures associated 
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with an explanatively eco-georeferenceable, eco-epidemiological, seasonal, immature, 
capture point, hyperproductive habitat that was interpretively and interpolatively 
topographically geo-classified  as a  sparsely shaded, discontinuously canopied, 5m, 
Normalized Difference Vegetation Index (NDVI), proxy, graphical indicator. NDVI is 
typically, but not necessarily, used to analyze remote sensing measurements from a space 
platform and assess whether the target being observed contains live green vegetation or not 
[23].  

In Jacob et al. [22], Geostatistical AnalystTM easily created an interpretively, 
iteratively quantiatively, explanatively iteratively interpolatable, eco-georeferenceable, 
discontinuously canopied, geoclassifiable, descriptive, LULC surface, which was 
subsequently stored in a eco-georeferenceable, point feature, raster layer along with polygon 
centroids.  Measurements were taken from sample points and included elevation, depth to the 
water table, levels of turbidy and percent of sparsely shaded, discontinuously canopied, 
trailing vegetation. When used in conjunction with ArcMap, Geostatistical AnalystTM 

provides a comprehensive set of tools for creating surfaces that can be used to visualize, 
analyze, and understand spatial phenomena (www.esri.com). In Jacob et al. [22], the ArcGIS 
geospatial iterative algorithms made the eigenfiltering more efficient by employing analytical 
solutions for regressing the orthogonally decomposed, RapidEyeTM eigenvalues and spatial 
eigenvectors.  

The eigenfilter design method in ArcGIS for discrete time filters involves the 
determination of filter coefficients as the eigenvector of a particular Hermitian positive 
definite (and often real and symmetric) matrix[25]. As opposed to other filter design 
algorithms in ArcGIS such as the least-squares approach which requires the computation of a 
matrix inverse, the eigenfilter method only requires the computation of a single eigenvector, 
which can be found efficiently via the iterative power method. The method also has an 
inherently low design complexity. The eigenfilter method can incorporate a variety of time 
and frequency-domain constraints into the design problem with relative ease, in contrast to 
other well known filter design methods such as the McClellan–Parks algorithm [16].  

The Parks–McClellan algorithm, published by James McClellan and Thomas Parks in 
1972, is an iterative algorithm for finding the optimal Chebyshev finite impulse response 
(FIR) filter. A finite impulse response (FIR) filter is a filter whose impulse response (or 
response to any finite length input) is of finite duration, because it settles to zero in finite 
time. This is in contrast to infinite impulse response (IIR) filters, which may have internal 
feedback and may continue to respond indefinitely (usually decaying). In mathematics, the 
Kronecker delta  is a function of two variables, usually just positive integers where ehe 

function is 1 if the variables are equal, and 0 otherwise: where the Kronecker 
delta δij is a piecewise function of variables i and j (e.g., δ1 2 = 0, whereas δ3 3 = 1)[25]. 

In signal processing, a finite impulse response (FIR) filter is a filter whoseimpulse 
response (or response to any finite length input) is of finite duration, because it settles to zero 
in finite time[25]. This is in contrast to infinite impulse response (IIR) filters, which may 
have internal feedback and may continue to respond indefinitely (usually decaying).The 
impulse response (that is, the output in response to a Kronecker deltainput) of an Nth-order 
discrete-time FIR filter lasts exactly N + 1 samples (from first nonzero element through last 
nonzero element) before it then settles to zero.FIR filters can be discrete-time orcontinuous-
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time, and digital or analog..FIR filters can be discrete-time or continuous-time, and digital or 
analog [24]. 

     The Parks–McClellan algorithm may be utilized to design and implement efficient and 
optimal FIR filters in an ArcGIS cyberenvironment by employing an indirect method for 
finding the optimal filter coefficients. Infinite impulse response (IIR) is a property applying 
to many linear time-invariant , 5m, RapidEyeTM spatial resolution, non-Gaussian, 
explanatively parameterizable, eco-georeferenceable, photosynthetic, 5m, wavelength, 
frequency orthogonally decomposable, emissivity covariates for optimally regressively 
quantiating seasonally hyperproductive, iteratively interpolative, explicatively geo-
classifiable, trailing vegetation-related, sparsely shaded, S. damnosum s.l., turbid water, 
geosampled riverine, narrow tributary, LULC habitats in an African agro-village systems. 
Common examples of linear time-invariant systems are digital filters[25]. Systems with this 
property are known as IIR systems or IIR filters, and are distinguished by having an impulse 
response which does not become exactly zero past a certain point, but continues indefinitely. 
This is in contrast to a finite impulse response in ArcGIS in which the impulse response h(t) 
does become exactly zero at times t > T for some finite T, thus being of finite duration.The 
goal of such an  algorithm for  qualitatively explanatively remotely quantitating  
probabilistically regressable, uncoalesced, multivariate, empirical datasets of geo-
spectrotemporal and geospatial, eco-epidemiological,  empirical, elucidative, 5m, 
RapidEyeTM spatial resolution, non-Gaussian, explanatively parameterizable, wavelength, 
frequency emissivity, uncoalesced, discontinuously canopied, sparsely shaded, S. damnosum 
s.l. immature habitat, eco-epidemiological, agro-village narrow riverine tributary, capture 
point, orthogonally explanatively decomposable covariate coefficients  would then be  to 
minimize the error in the pass and stop bands by utilizing the Chebyshev approximation.  

An ecologist, entomologist or other researcher can obtain moderate resolution, trailing 
vegetion, turbid water, discontinuously canopied, sparsely shaded, S. damnosum s.l. immature 
habitat, eco-epidemiological, capture point, polynomials in ArcGIS by expanding the given 
geoclassifiable, explicative,  LULC function in terms of Chebyshev polynomials and then 
cutting off the expansion at the desired degree. This is similar to the Fourier analysis of the 
function, using the Chebyshev polynomials instead of the usual trigonometric functions. In 
mathematics the Chebyshev polynomials, are a sequence of orthogonal polynomials which 
are related to de Moivre's formula and which can be defined recursively. In mathematics, 
Fourier is the study of the way general functions may be represented or approximated by 
sums of simpler trigonometric functions[24]. In mathematics, de Moivre's formula (also 
known as de Moivre's theorem and de Moivre's identity), named after states that for any 
complex number (and, in particular, for any real number) x and integer n it holds 
that where i is the imaginary unit (i2 = −1)[24]. 

If one calculates the coefficients in the Chebyshev expansion for a function: 

and then cuts off the series after the term in ArcGIS  one gets an Nth-degree 
polynomial approximating f(x).The reason this polynomial is nearly optimal for 
parameterizing geo-spectrotemporally ,uncoalesced, discontinuous,infrequently canopied, 
sparsely shaded, S. damnosum s.l. immature habitat, agro-village narrow riverine tributary, 
capture points is that, for moderate resolution  functions with rapidly converging power 
series, the series may be strategically cut off after some term. Theerfater, the total error 
arising from the cutoff would be  close to the first term after the cutoff in ArcGIS. That is, the 
first term after the cutoff will dominate all later terms. The same is true if the expansion is in 
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terms of Chebyshev polynomials constructed in ArcGIS. If a Chebyshev expansion is cut off 
after , the error will take a form close to a multiple of . The Chebyshev polynomials 
have the property that they are level – they oscillate between +1 and −1 in the interval [−1, 
1]. has N+2 level extrema[25]. This means that the forecastable S. damnosum s.l. 
immature habitat, vulnerabity model error between f(x) and its Chebyshev expansion out to 

 would be  close to a level function with N+2 extrema, so it is close to the optimal Nth-
degree polynomial. 

      In mathematics, Fourier analysis   is the study of the way general functions may be 
represented or approximated by sums of simpler trigonometric functions. In mathematics, the 
discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to the 
uniformly-spaced samples of a continuous function. The term discrete-time refers to the fact 
that the transform operates on discrete data (regressable, uncoalesced, geo-spectrotemporal 
eco-epidemiological,  5m, RapidEyeTM parameterizable,uncoalesced, 
discontinuous,infrequently canopied, sparsely shaded, S. damnosum s.l. immature habitat, 
agro-village narrow riverine tributary, capture point samples ( see Figure 24) whose interval 
often has units of time. From only the samples, it produces a function of frequency that is a 
periodic summation of the continuous Fourier transform of the original continuous function. 
Under certain theoretical conditions, described by the sampling theorem, the original 
continuous function can be recovered perfectly from the DTFT and thus from the original 
discrete samples. The DTFT itself is a continuous function of frequency and is by far the 
most common method of modern Fourier analysis. Due to the properties of sine and cosine, it 
is possible to recover the amplitude of each wave in a Fourier series using an integral. In 
many cases it is desirable to use Euler's formula, which states that e2πiθ = cos(2πθ) + i 
sin(2πθ), to write Fourier series in terms of the basic waves e2πiθ. This has the advantage of 
simplifying many of the formulas involved, and provides a formulation for Fourier series that 
more closely resembles the definition followed in this article. Re-writing sines and cosines as 
complex exponentials makes it necessary for the Fourier coefficients to be complex 
valued[25]. 

Fourier transformation is also useful as a compact representation of a proxy biosignature, 
moderate resolutionsignal. For example, JPEG compression uses a variant of the Fourier 
transformation (discrete cosine transform) of small square pieces of a digital image 
(www.esri.com). The Fourier components of each square are rounded to lower arithmetic 
precision, and weak components are eliminated entirely, so that the remaining components 
can be stored very compactly. In image reconstruction, each image square is reassembled 
from the preserved approximate Fourier-transformed components, which are then inverse-
transformed to produce an approximation of the original image (Figure 26) 

 

 

 

Figure 26. Low-pass filtering using Fourier Transforms discrete 5m, RapidEyeTM 

parameterizable,uncoalesced, discontinuous,infrequently canopied, sparsely shaded, S. 
damnosum s.l. immature habitat, agro-village narrow riverine tributary, capture point 
samples where y is changing seasonal immature sanmple productivity  count data and t 
is time   
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The Parks–McClellan algorithm is a variation of the Remez exchange algorithm, with 
the change that it is specifically designed for finite impulse response (FIR) filters ( see Figure 
27)  In signal processing, a FIR filter is a filter whose impulse response (or response to any 
finite length input) is of finite duration, because it settles to zero in finite time[24]. The 
Remez algorithm or Remez exchange algorithm, published by Evgeny Yakovlevich Remez in 
1934, is an iterative algorithm used to find simple approximations to functions, specifically, 
approximations by functions in a Chebyshev space that are the best in the uniform norm L∞ 
sense The Parks–McClellan Algorithm is implemented using the following steps in ArcGIS 
1)Initialization: Choose an extremal set of frequences {ωi

(0)}, 2) Finite Set Approximation: 
Calculate the best Chebyshev approximation on the present extremal set, giving a value δ(m) 
for the min-max error on the present extremal set, 3) Interpolation: Calculate the error 
function E(ω) over the entire set of frequencies Ω using (2), 4) Look for local maxima of 
|E(m)(ω)| on the set Ω, 5) If max(ωεΩ)|E(m)(ω)| > δ(m), then update the extremal set to {ωi

(m+1)} 
by picking new frequencies where |E(m)(ω)| has its local maxima[24]. If max(ωεΩ)|E(m)(ω)| ≤ 
δ(m), then the algorithm is complete. Using the set {ωi

(0)} and the interpolation formula may 
aid in  computing  an inverse discrete Fourier transform to obtain the filter coefficients for a. 
regression, forecasting vulnerability, eco-georeferenceable, seasonally hyperproductive, 
trailing vegetation, narrow, African, riverine, tributary, agro-village, S. damnosum s.l. 
oviposition site on a geoclassifiable, ArcGIS-derived LULC.   

Figure 27. A  band filter designed by the Parks–McClellan algorithm 
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        In Figure 27 the y-axis is the frequency response H(ω) and the x-axis are the various 
radian frequencies, ωi. It should be noted that the two frequences marked on the x-axis, ωp 
and ωs, indicates the pass band cutoff frequency and the stop band cutoff frequency 
respectively. The ripple like plot on the upper left is the pass band ripple and the ripple on the 
bottom right is the stop band ripple. The two dashed lines on the top left of the graph indicate 
the δp and the two dashed lines on the bottom right indicate the δs. All other frequencies listed 
indicate the extremal frequencies of the frequency response plot.  
 
        A new eigenfilter approach to designing least square error filters in ArcGIS may 
quantitate a probabilistically regressable, geo-spectrotemporally uncoalesced, multivariate, 
empirical dataset os eco-epidemiological, regressable, geo-spatiotemporal, geospatialized, 
moderate resolution (e.g., 5m, RapidEyeTM) non-Gaussian, uncoalesced S. damnosum s.l. 
capture point  photosynthetic, wavelength, frequency, emissivity, 5m, spatial resolution, 
covariate coefficients. The filters may be optimally obtained by finding an eigenvector of a 
real, symmetric and positive definite matrix, which is numerically stable whenst constructing 
the least-square solution, in ArcGIS which to  date has only beenobtained through matrix 
inversion in the literature. A new method of designing linear-phase FIR filters ismay be 
proposed in ArcGIS by minimizing a quadratic measure of the error in the passband and 
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stopband. The method is based on the computation of an eigenvector of an appropriate real, 
symmetric, and positive-definite matrix. 
 

In ArcGIS, an n-by-n square matrix A is called invertible (also nonsingular or 
nondegenerate) if there exists an n-by-n square matrix B such thatwhere In denotes the n-by-n 
identity matrix and the multiplication used is ordinary matrix multiplication (www.esri.com). 
In linear algebra, the identity matrix, or sometimes ambiguously called a unit matrix, of size n 
is the n × n square matrix with ones on the main diagonal and zeros elsewhere. [24] In an 
empirical, heursitically optimizable ArcGIS dataset of uncoalesced, regressable, geo-
spectrotemporal eco-epidemiological,  5m, RapidEyeTM parameterizable, 
discontinuous,infrequently canopied, sparsely shaded, S. damnosum s.l. immature habitat, 
agro-village narrow riverine tributary, capture point , forecast, vunerability model , 
fractionalized endmember estimators may be denoted by In, or simply by I if the n size is 
immaterial. I such circumsatnces the count estimates may be trivially determined by the 
inverse of A, denoted by A−1.A square matrix that is not invertible is called singular or 
degenerate[25]. A square matrix is singular if and only if its determinant is 0. Singular 
matrices are rare in the sense that a square matrix randomly selected from a continuous 
uniform distribution on its entries will almost never be singular.Non-square matrices (m-by-n 
matrices for which m ≠ n) do not have an inverse. However, in some cases such a matrix may 
have a left inverse or right inverse in an S. damnosum s.l. immature, capture point, iteratively 
interpolative model. If A is m-by-n in ArcGIS and the rank of A is equal to n, then A will 
have a left inverse: an n-by-m matrix B such that BA = I. If A has rank m in ArcGIS  then it 
will have a right inverse: an n-by-m matrix B such that AB = I.Matrix inversion is the process 
of finding the matrix B that satisfies the prior equation for a given invertible matrix A[24]. 

 
All elucidatively, optimally  parameterizable, explicatively eco-georeferenceable, 

geo-spectrotemporally, geospatially uncoalesceable, phosynthetic and non-phosynthetic 
moderate resolution, uncoalesced, wavelength, frequency, transmittance, 
discontinuous,infrequently  canopied variable thus would be asymptotically attained 
optimally within the  residual, ArcGIS unmixing algorithm. In so doing, a stochastic 
interpolator may reveal un-geosampled, unknown, eco-georeferenceable, narrow African, 
riverine tributary,agro-village, complex ecosystem, immature habitat, capture point, eco-
epidemiological forecasts targets (e.g., seasaonlly hyperproductive, S. damnosum s.l. sparsely 
shaded, trailing vegetation, discontinuously canopied, sparsely shaded, turbid water, 
hyperproductive, foci).  Even though numerical errors may break the explanative matrix 
inversion method in the geodatabase, the algorithm may still find some “optimal” filter by  
tuning an internal parameter in ArcGIS. Further, because of the myriad of design problems 
that can be posed as an eigenfilter problem in nonArcGIS bridge software, the ArcGIS 
method may be useful for a variety of  iteratively interpolative algorithmic applications, 
ranging from spectral/special filtering for remotely diagnosing, discrete, probabilistic 
propagational error in dataset of quantitative  eco-georeferenceable, seasonally targeted 
hyperproductive,S. damnosum s.l. trailing vegation, discontinuously canopied, sparsely 
shaded, turbid water,seasonal capture points.  

 
The notion of such a filter design technique was introduced by Slepian in 1978 in the 

context of the design of window functions for the ideal low-pass filter response.  Slepian 
considered the problem of designing a window with a minimum stop-band energy which was 
subject to a unit norm constraint on the window coefficients to avoid a trivial solution. In 
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1987, Vaidyanathan and Nguyen generalized Slepian’s method for window design to the 
design of linear-phase, finite impulse response (FIR) filters and formally introduced the 
eigenfilter design method. They generalized Slepian’s method to account for both passband 
and stopband conditions and showed how to design a variety of filters (mainly low pass, high 
pass, and band pass) with various time- and frequency-domain constraints, including the 
Nyquist constraint and flatness constraints. Numerous simulation results were provided 
showing the power and usefulness of the eigenfilter method. For example, Jacob et al. [22] 
found that the optimal window coefficients could be found in ArcGIS from the eigenvector of 
a real, symmetric, positive definite, Toeplitz S. damnosum s.l. habitat uncertainty-oriented, 
weighted autoregressive matrix corresponding to its smallest parameterizable, 
discontinuous,infrequently canopied, sparsely shaded, S. damnosum s.l. immature habitat, 
agro-village narrow riverine tributary, capture point  eigenvalue. 

           Various properties of a real symmetric Toeplitz matrix Σm with elements σjk= a|j−k|, 1 
⩽j,k⩽m, may be optimally  reviewed within an ArcGIS geodatabase. Matrix equatiosn of the 
form (e.g.,  a Toeplitz system if A is a Toeplitz matrix) may be customized for 
qualitatively regressively quantiating an empirical regressable dataset of heursitically 
optimizable, eco-epidemiological, orthogonally decomposable, residually forecastable, eco-
georfernceable, S. damnsoum s.l. unmixed, paramterizable, moderate reoslution covariate 
coefficients for  A if an Toeplitz matrix  is utilized in ArcGIS .In so doing, the system 
would only have 2n−1 degrees of freedom, rather than n. Toeplitz matrix  w may be defined 
as a matrix A where Ai,j = ci−j in an ArcGIS cyberenvironment for constants c1−n … cn−1. The 
set of n×n Toeplitz matrices is a subspace of the vector space of n×n matrices under matrix 
addition and scalar multiplication[25].Two Toeplitz matrices may be added in O(n) time and 
multiplied in O(n2) time when qualiatively quantiating a dataset of probabilistically 
autoregressable,  uncoalesceable, remote, multivariate, dataset of geo-spectrotemporally 
uncoalesced,  geospatial, eco-epidemiological,  empirically, elucidative, 5m, RapidEyeTM 

spatial resolution, non-Gaussian, explanatively parameterizable, eco-georeferenceable, 
photosynthetic, agro-village complex, narrow tributary, eco-georfernceable, wavelength, 
frequency,  emissivity, transmittance covariates  in symeteric Toeplitz matrices.  

Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric.Toeplitz 
matrices are also closely connected with Fourier series, because the multiplication operator 
by a trigonometric polynomial, compressed to a finite-dimensional space, can be represented 
by such a matrix in ArcGIS. Similarly, one can represent linear convolution as multiplication 
by a Toeplitz matrix.Toeplitz matrices commute asymptotically. This means they diagonalize 
in the same basis when the row and column dimension tends to infinity. Matrices of this kind 
often arise in applications in statistics, econometrics, psychometrics, structural engineering, 
multichannel filtering, reflection seismology, etc., Thus it would be  desirable to have 
techniques which exploit  special structure in a real, symmetric, positive definite, eco-
epidemiological, eco-georferenceable, capture point, trailing vegetation, discontinuously 
canopied,geo-spectrotemporally, geospatially vulnerability, forecast, Toeplitz, S. damnosum 
s.l. habitat uncertainty-oriented, weighted autoregressive matrix in ArcGIS. Possible 
applications of the results  in such a moderate resolution endmember eigenvector forecast, 
vulnerability model may be related to their  uncoalesced parameterizable, 
discontinuous,infrequently canopied, sparsely shaded, S. damnosum s.l. immature habitat, 
agro-village narrow riverine tributary, capture point , ecogeorferenceable, endmember  
inverse, determinant, and eigenvalues 

The classical sets of orthogonal polynomials of Jacobi,in  satisfy second order 
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differential equations, and also have the propertythat their derivatives form orthogonal 
systems. In mathematics, Jacobi polynomials (i.e., hypergeometric polynomials) P(α, β) 
n(x) are a class of classical orthogonal polynomials. They are orthogonal with respect to the 
weight (1 − x)α(1 + x)β on the interval [−1, 1] The Jacobi polynomials are defined via the 

hypergeometric function as where 
is Pochhammer's symbol (for the rising factorial). The Jacobi polynomials, also 

known as hypergeometric polynomials, occur in the study of rotation groups {2]. They are 
solutions to the Jacobi differential equation, and give some other special named polynomials 
as special cases. They are implemented in 
the WolframLanguage as JacobiP[n, a, b, z].For , which can  reduce to 
a Legendre polynomial. The Gegenbauer 

polynomial and Chebyshev polynomial of the first 
kind can also be viewed as special cases of the Jacobi polynomials[www.sas.edu] 

.Plugging into the Jacobi differential S. damnosum s.l. immarture, capture 
point, predictive, risk  model equation could render 
the recurrencerelation for , 1, ..., 
where Solving the recurrence relation  

wouldgives for . This 
estimate couls  form a complete orthogonal system in the interval  with respect to the 
weightingfunction which could be  normalized according 

to where  is a binomial 
coefficient. Jacobi polynomials can also be written where  isthe gamma 

function and  Jacobi polynomials In this case, the 
series for the hypergeometric function is finite, therefore one obtains the following equivalent 

expression: The 
Pochhammer symbol introduced by the notation (x)n, where n is a non-negative integer[24]. , 
Jacobi polynomials There is a fourth classof polynomials with these two properties, and 
similar in other ways to theother three classes, whichh has hitherto been little studied.  These 
are the Bessel polynomials because of their close relationship with the Bessel functions of 
half-integral order which may be applicable to a regression, forecasting vulnerability, eco-
georeferenceable, seasonally hyperproductive, trailing vegetation, narrow, African, riverine, 
tributary, agro-village, S. damnosum s.l. oviposition site on a geoclassifiable, ArcGIS-derived 
LULC  (see Figure 28). 

Figure 28. The roots of the third-order Bessel polynomial are the poles of filter transfer 
function in the s plane, here plotted as crosses in a hypothetical S. damnosum s.l. 
moderate resolution imaged hyperproductive, eco-epidemiological, capture point 
habitat 
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In ArcGIS, illuminatively decomposed explanative, components  uncoalesced, eco-
cartographically illustratable series of orthogonal, uncorrelated, unmixed, eco-
georeferenceable, hyperproductive, S. damnosum s.l. habitat, 5m, eco-epidemiological, 
vulnerability risk, map patterns that described positively spatially autocorrelated 
parameterizable, discontinuous,infrequently canopied, sparsely shaded, , agro-village narrow 
riverine tributary, capture point , patterns through negatively spatially autocorrelated patterns, 
and global, regional, and local patterns of dependencies in the geo-spectrotemporally, 
moderate resolution, geospatially unmixed, LULC, topographical, reflectance dataset. A 
reformulation of the analytical solution in ArcGIS optimally reduced the required 
computations, which allowed the eigenvectors to be computed sequentially. A series of 
ArcGIS sampling methods were explored. The Sampling Design Tool provided two main 
functions for identifying unknown, un-geosampled, seasonally eco-georeferenceable trailing 
vegetation, prolific, discontinuously, infrequently canopied,  S. damnosum s.l., turbid water, 
immature habitats.The first one was  by optimally selecting a representive sample from a 
decomposable, fractionalized, endmember eigenvector in an interpretively iteratively 
interpolatable African, agro-village complex, riverine tributary habitat that had a geo-
spectrotemporally geospatially geosampled embedded population archived in the algorithm. 
Secondly, the tool performed a sample design analysis. When both of these functions were 
combined in an iterative manner in ArcGIS, the tool effectively achieved the goal of sample 
surveys, which was to employed obtain accurate, high-precision, elucidative, time series 
dependent, explanative decomposable estimates of Simulium habitat, immature, population 
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metrics. Sampling and incorporation of inherently spatial layers (e.g., benthic habitat maps, 
administrative boundaries) can aid in extrapolating evaluation of spatial issues (e.g., protected 
area effectiveness) (www.arcgis.com/home/). 

In Jacob et al [22], the orthogonal, eigenfunction decompostion algorithm in ArcGIS  
was applied to three 5m, RapidEyeTM, fractionalized, explanatively multispectral, 
decomposed, spatial resolution seasonal images of different sizes: small (i.e., ~200,000 
mixels), medium (i.e., ~1,000,000 mixels) and large (i.e., ~110,000,000 mixels), which were 
then remotely and autoregressively evaluated in terms of output for each sampling technique. 
The output spatial filters of these sampling techniques were compared to the filters generated 
in ArcGIS. The complexity of set-up and execution of the geosampled parameterizable, 
discontinuous, infrequently canopied, sparsely shaded, S. damnosum s.l. immature habitat, 
agro-village, narrow, riverine tributary, capture point, iteratively interpolative, distribution 
algorithms in ArcGIS were non-tedious. 

In terms of an efficiency evaluation of the filters in Jacob et al. [22], the expositorily 
decomposed, discontinuous, geo-classifiable, unmixed, 5m RapidEyeTM, eco-epidemiologcal, 
eco-georefernceable, capture point, and non-homogenously canopied, immature  habitat 
surface in Geospatial AnalystTM enabled optimal, interpretive, iterative interpolation in 
ArcGIS (i.e, Geospatial Analyst TM). These smoothed values improved the final eco-
epidemiological, eco-georeferenceable maps of the forecasted, S. damnosum s.l., immature 
habitats and were geo-spectrotemporally geospatially associated discontinuous, canopy cover, 
trailing vegetation and  decomposable, riffle water components. An exponential model was 
then fitted to the semivariogram, using a range of 72.6m, a nugget of 0.21 (variance), a lag 
size of 11.5m with 12 lags and a partial sill of 0.24 (variance). Thereafter, an elucidative, 
geopredictive, explanatory, discontinuously, infrequently, canopy-based, eco-
epidemiological, forecast,  risk map was generated for a neighbouring, riverine, agro-village, 
narrow tributary, sparsely shaded,  study site. The forecasted S. damnosum s.l. habitats were 
then field-verified, which revealed a 100% correlation with the geo-predicted, explanatory, 
forecast estimates. 
 

Analysis of covariance in explicatively forecastable, eco-georeferenceable, seasonally 
prolific, entomological, vector arthropod, transmission-oriented, discontinuous, infreequently 
canopy-vegetated, partially shaded, geo-classifiable, LULC and NDVI, structurally diverse, 
geospectrotemporally uncoalesced, eco-epidemiological forecast, vulnerability models in an 
ArcGIS cyberenvironment may be optimally employed for geoclassifiying unmixed, field and 
remote clustering, time series, orthogonalizable, fractionalized, endmember decomposable 
eigenvectors.  In addition to uncoalescing geo-predictive variables, in order to account for 
probabilistic, autoregressive residual uncertainties (i.e., non-linear dependence) and to reduce 
root-mean-square deviations (RSMD).  

The RMSD or root-mean-square error (RMSE) is a frequently used measure of the 
differences between values (e.g., geosampled parameterizable, discontinuous,infrequently 
canopied, sparsely shaded, S. damnosum s.l. immature habitat, agro-village, turbid water,  
narrow,African  riverine tributary, eco-georferenceable, moderate resolution, capture point, S. 
damnosum s.l., eco-epidemiologicalm capture point, immaturem count values) predicted by a 
model or an estimator and the values actually observed. The RMSD represents the sample 
standard deviation of the differences between predicted values and observed values. In 
statistics, the standard deviation (SD, also represented by the Greek letter sigma σ or s) is a 
measure that is used to quantify the amount of variation or dispersion of a set of data values 
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[See Figure 29].  

Figure 29 a) a decomposed  trailing vegation, turbid water, hypeporductive moderate 
resolution imaged, capture point, eco-georferenceable, endmember S. damnsoum s.l. 
habitat model b) RMSD simulation at varying finite and infinite variance counts c) 
Simulation infrequent canopy,d) Rapid Eye 5m signal to noise distribution of kriged 
fractionalized proxy LULC biosignature endmember residuals 

 

 
 
 

       The RMSD serves to aggregate the magnitudes of the errors in predictions for various 
times into a single measure of predictive power. RMSD is a good measure of accuracy, but 
only to compare forecasting errors of different models for a particular variable and not 
between variables, as it is scale-dependent.  

In Jacob et al. [22], an orthogonally decomposed, expositorily fractionalized NDVI, 
5m, RapidEyeTM , fractionalized endmember, eigenvector,unmixed signature for optimizable 
attribute datafiles unbiasedly explanatively simulated important transmission zones [e.g., 
hyperendemic, (0-5km) from a seasonally, hyperproductive, sparsely shaded, trailing 
vegetation, discontinuously canopied, turbid water, eco-epidemiological, discontinuous, 
ecogeorefernceable,  capture point]. Orthogonalized and uncorrelated, seasonally 
forecastable, endemic, topographically transmission-oriented, discontinuously, infrequently 
canopied , immature habitat, geo-classifiable, LULC, eco-epidemiological, vulnerability, 
unmixed, map patterns were heuristically, optimally and eco-geographically  illustrated by 
the iteratively interpolative, fractionalized, endmember eigenvector, ensembles obtained from 
a doubly centered interpretively decomposable contiguity matrix in ArcGIS.   
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       The continuity tool in ArcGIS honors the Environment output coordinate 
system(www.esri.com). Feature geometry was projected to the output coordinate system prior 
to the forecast, vulnerability, eco-epidemiological, eco-georeferenceable, parameterizable, 
discontinuous,infrequently canopied, sparsely shaded, S. damnosum s.l. immature habitat, 
agro-village, turbid water,  narrow, African  riverine tributary,  eco-georferenceable, eco-
epidemiological, complex, ecosystem, uncoalesced, moderate resolution, capture point, S. 
damnosum s.l. habitat, explanatory, fractionalized, endemember, eigenvector wavelenghth, 
transmittance, emissivity, frequency-oriented, analysis, so values entered for the Threshold 
Distance parameter using the same units as those specified in the output coordinate system in 
ArcGIS. All mathematical computations were based on the output coordinate system. 
Consequently, if the output coordinate system did not match the input endmember 
eigenvector, iterative, interpolative,decomposed,  feature class, hyperproductive, agro-village, 
narrow, riverine, tributary, eco-georeferenceable, explanatorial, spatial reference, sub-mixel 
analyses using the spatial weights matrix file, were checked to determine if the  output 
coordinate system matched the settings  employe when the spatial weights matrix file was 
created in ArcGIS . Alternatively, the feature parameterizable, discontinuous,infrequently 
canopied, sparsely shaded, S. damnosum s.l. immature habitat, agro-village, turbid water, 
cimplex, ecosystem,   narrow,African  riverine tributary, eco-georferenceable, moderate 
resolution, capture point,  geoclassfiied LULC class was also checked to determine if its 
spatial reference matched the spatial reference associated with the spatial weights matrix file  
Ideally, whenever using a distance-based conceptualization of Spatial Relationships in 
ArcGIS, the data should be illustrated   using a Projected Coordinate System rather than a 
Geographic Coordinate System based on degrees, minutes, and seconds prior to 
analysis(www.esri.com) This projection should match the Environment output coordinate 
system settings.  

 In Jacob et al. [22], a unique ID field was used to relate explanatively,optimally  
decomposed discontinuously canopied, trailing vegetataion, eco-georeferenceable, 
elucidative, immature habitat features to one another (the relationship or weight between the 
geo-spectrotemporally geosampled, sparsely shaded, S. damnosum s.l., riverine foci, 
geospatial objects). Consequently, the Unique ID field values was unique for every 
uncoalesced,narrow riverine, eco-georefrenceable, immature habita,t tributary, attribute  and 
typically was a permanent field that remained with the feature class. If you don't have a 
unique ID field, you can easily create one by adding a new integer field to your feature class 
table, and calculating the field values to be equal to the FID/OID (www.esri.com) field. The 
Polygon Contiguity Conceptualizations of Spatial Relationships were only valid for the 
decomposed riverine habitat polygon features.  

The Delaunay triangulation and K nearest neighbors options are both appropriate for 
point or polygon features in ArcGIS; these options indicate that a feature will only be 
included in a group if at least one other group member is a natural neighbor (Delaunay 
Triangulation) or a K Nearest Neighbor. The Average Nearest Neighbor tool returns five 
values: Observed Mean Distance, Expected Mean Distance, Nearest Neighbor Index, z-score, 
and p-value(www.esrei.com). Optionally, this tool will create an HTML file with a graphical 
summary of results. If K nearest neighbors are selected a value of 12 is enetered for the 
Number of Neighbors parameter, for example, every geocalssifiable elucidative, LULC 
feature in a group will be within 12 nearest neighbors of at least one other feature in the 
group in ArcGIS (www.esri.com). The Delaunay triangulation option shouldn't be used for 
datasets with coincident features[24]. Also, because the Delaunay Triangulation method 
converts features to Thiessen polygons in ArcGIS to determine neighbor relationships, 
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especially with polygon features and sometimes with peripheral features in a dataset, the 
results from using this option would be optimal for a parameterizable, eco-egorferenceable, 
seasonal, S. damnosum s.l. discontinuous,infrequently canopied, sparsely shaded, S. 
damnosum s.l. immature habitat, agro-village, complex ecosystem,  turbid water,  
narrow,African  riverine tributary, eco-georferenceable, moderate resolution, capture point, 
forecast, moderate resolution uncoalesced, fractionalized, endmember eigenvector,  
wavelength, transmittance, frequency-oriented explicative, emissivity, forecast, vulnerability 
model( see Figure 30). 

Figure 30. Non-contiguous; grouped original, capture point  S. damnosum s.l., 
parameterized polygons (A) converted to Thiessen polygons, (B) 

 
 

The Delaunay triangulation and the Voronoi diagram are dual structures and contain 
the same information in different form[24]. Computing one of these structures does 
automatically create the other. Furthermore, there is a connection between Delaunay 
triangulations and convex hulls in one higher dimension. The Delaunay triangulation and the 
Voronoi diagram in d dimensions was generated in Jacob et al. [22]  for field verifying (i.e., 
“ground trothed data”)  a kriged map generetaed from a proxy Rapid Eye, 5m, proxy 
biosignature, of a capture point,  trailing vegation, turbid water seasonally hyperproductive, 
S. damnosum s.l. immature habitat, geosampled in an agro-village complex (i.,e Chutes 
Dienoka) in Burkina Faso from a convex hull in d+1 dimensions (Figure 31). The Delaunay 
triangulation for a set of d-dimensional points is the projection of the points of the hull in d+1 
dimensions [25]. In so doing, the descriptive, elucidative, intrepretively and explanatively 
interpolative, orthogonalized, 5m, forecasting, vulnerabilty, unmixed model revealed a 
ground truthing (i.e, field verification) capability of 72.73% for seasonally, geo-visualizing 
hyperproductive, sparsely shaded, trailing vegetation, discontinuously canopied, S. 
damnosum s.l., riverine, turbid water, immature habitats. The sensitivity of the test was 78.26 
while the specifity was 100 at an eco-epidemiological riverine, study site in northern Uganda. 
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Figure 31 Voronoi diagram for validating a semiovariogram delineation of 
forecasted,pre-flooded, trailing vegetation, discontinuously canopied, hyperproductive 
S. damnosum s.l. riverine habitats along  a meandering tributary of the Achwa river 
basin in northern Uganda Northern Uganda  

 

In Jacob et. al. [22] a ArcGIS contiguity matrix geo-spectrotemporally and 
geospatially characterized the operational clustering of  a heuristically optimizable, 
ecogeorefernceable, dataset of explanatively iteratively interpolative, hyperproductive, eco-
georeferenceable, Simulium habitats by employing Moran’s I, an extension of the Pearson 
product-moment correlation coeffcient to univariate series.  Meaningful explanative, spatial 
forces were empirically filtered out in the geosampled, eco-georeferenceable, decomposed, 
covariate, coefficient, endmember eigenvector, immature habitat, 5m geo-spectrotemporally 
uncoalesced, wavelength frequency-oriented, endmember, transmittance that was capable of 
being optimally parameterized through an emissivity estimator dataset in ArcGIS.  

In an analogy to standard deviation, taking the square root of mean square error (i.e., 
second moment about the origin) in Geostatistical AnalystTM may incorporate both the 
variance of an unmixed dataset of  sparsely shaded, explanative hyperproductive, , 
parameterizable, seasonal, S. damnosum s.l. discontinuous, infrequently canopied, sparsely 
shaded, S. damnosum s.l. immature habitat, agro-village, complex ecosystem,  turbid water,  
narrow,African  riverine tributary, eco-georferenceable, moderate resolution, capture point, 
forecast, uncoalesced, fractionalized, endmember eigenvector,  wavelength, transmittance, 
emissivity, frequency-oriented, explicative, forecast, vulnerability model, unbiased, 
elucidative estimators. In so doing,  iteratively qunatitatively, explanatively  interpolatable,  
immature habitats, elucidatively decomposed, 5m, wavelength, transmittance emissivities, 
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with parameterizable non-homogenously canopied, autoregression-related, probabilistically 
regressively correlated estimators as well as their biases may be optimally yielded in the 
RMSD.These values may exhibit the same units as any quantity (i..e, covariance weight) 
being probabilistically estimated for any explanatively unbiased robustifiable eco-
epidemiological, empirically decomposable, 5m, spatial resolution, RapidEyeTM, 
fractionalized, endmember, eigenvector, wavelength, transmittance emissitivy, dataset 
forecast estimator. Optimally and expositorily fractionally decomposed, log-transformed, 
sub-mixel, red and near NIR, fractionalized, endmember eigenvectors may eco-
cartographically delineate latent autocorrelation, endemic transmission-oriented, explicatively 
auto-probabilistic and autoregressable, orthogonally  stratifiable, eco-georeferenceable, 
geospatialized clusters in ArcGIS. The discontinuously canopied, trailing vegetation, sparsely 
shaded, orthogonally decomposed, endmember eigenvector, radiance spectrum in many 
narrow, uncoalesced contiguous, moderate resolution, spectral bands may reveal a high 
covariance between the bands.  Hence, the true dimensionality of the imaging explanatorial, 
eco-georeferenceable, explicative, seasonally hyperproductive, S. damnosum s.l., immature 
habitat, eco-epidemiologicalparameterizable, discontinuous,infrequently canopied, sparsely 
shaded, S. damnosum s.l. immature habitat, agro-village, complex ecosystem,  turbid water,  
narrow,African  riverine tributary, eco-georferenceable, moderate resolution, capture point 
uncolaesced data may not be optimally heuristically determined by the number of spectral 
bands, but by the number of spectrally unique signatures (e.g., crown transparency, 
understory canopy reflectance) whose mixtures may reproduce the spectral variance observed 
in the RapidEyeTM image. 

 
Elucidatively varying, explanatively optimally parameterizable, quantitatively 

elucidatively decomposable, 5m, RapidEyeTM autoregressively quantizable, intra-cluster, 
covariate coefficient, uncoalesced,  wavelength transmittance may precisely reveal seasonally 
eco-georeferenceable and fractionalized, natural groupings, (e.g., flooded riverine, narrow 
meandering, discontinuously canopied, pathway intervals) of explicatively geo-
spectrotemrpoally, geospatially uncoalesced, sparsely shaded, auto-probabilistically 
randomized, geo-classifiable, expositive, geoclassifiable LULC, emittance patterns from 
geosampled, immature, eco-georferenceable, eco-epidemiological, Simulium, capture point, 
high density foci and interpretively explanatorial, endmember, iteratively interpolative, 
empirical, orthogonal  eigenvector  datasets. Explanatively, eco-epidemiological, geo-
classifiable, vulnerability forecasting, decomposition maps may then be optimally generated 
in Geospatial AnalystTM from the explanatorily, interpretively, iteratively, quantitatively 
interpolated, geo-spectrotemporal, geospatial clustering (e.g., positively autocorrelated, 
seasonally decomposable, illustratively non-parametric unmixed, geo-classifiable, S. 
damnosum s.l., synthetic, orthogonal, spatial filter, eigenvectors). The probabilistic, 
autoregressive, explanatively decomposed, orthogonal, eco-epidemiological, eco-
georeferenceable, forecast, vulnerability model residuals may address the apparent habitat 
heterogeneity, which may be subsequently heuristically, explanatorily and optimally 
summarized based on the behaviors of the systematic covariate eigenvectors in an ArcGIS 
cyberenvironment in geospace.  

Spatial endmember heterogeneity  in an ArcGIS cyberenevironment can refer to the 
variation, or instability, in observed explanative, eco-georeferenceable, geo-spectrotemporal 
and geospatial data across an eco-geographic, elucidatively geo-classified, orthogonalized 
and decomposed LULC distance–related matrix (www.esri.com) Other fractionalized 
endmber uncertainty eigenvector  forecast vulnerability modellig has been conducted on 
narrow tributary discontinuously canopied,  trailing vegetation, turbid water variables . Rigel 
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and Foster (2009) present the results of a large-scale endmember remote survey conducted in 
Aprli-May 2008. The objective was to quantify the abundance and distribution of seasonal 
drift macroalgae in the Indian River Lagoon. Indian River was surveyed from the Sebastian 
Inlet to its northernmost extent in the Titusville area. Banana River was surveyed from its 
convergence with the Indian River northward to the Federal Manatee Zone near Cape 
Canaveral. The survey vessel was navigated along pre-planned lines running east-west and 
spaced 200 m apart. The river edges were remotely surveyed. Hydroacoustic data were 
collected with a BioSonics DT-X echosounder and two multi-plexed digital transducers 
operating at 38 and 418 kHz based on geoclassifed, fractionalized, endmmeber eigenvector, 
LULC data feature attributes. The previous lagoon-wide survey (Contract SI 44112) utilized 
a QTC View echosounder and a single 200 kHz transducer. The switch to a BioSonics system 
was recommended in the 2005 final report and motivated by the greater temporal consistency 
afforded by the digital transducers. The 38 and 418 kHz hydroacoustic data were processed 
with BioSonics Visual Bottom Typer (VBT) seabed classification software to obtain values 
of E1’ (time integral of the squared amplitude of the 1st part of the 1st echo waveform), E1 
(2nd part of 1st echo), E2 (complete 2nd echo), and FD (fractal dimension characterizing the 
shape of the 1st echo). A novel approach to supervised classification was developed for 
acoustic discrimination between three major seabed classes; bare substrate, drift macroalgae, 
and short SAV (~10cm<). A training catalog was compiled from 131 sonar+video samples 
collected across the extent of the study area. The 38  and  418 kHz E1’, E1, E2, and FD 
datasets were merged and submitted to a series of three linear discriminant analyses to isolate 
and extract pure endmember records, (e.g. contiguous drift macroalgae, from hydroacoustic 
samples) that were often times heterogeneous, (e.g. sparse drift macroalgae). The Fisher’s 
linear discriminant functions from the third and final discriminant analysis in ArcGIS were 
used to geoclassify each of the 500,000+ hydroacoustic survey records as either bare, drift 
macroalgae, or short SAV. The eco-cartographic classified survey records were then used to 
calculate the biomass of drift macroalgae as the product of average percent cover times wet 
weight. The drift macroalgae biomass geoclassified LULC was found to be 69,859 metric 
tons (wet weight) within the 293.1 km2 study area. The biomass per unit area (238.3 kg per 
km2) was roughly 34% less than reported for the 2005 survey, in general agreement with 
field observations. The mean percent cover of drift macroalgae was (i) significantly greater 
within the navigation channels (18.3%)  than outside (12.2%), and (ii) significantly greater in 
the Indian River (12.9%) than in the Banana River (9.3%). The overall predictive accuracy of 
total SAV was 78.9% (n=246) at three levels of cover (0-33, 33-66, and 66-100%). The Tau 
coefficient, a measure of the improvement of the classification scheme over random 
assignment, was 0.683 ± 0.076 (95% CI),( i.e. the rate of misclassifications was 68.3% less 
than would be expected from random assignment of hydroacoustic records to total SAV 
cover). Parameterizable, explanatorial, uncoalesced, moderate resolution seasonal, 
hyperproductive,  S. damnosum s.l. discontinuous,infrequently canopied, sparsely shaded, S. 
damnosum s.l. agro-village, complex ecosystem,  turbid water,  narrow,African  riverine 
tributary, eco-georferenceable, capture point, with their fractionalized, endmember 
eigenvector,  wavelength, transmittance, emissivity, frequency-oriented, explicative, forecast, 
vulnerability model, geospectrotemporally extracted moderate resolution, LULC mixel, may  
imply the functional forms and/or behavioral parameters of unmixed variation by  immature 
habitat geolocation.  
 

Geographically weighted regression (GWR) in ArcGIS is commonly employed to 
remotely and autoregressively characterize such quantative variations by estimating 
unmixed,optimally  parameterizable, moderate resolution,  wavelength, transmittance 
emissivity, fractionalized, covariate coefficients for each eco-georeferenceable, eco-
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epidemiological study site or observational unit based on all optimally pre-determined 
observations within a agro-village, narrow, African, riverine tributary, complex, 
ecosystem,neighborhood.  This process employs cross validation, as described in Jacob et al. 
[26], who analyzed a 5m, geoclassifiable, flooded, sparsely shaded, non-homogenously 
canopied, trailing vegetation LULC via a continuous-response, GWR, forecasting, agro-
village, narrow, African riverine, tributary, forecast-oriented,   vulnerability model. This 
unmixed  prototype paradigm employed geo-spectrotemporally, geosampled,  S. damnosum 
s.l. data points across an eco-epidemiological, eco-georeferenceable, narrow riverine agro-
village, tributary eco-georferenceable, ecosystem study site in Burkina Faso which was 
subsequently field verified in another eco-epidemiological study  site in northern Uganda 
(Achwa basin, Gulu). The authors calibrated a binomial probit GWR model with 
heteroscedastic error terms to characterize the development of unmixed, 5m RapidEyeTM grid 
cell information. Applications of multinomial GWR models for Rapid Eye TM optimally 
derived 5m, elucidatively uncoalesced, geoclassifiable, LULC patterns in ArcGIS employing 
eco-georefernceable,iteratively interpolative, proxy, , S. damnosum s.l., immature, capture 
point, discontinuously canopied, turbid water, trailing vegetation, , geo-spectrotemporal, 
signature covariates may be vital for obtaining a robust dataset of forecasted seasonally 
unknown, un-geosampled,  prolific, immature, capture point, hyperproductive, habitats in  
moderate resolution.  Local likelihood logit agro-village, African, narrow riverine, agro-
village complex, tributary habitat, regressed values encompassed in a  parametric logit model 
for a bandwidth value of infinity may quantitate, explanatively  unbiased endmeber 
eigenvector estimators of unknow, ungeosampled iteratively interpolated, uncoalesced, 
moderate resolution, proxy biosignarture variables in ArcGIS  

  
Finite-sample properties of elucidative, non-parametric regression for binary 

dependent seasonal, geo-spectrotemporally, geosampled, trailing vegetation, discontinuously 
canopied, eco-georeferenceable, narrow agro-village frican reiverine tributary, S. damnosum 
s.l.,immature,  turbid water, riverine, habitat geo-sepctrotemrpoally, geospatially 
uncoalesced, fractionalized, 5m,  endmember variables may be rigriously analyzed. Non 
parametric regression is generally considered as highly variable in small samples when the 
number of regressors is large [24]. In binary choice, vulnerability, forecast-oriented, Rapid 
Eye TM 5m, spatial resolution, immature Similium habitat, capture point, eco-epidemiological, 
seasonal models, however, it may be more reliable since its variance is bounded. The 
precision in estimating conditional means as well as marginal effects may be thus 
investigated in various seasonal settings with many explanatory variables (>25 regressors) 
and small sample sizes (250 or 500 habitat observations). The Klein-Spady estimator, 
Nadaraya-Watson regression and local linear regression often perform poorly in the 
simulations [24]. Local likelihood logit regression, on the other hand, is 25 to 55% more 
precise than parametric regression in the Monte Carlo simulation.  

 
A second type of immature habitat effect, geospatial, geo-spectrotemporal 

autocorrelation, may arise in eco-epidemiologically uncoalesced moderate resolution, trailing 
vegetation, discontinuous, infrequently canopied, iteratively interpolative, eco-
georeferenceable, turbid water, trailing vegetation, S. damnosum s.l., sparsely sahded, 
immature fractionalized, endmember eigenvector, wavelength, transmittance, emissivity, 
frequency-oriented explicative, forecast, vulnerability model. In so doing imply the 
functional forms and/or behavioral parameters of unmixed variation by capture geolocation 
may be qualitatively quantitated in an ArcGIS cyberenveironment.Primarily due to imperfect 
information on the immature, capture point foci ,observational units and measurement errors. 
Information on variables, such as soil types, from S. damnosum s.l.  models’ moderate 
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resolution, geoclassifiable time series, LULC change variables may result in unquantiated 
inconspicious correlations across nearby geosampled habitat sites’ and their probabilistic 
autoregressive, error terms. Moreover, aggregated explanative, geo-spectrotemporally 
geospatially uncoalesced, iteratively interpolative, moderate resolution, immature habitat, 
eco-epidemiological data, tabulated LULC values in ArcGIS, such as narrow riverine, agro-
village complex-level, field and remote specified, arbitrary spatial boundaries for sparsely 
shaded, African, agro-village complex, tributary, narrow riverine,  hyperproductive, 
immature, seasonal, eco-georefernceable,   capture points can introduce forms of endmember 
autocorrelation. Directly specifing a spatial structure during the auto-probabilistic, 
autoregressive evaluation of  geo-spectrotemporally geosampled, S. damnosum s.l., immature 
habitats within a spatial autoregressive (SAR) and spatial moving average (SMA) in an 
ArcGIS risk matrix map help capture inconspicuous autocorrelation in i iteratively 
interpolative, sub-mixel, parameterizable, fractionalized, moderate resolution, wavelength, 
frequency eigenvector, moderate resolution, transmittance. According to Wang et al. [28], 
work on discrete states of explantive, time series, LULC change in ArcGIS with such 
specifications can be found in Chakir and Parent’s [29] spatial multinomial probit model (for 
cross-sectional data), in Munroe et al.’s [30] series of binary probit and random effects probit 
models (using panel techniques), and in Wang and Kockelman’s dynamic spatial ordered 
probit model [31].  

 
In Jacob et al. [22], an eigenvector decompositional, spatial filtering in ArcGIS 

optimally furnished geo-spectrotemporal forecast accountability for an uncoalesced  dataset 
of quantitable seasonally explanatively bio-geophysical, geospectral/geospatial dependency, 
covariate coefficient, interaction terms in a heuristically probabilistically, quantitatively 
interpretively, explanatively, iteratively interpolative, sparsely shaded, uncoalesced, 
hyperproductive, turbid water, immature, S. damnosum s.l. capture point, trailing vegetation, 
discontinuous, infrequently canopied,  Rapid Eye TM 5m, moderate resolution,  wavelength, 
transmittance emissivities representing eco-georeferenceable, capture point decomposed, 
ground coordinates within the domain of a conditional, flexible, probability model. 
Employing geo-classification regression techniques can allow for prediction in unlabeled 
inputs, (i.e., those not in the training set), which may be optimally treated by the application 
of a similarity function , called a kernel, between the unlabeled input  and each of the 
training inputs  (e.g., binary classifier typically computed by weighted sum of similarities). 
Many existing methods, such as generalized linear models (GLMs) and support vector 
machines, can support data systems for eco-geographically geo-predicting unknown, un-
geosampled, seasonally explanative, hyperproductive, eco-georefernceable, trailing 
vegetation, turbid water, discontinuous, infrequently canopied, seasonally hyperproductive, S. 
damnosum s.l. narrow, African, riverine tributary, agro-village, complex ecosystem, capture 
point, immature habitats by subsuming them under conditional regression classes in ArcGIS. 
The exibility of this class of techniques may allow optimal, parsimonious employment of 
explanative kernel functions in an unmixed, hyperproductive, discontinuously canopied, 
sparsely shaded, seasonally geosampled, eco-epidemiological, unmixed dataset of eco-
georeferenceable, 5m, RapidEyeTM, , imaged, capture point, S. damnosum s.l., immature 
LULC habitats and the generalities from dual formulations of standard heuristically 
optimizable, autopredictive regression models. The interpolative, rendered, interpretive, 
iterative eco-epidemiological, eco-georeferenceable, explanative forecasts may determine a 
magnitude per unit of discontinuously canopied, geo-spectrotemporally, geospatially, geo-
classifiable, LULC area from  elucidative, immature Similium habitat, forecasted points or 
polylines in time series, ArcGIS, extractable data, feature attributes.  A kernel function may 
be optimally employed to fit a smoothly tapered, Simulium, non-homogenously canopied, 
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immature, riverine, habitat surface to each eco-georeferenceable point or polyline. Values of 
the search radius parameter may produce a smoother, more generalizable density raster. 
Smaller ouptut values from the immature, riverine habitat, vulnerability, forecast 
geospectrally and geospatially unmixed, RapidEyeTM decomposable, wavelength 
transmittance, emissivity, frequency-oriented, vulnerability, forecast model may produce a 
raster that reveals unknown, un-geosampled, hyperproductive, seasonally explanative, trailing 
vegetation, discontinuous, infrequently canopied, sparsely shaded, S.damnsoum s.l. turbid 
water, immature habitat, eco-epidemiological, capture points. 
  

 In ArcGIS, only explanatively decomposable, interpretively iteratively interpolative, 
riverine, immature, hyperproductive, discontinuously canopied, vulnerability, capture point, 
forecast models that have been eco-epidemiologically confirmed immature habitat, eco-
georeferenceable (i.e., “ground truthed”) points that fall within an explicity geo-classifiable 
neighborhood are  considered in the calculatable density values. If no points or line sections 
fall within the neighborhood of a particular narrow, African, riverine tributary, eco-
georeferenceable, discontinuous, infrequently canopied, trailing vegetation, turbid water, 
geoclassified LULC, immature  habitat, stratified, orthogonal grid- cell, it may be assigned a 
value. If the area unit scale factor units are small relative to those measured in uncoalesced, 
optimized, immature habitat data, feature attributes (e.g., Euclidean distances between geo-
spectrotemporally and geosampled, immature habitat, geo-cordinate points or length of line 
sections) may be optimally employed IN ArcGIS. Depending on the empirical dataset of  
moderate resolution, narrow riverine tributary, sparsely shaded, eco-georeferenceable, 
discontinuously canopied, umixed, interpretively, iteratively interpolated, agro-village, 
landscape feature, proxy type signature, the output regressor values may vary (e.g., between 
kilometers versus meters). 

 
In an ArcGIS cyberenvironment, the default search radius (i.e., bandwidth) may be 

optimally algorithmically quantitated based on the eco-georefernceable, spatial configuration 
of an African agro-village, eco-epidemiological, study site,  narrow riverine tributary 
complex and number of input, trailing vegetation, turbid water, discontinuous, infrequently 
canopied, sparsely shaded, S. damnsoum s.l. capture point, immature, habitat,  
geospectrotemporal, geosampled, eco-georeferenceable points. This approach can correct 
spatial outliers (i.e., input points that are very far away from the rest) in explanatively, 
iteratively interpolatable , geo-spectrotemporally geosampled, hyperproductive, S. damnosum 
s.l., capture point, immature habitats with an eco-epidemiological African, narrow riverine, 
tributary, agro-village complex, study site so that they will not make the search radius 
unreasonably large.  Very large or very small values in the population field in an ArcGIS 
cyberenvironment can render non-optimizable results that may seem unintuitive. If the mean 
of the geosampled, eco-georeferenceable, narrow riverine,tributary African, agro-village 
complex,  trailing vegetation, discontinously canopied, sparsely shaded, eco-epidemiological, 
capture point,  immature, habitat, eco-georefernceable, population field is large (>500 
seasonal S. damnosum s.l.  turbid water habitats), the default search radius might be very 
small, resulting in small rings around the input points, but if the mean of the population field 
is small (<10), the calculated bandwidth might seem unreasonably large in an unmixed, 
immature habitat, eco-epidemiological,  capture point. In these cases, it may be pertinent to 
manually enter a search radius in ArcGIS. These models may exploit the decomposition of 
geospatially and geo-spectrotemporally explanative, 3-dimensionalizable, trailing vegetation, 
African, narrow riverine tributary, agro-village complex, eco-georeferenceable, ecosystem, 
capture point,  immature  habitat, surfaces with unmixed, slope coefficients into the following 
three components in an ArcGIS cyberenvironment: trend, spatially structured random 
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component (i.e., spatial stochastic signal), and random noise. The illuminative explanative 
forecasts rendered from these models may thereafter optimally separate the randomizable 
uncoalesced, geo-spectrotemporally and geospatially, expositorily structured, 3-D, 
explanative, catchment watershed employing elucidative, probabilistically autoregressable 
and orthogonally decomposable, spatial filter endmember eigenvector components in ArcGIS 
from both trend and random noise. Subsequently, the  fractionalized immature habitat, 
endmember, auto-probabilistic, residual, autoregressive, eco-georefernceable, hierarchical, 
eco-epidemiological, residual parameter estimation, regression  forecasts may furnish robust 
inferences and employable geo-visualizations of decomposed, simulated, uncorrelated, 5m 
RapidEyeTM, frequency, wavelength, iteratively interpolative, transmittance emissivities, for 
example. 

 
The exploratorial, fractionalized endmember eigenvector, spatial filtering, iterative 

algorithm in ArcGIS may then optimally employ a dataset of diagnostic, synthetic, iteratively 
interpolatable, proxy, signature, elucidative  variables that may be geo-spectrotemporally, 
geospatially and parsimoniously forecasted using, 5m, wavelength, transmittance emissivity, 
endmember, eigenvector, covariate coefficients. A connectivity matrix in ArcGIS may link 
the eco-geographically geo-spectrotemporally, geo-sampled, immature habitat, uncoalesced, 
geospatialized capture point, geospatial objects and geospectrally eco-georeferenceable 
LULC objects together in geospace.  These vectors may then be optimally added as control 
variables to a vulnerability forecasting, eco-epidemiological, model specification. These 
control variables may identify and isolate the stochastic spatial dependencies amongst the 
unmixed, iteratively interpolative, eco-georeferenceable, forecastable, fractionalized habitat 
endmember, eigenvector observations, allowing the model building process in ArcGIS to 
proceed as if the observations were independent. The discontinuous, infrequently 
canopied,eco-georefernceable, eco-epidemiological, African, narrow, riverine tributary, 
immature,capture point,  eco-epidemiological, habitat, vulnerability model specifications may 
then be utilized to elucidate parameterizable, 5m, RapidEyeTM , remotely decomposable, 
transmittance emissivities, following various types of seasonally hyperproductive, non-
homogenous, S. damnosum s.l. riverine,immature, habitat distributions.  These include 
Gaussian, Poisson, and binomial distributions where the dependent variable would be 
optimally the immature, seasonally geosampled, frequency-oriented, productivity counts. 

 
An explanative, spectral clustering, iterative, interpolative algorithm in ArcGIS may 

expositively quantitate, fractionalized, moderate resolution, endmember eigenvector, 
probabilistic uncertainties within a similarity/affinity matrix.  By generalizing the k-means 
objective function  to use both weights and kernels, an ecologist, entomologist, and  show 
how the two approaches to clustering are related. Specifically, a rewrite of the weighted 
kernel k-means objective function as a trace maximization problem (i.e., relaxation) can be 
solved with eigenvectors in ArcGIS. The result may show  how a particular kernel and weight 
scheme is connected to the spectral algorithm  in ArcGIS. The  approach  may generalize the 
clustering algorithm in ArcGISto use arbitrary kernels and weights for identifying unknown 
un-geosampled, iteratively interpolative,  an eco-georeferenceable, trailing vegetation, turbid 
water, sparsely shaded, discontinuous canopied, hypeporductive, seasonal, S. damnosum s.l. 
narrow tributary, African, agro-vilage complex. 
 

         Jacob et al. (2015) revealed characteristics of different clustering algorithms on 
fractionalized endmember, 5m, Rapid Eye TM, capture point, S. damnosum s.l., eco-
epidemiological, geo-spectrotemporally geospatially uncoalesced, endmember eigenvector, 
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discontinuously canopied, sparsely shaded, eigenvector datasets in 2D. The dataset was an 
example of a non-‘null’ situation. The results were improved by tweaking the parameters for 
each clustering strategy in ArcGIS by setting the number of S. damnosum s.l. seasonally 
prolific immature habitat clusters based on their uncoalesced, wavelength, frequency 
transmittance, parameterizable covariate coefficients specified (see Figure 32). Note that 
affinity propagation has a tendency to create many explanatory eco-georefernceable, 
fractionalized decomposable, algorithmic, itertively interpolative, endmember, spatial filter, 
eigenclusters. Thus, it may be advisable for an ecologist, entomologist or other researcher to 
employ two additional parameters (damping and per-point preference) to mitigate any 
uncertainty behavior trends in ArcGIS. Spectral algorithms in ArcGIS may aid in optimal 
conditional regression of an eco-epidemiological dataset of probabilistically, autoregressable, 
heuristically optimizable, eco-georeferenceable, seasonally hypeproductive, S. damnosum s.l., 
immature habitats with geo-spectrotemporally and geospatially geosampled uncoalescable, 
moderate resolution, capture points which  may then reveal explicatively and illuminatively 
unmixed, robust parameterized landscape estimators ( Figure 32). This algorithm may employ 
the eigenvalues and eigenvectors rendered from the normalized similarity matrix in ArcGIS 
to partition the immature habitat data optimally. In linear algebra, an eigenvector or 
characteristic vector of a linear transformation is a non-zero vector that does not change its 
direction when that linear transformation is applied to it. In other words, if v is a vector that is 
not the zero vector, then it is an eigenvector of a linear transformation T if T(v) is a scalar 
multiple of v. This condition can be written as the equation where λ is a scalar 
known as the eigenvalue or characteristic value associated with the eigenvector v. If the 
linear transformation T is expressed as a square matrix A, then the equation can be expressed 
as the matrix multiplication where v is a column vector.[24] In linear algebra, a 
column vector or column matrix is an m × 1 matrix, that is, a matrix consisting of a single 

column of m elements,  [24]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32. Varying geospatial clustering S. damnosum s.l. seasonally prolific  habitat 
clusters  based on their uncoalesced, parameterizable wavelength, frequency 
transmittance, covariate ,coefficients   
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Regardless, a 5m RapidEyeTM spatial resolution, explanative, eco-georeferenceable 
image of an eco-epidemiological, narrow, African, riverine tributary, agro-village complex, 
eco-epidemiological,  study site may be corrupted by seasonal endmember noise; thus, non-
quantitatable clustering fractionalized  eigenvectors may not perform optimal segmentation  
for optimally iteratively interpolating an decomposable, explanative S. damnosum s.l. 
immature riverine habitat, uncoalesced, proxy signature in a wavelength, frequency, 
transmittance  vulnerability, forecasting, model especially those that map capture points  with 
time series, discontinuous canopied, sparsely shaded, trailing vegetation, and turbid water 
covariates. A noise-robustifiable, explanative, spatial preprocessing module in ArcGIS may 
be employed prior to spectral unmixing of the Rapid EyeTM seasonal images. The method 
would first derive a spatial homogeneity index, which may be relatively insensitive to the 
noise present in the original, 5m, imaged, immature, capture point, reflectance dataset. 
Thereafter, by fusing this index with a geospectral-based, elucidative geo-classification in 
ArcGIS (e.g., Spatial AnalystTM) a set of pure, discontinuous, infrequently  canopied, geo-
classifiable and explanatorial trailing vegetation, sparsely shaded, turbid water, 
geoclassifiable LULC regions may be optimally obtained, which could then be employed to 
guide the unmixing process. An experimental comparison of the proposed method with other 
spatial-spectral, unmixing, algorithmic approaches may also be conducted employing both 
synthetic and real hyperspectral data in ArcGIS. The experiment may indicate that spectral 
unmixing can benefit from the proposed pre-processing approach, in particular, when the 
noise level present in the original, 5m, RapidEyeTM ,seasonal, African, agro-riverine village, 
tributary ecosystem complex, eco-epidemiological, study site scene is relatively high (e.g., 
during highly clouded, high flooding, seasonal,  remotely sensed, sample frames ). 

In discrete time, white noise quantitated in an ArcGIS cyberenvironment can be 
revealed as  a discrete signal whose samples are regarded as a sequence of serially 
uncorrelated random variables with zero mean and finite variance. A single realization of 
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white noise is a random shock [23]. Depending on the context, an ecologist, entomologist or 
other researcher may also require that the quantiatively, interpretively, iteratively 
interpolative, seasonally hyperproductive, immature, S. damnosum s.l. immature, habitat, 
eco-epidemiological, capture point,5m samples in ArcGIS may be independently distributed 
and have the same probability distribution representative of the quantiated white noise. In 
particular, if each explanatorial, geo-spectrotemporally and geospatially geosampled, 
immature, riverine, seasonal, habitat sample has a normal distribution with zero mean, the 
signal would be endmember Gaussian white noise.  Gaussian white noise models have 
become increasingly popular as a canonical type of model in ArcGIS cyberenvironments to 
address certain statistical challenges in moderate resolution, bio-geophysical, uncoalesced, 
wavelength, frequency-oriented, transmittance, emissivity, forecast, vulnerability models. 
Some of the challenges in analyzing moderate resolution, unmixed, trailing vegetation, 
heterogeneously canopied, turbid water, narrow, African, riverine, agro-village complex, 
tributary ecosystem, seasonally hyperproductive, immature, eco-epidemiological, eco-
georeferenceable, capture point, immature  habitats of S. damnosum s.l.,  and their 
explanatively orthogonally decomposed  endmember eigenvectorsin ArcGIS  may be 
formulated in terms of Gaussian "white noise," employing the estimation of monotone 
functions. 

       A monotonic function in ArcGIS is a function which is either entirely non-increasing or 
non-decreasing. A function is monotonic if its first derivative (which need not be continuous) 
does not change sign[24]. These results may be related to the recent development of 
likelihood ratio tests for monotone functions for aiding in heuristically, probabilistically, 
autoregressively quantitating an empirically orthogonally, elucidatively,orthogonally  
decomposable, eco-epidemiological, fractionalized datasets of geo-spectrotemporally, 
geospatially uncoalesceable, seasonally hyperproductive, capture point,  sparsely shaded, 
discontinuously canopied, S. damnosum s.l., turbid water,  RapidEyeTM, geo-
spectrotemporally, geospatially parameterizable, agro-village, complex ecosystem,  turbid 
water,  narrow,African  riverine tributary, eco-georferenceable,  capture point, with their 
uncoalesced, moderate resolution fractionalized, endmember eigenvector,  wavelength, 
transmittance, emissivities., In so doing, frequency-oriented explicative, forecast, 
vulnerability model, geospectrotemporally extracted LULC mixels, can  imply the functional 
forms and/or behavioral parameters of unmixed variation by geolocation. Multivariate 
interval censoring for a explanative, robustifiable, eco-gereferenceable, trailing vegation, 
turbid water, hyperproductive, eco-epidmiological, capture point, may be enabled in an 
ArcGIS cyberenvironment. An ecologist, entomologist or other researchier may consider the 
problem of estimation of a joint distribution function of a multivariate random vector with 
interval-censored,  geo-spectrotemporally uncoalesced,  moderate resolution, trailing 
vegetion, heterogeneously, infrequently canopied, turbid water, sparsely shaded,   S. 
damnosum s.l. capture point, proxy biosignature data points[Figure 33]. The generalized ML 
estimator of the distribution function may be studied and its consistency and asymptotic 
normality may be established employing an ArcGIS-derived multivariate interval censorship 
model  with discrete assumptions on the censoring random vectors. A monotonic function is a 
function which is either entirely nonincreasing or nondecreasing. A function is monotonic if 
its first derivative (which need not be continuous) does not change sign. The term monotonic 
may also be used to describe set functions which map subsets of the domain to non-
decreasing values of the codomain. In particular, if is a set function from a collection 
of sets to an ordered set , then is said to be monotone if whenever as elements of , 

. This particular definition comes up frequently in measure theory where many of 
the families of functions defined (including outer measure, premeasure, and measure) begin 
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by considering monotonic set functions. A   S. damnosum s.l map f : X → Y is may be 
monotone if each of its fibers is connected (i.e. for each element y in Y the (possibly empty) 
set f−1(y) is connected. Further, in ArcGIS a functional analysis on a topological vector space 
X,  (i.e.,  a eco-georeferenced  geosampled, S. damnossm .s.l. habitat where T : X → X∗ a 
monotone operator may be rendered  if (Figure 33). 

Figure 33 A) Uncoalesced, 5m, trailing vegetation, S. damnosum s.l. immature, turbid 
water, endmember, geospectral canopy reflecation narrow riverine, tributary, agro-
village complex,  hyperproductive foci b) Differentially geomterically plotted  
monotonic function of geosampled capture point  habitat surface non-continuous 
wavelength , frequency-oriented, emittance  

 

    
 
   
Unfortunately, there may be problems in validating for equality at fixed, eco-

georeferenceable, parameterizable, agro-village, complex ecosystem, turbid water,  
narrow,African  riverine tributary, eco-georferenceable, , capture point, immature habitats 
employing nonparametric estimation of a monotone function. As such, a likelihood ratio test 
may be derived using interval censoring for qualitatively quantitating limiting distributions in 
the vulnerability, uncoalesced, 5m, wavelength, frequency, transmittance, emissivity, geo-
spectrotemporal, geospatial,moderate resolution eco-epidemiolgical, eco-georefernceable, 
forecasting vulnerability  model. For right-censored data analyses, standard nonparametric 
and semiparametric methodologies in ArcGIS include the Kaplan-Meier estimates of the 
survival function, the log-rank test for comparing survival functions, and Cox regression 
analysis for assessing parameterizable, uncoalesced, 5m, RapidEyeTM explanatively 
decomposable, reflectance covariates. Parametric methods are also available for interval-
censored data in SAS/GIS. For example, the LIFEREG and RELIABILITY procedures fit 
popular lifetime distributions, such as the Weibull and lognormal, to interval-censored data 
by maximum likelihood estimation (MLE) which may be elucidatively, iteratively, remotely, 
applicable for autoregressively qualitatively quantitating, explanatively decomposable, eco-
epidemiological, interpolatively   uncoalesced  datasets of seasonally hyperproductive, S. 
damnosum s.l. immature, riverine habitat, eco-georeferenceable, geosampled, 5m, 
RapidEyeTM distribution, parameterizable covariates.  
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 Further, additive white Gaussian noise (AWGN), a basic noise model used in 

Information theory in ArcGIS can mimic the effect of many explanatively probabilistic,  
random processes that occur in nature, which may be employable to summarize orthogonally 
fractionalized, endmember eigenvector noise in ArcGIS. The modifiers may denote geo-
spectrotemrpoally geosampled, unmixed, iteratively interpolative, RapidEyeTM non-
homogenously canopied, trailing vegetation, seasonally hyperproductive, discontinuously 
canopied, immature, S. damnosum s.l., turbid water, seasonal, habitat characteristics. In the 
case of additive Gaussian noise, the previously derived MLE in stationary white noise is 
extended to the case of nonstationary white noise. Useful analytic expressions for 
performance evaluation of both estimators may thus be optimally regressively derived, and 
the estimators may be shown to be asymptotically unbiased at the signal-to-noise ratio (SNR).  

 
 The SNR is a measure used in science and engineering that compares the level of a 

desired signal to the level of background noise, defined as the ratio of signal power to the 
noise power, often expressed in decibels [23]. Fortunately, SNR has error variance which 
decays exponentially with sequence length to a lower threshold in ArcGIS. Useful analytic 
expressions for performance evaluation of hyperproductive, S. damnsoum s.l., habitat 
parameterizable covariates via 5m RapidEye™ data with orthogonally decomposable, 
intutive, LULC fractionalized, wavelength, frequency transmittance, emissivity, endmember, 
eigenvector estimators which may reveal that the residual forecasted SNR may be 
asymptotically unbiased at high SNR. An error variance in the S. damnosum s.l. model may 
decay exponentially with sequence length to a lower threshold. By doing so, the African, 
agro-village complex, narrow tributary, immature habitat samples derived from  a white noise 
signal may be sequential in time, or arranged along one or more spatial dimensions in the 
geosampled, agro-village,eco-epidemiological,  ecosystem complex.  

In digital image processing, the mixels of a white noise image are typically arranged 
in a rectangular grid, and are assumed to be independent random variables with uniform 
probability distribution over some interval. The concept can also be optimally defined for 
signals spread over more complicated domains, such as a sphere or a torus. In ArcGIS 
geometry, a torus is a surface of revolution generated by revolving a circle in 3-D space about 
an axis coplanar with the circle (www.esri.com). If the axis of revolution does not touch the 
circle, the surface (e.g., trailing vegetation, sparsely shaded, hyperproductive, discontinuously 
canopied, S. damnosum s.l., eco-epidemiological, capture point, turbid water, iteratively 
interpolative, eco-georeferenceable and elucidative immature habitat), a ring shape (i.e., a 
torus of revolution) may be optimally rendered in an ArcGIS cyberenvironment. Real-world 
examples of approximately toroidal objects include the surface of swim rings [23]. A torus 
should not be confused with a solid torus, which is formed by rotating a disk, rather than a 
circle, around an axis. A solid torus is a torus plus the volume inside the torus. Real-world 
approximations include vadai or vada, and O-rings.  

In ArcGIS, a ring torus is homeomorphic to the Cartesian product of two circles: 
S1 × S1, and the latter is taken to be the definition in that context. It is a compact, 2-manifold 
of genus 1. The ring torus may be one way to embed this geo-space into a 3-D, Euclidean 
space, in an empirically regressable dataset of geo-spectrotemporally, geospatially 
uncoalesced,  seasonally hyperproductive, discontinuously, infrequently canopied, sparsely 
shaded, trailing vegetation, S. damnosum s.l., narrow African,riverine tributary, turbid water, 
African agro-vaillage complex,  eco- epidemiological, immature habitat, capture point, 
orthogonally decomposed data that are interpretively interpolative and explanatorily 
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quantitatively unmixed in a 5m RapidEyeTM emissivity wavelength transmittance 
vulnerability, eco-epidemiological, forecast model.  Another way to do this is by employing a 
Cartesian product in ArcGIS (i.e., Geospatial AnalystTM) of the embedding of S1 in a 
specified plane. This could optimally render a geometric object (e.g., a Clifford torus) or 
surface in 4-space. The Clifford torus is an example of a square torus, as it is isometric to a 
square with opposite sides identified. It is also known as a Euclidean 2-torus (the "2" is its 
topological dimension) [23]. In the field of topology, a torus is any topological space that is 
topologically equivalent to a torus [www.esri.com]. 

 In order to overcome the noise sensitivity of the standard spectral clustering 
algorithm in ArcGIS, a novel fuzzy spectral clustering algorithm in ENVI with explanatively 
robustifiable, geospatial/ geospectral, time series, uncoalesced information for image 
segmentation may be alternatively proposed. ENVI is an object-based classification that 
provides advanced, user-friendly tools to read, explore, prepare, analyze and share 
information extracted from satellite imagery (http://www.exelisvis.com/portals/).  

 
The MNF transform may be employed in ENVI to optimally determine the inherent 

dimensionality of geo-spectrotemporally, geospatially  uncoalesced, decomposable, 5m 
imaged,  RapidEyeTM data composed of fractionalizable, unmixed, photosynthetic and NPV, 
elucidatively parameterized, covariate estimators (e.g., foliage orientation) by eco-
geographically and eco-cartographically representing seasonally hyperproductive, S. 
damnosum s.l., eco-epidemiological, eco-georeferenceable, capture point, African, narrow, 
riverine, tributary habitats in order to segregate the endmember noise in the data, and to 
reduce the computational requirements in ArcGIS cyberenvironments for subsequent 
processing. The MNF transform, previously modified by Green et al. [32], was then 
employed in ENVI Classic which is essentially two cascaded Principal Components 
transformations (http://www.exelisvis.com/portals/).  

 
Principal component analysis (PCA) is a statistical procedure that employs an 

orthogonal transformation to convert a set of observations of possibly correlated variables 
into a set of values of linearly uncorrelated variables called principal components [24]. The 
number of principal components is less than or equal to the number of original variables. This 
transformation may optimally define seasonally hypeproductive, discontinuous, infrequent, 
canopied, sparsely shaded, trailing vegetation, riverine, agro-village, ecosystem complex, 
capture point, turbid water, hyperproductive, capture point, eco-georeferenceable, S. 
damnosum s.l. habitats in such a way that the first principal component has the largest 
possible variance. The first transformation of the explanatory, geo-spectrotemporally, 
geospatially geosampled, immature habitat may be based on an estimated noise covariance 
matrix, which may decorrelate and rescale the noise in the geosampled, eco-georeferenceable, 
uncoalesced parameterizable, agro-village, complex ecosystem,  turbid water,  
narrow,African  riverine tributary, eco-georferenceable, , capture point, with their 
uncoalesced, moderate resolution fractionalized, endmember eigenvector,  wavelength, 
transmittance, emissivities., In so doing, frequency-oriented explicative, forecast, 
vulnerability model, estiamor dataset. will maximize variance in the first components and 
eliminate correlation between the  fractionalized  endmember, moderate resolution,  
eigenvector components, making the sub-mixel  data  well suited for information- rich image 
display, image classification, and image compression. 
 

Heuristically, explanatively  optimizable, eco-georefernceable, optimally regressed, 
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geo-spectrotemporal, geospatial, ecohydrological, residual forecasts can account for as much 
of the variability in hyperproductive, turbid water, eco-georferenceable, S. damnosum s.l., 
eco-epidemiological, African, agro-village complex, capture point, immature, seasonal  
habitat’s trailing vegetation, discontinuous, infrequently canopied, endmember uncoalesced  
data, and each succeeding component in turn will have the highest variance possible under 
the constraint that it is orthogonal to the preceding geosampled habitat data variables. These 
dataset may be optimally elucidatively decomposable. The resulting vectors may be an 
uncorrelated orthogonal basis set. The principal components are orthogonal because they are 
the eigenvectors of the covariance matrix, which is symmetric [24].  

Principal component analysis is a statistical procedure that uses an orthogonal 
transformation to convert a set of observations (e.g., eco-georeferenceable, geo-
spectrotemporal, geospatialized, S. damnosum s.l., capture point, eco-epidemiological, 
clustering   immature habitats),  of possibly correlated variables into a set of values of 
linearly uncorrelated variables called principal components[24]. The number of principal 
components is less than or equal to the number of original variables. This transformation may 
be optimally  defined   in such a way that the first principal component has the largest 
possible variance (that is, accounts for as much of the variability in the data as possible), and 
each succeeding component in turn  will have the highest variance possible under the 
constraint that it is orthogonal to the preceding components. The resulting vectors are an 
uncorrelated orthogonal basis set. The principal components are orthogonal because they are 
the eigenvectors of the covariance matrix, which is symmetric [25]. PCA is sensitive to the 
relative scaling of the original variables. 

 PCA may be optimally conducted in an ArcGIS cyberenvironment for an empirical, 
eco-epidemiological, unmixed dataset of hyperproductive parameterizable, agro-village, 
complex ecosystem,  turbid water,  narrow,African  riverine tributary, eco-georferenceable, , 
capture point, with their uncoalesced, moderate resolution fractionalized, endmember 
eigenvector,  wavelength, transmittance, emissivities., In so doing, frequency-oriented 
explicative,  S. damnosum s.l. habitats may be geoclassified  by conducting eigenvalue 
decomposition of a data covariance (or correlation) matrix attributable endmember measure , 
or singular value decomposition of a data matrix. This may eb achieved after mean centering 
(and normalizing or using Z-scores) the data matrix for each geosampled, endmember, 
habitat, farctionalized, moderate resolution, data feature attribute in ArcGIS. The results of a 
PCA in ArcGIS are usually discussed in terms of component scores, sometimes called factor 
scores (i.e., the transformed variable values corresponding to a particular data point), and 
loadings (the weight by which each standardized original variable should be multiplied to get 
the component score).  

PCA is the simplest of the true eigenvector-based multivariate analyses in ArcGIS 
[33]. Often, its operation can be thought of as revealing the internal structure of the data in a 
way that best explains the variance found within the data. If a multivariate, ArcGIS, 
optimally derived, trailing vegetation, discontinuous, infrequently canopied, hyperproductive, 
S. damnosum s.l. turbid water, capture point, eco-georeferenceable, habitat with an eco-
epidemiological, capture point, explanative uncoalesced, dataset is visualized as a set of 
coordinates in a high-dimensional data space (e.g., 1 axis per variable). PCA can supply the 
user with a lower-dimensional picture, a projection or "shadow," of this object when viewed 
from its most informative viewpoint. PCA is closely related to factor analysis. Factor analysis 
typically incorporates more domain specific assumptions about the underlying structure and 
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solves eigenvectors of a slightly different matrix. PCA is also related to canonical correlation 
analysis (CCA) [33].  

In statistics, canonical-correlation analysis (CCA) is a way of making sense of cross-
covariance matrices. Thus, if we have two vectors X = (X1, ..., Xn) and Y = (Y1, ..., Ym) 
ecohydrologically representing, multivariate, explanatively randomized, geo-spectrotemporal, 
geospatial, Rapid Eye TM 5m, imaged hyperproductive, eco-georeferenceable,  S. damnosum 
s.l. capture point, immature habitat, unmixed,wavelength, frequency, transmittance 
emissivities  and their optimally orthogonally decomposed endmember variables, where there 
are correlations amongst the variables, a canonical-correlation analysis in an ArcGIS 
cyberenvironment will find linear combinations of the Xi and Yj, which have maximum 
correlation with each other. Virtually all of the commonly encountered, parametric tests of 
significance can be treated as special cases of canonical-correlation analysis in ArcGIS when 
constructing a viable stochastic or deterministic, iterative explanative, interpolator for 
geolocating unknown, seasonally hyperproductive, clustered, trailing vegtation, 
discontinuously canopied, sparsely shaded, eco-georefernceable, geospatial gesomapled, 
habitats in an African, riverine, agro-village complex. 

 
An ArcGIS-derived Principal Components Analyses(PCA) may used to find principal 

components in accordance with maximum variance of a data matrix  [33] for heuristically 
optimizing an geo-spectrotemporally uncoalesced  dataset of endmeber eigenvector 
geospatializable, eco-georeferenceable, discontinuous, infrequently canopied, S. damnosum 
s.l., capture point,trailing vegetation, turbid water, immature habitats [ Figure 34].  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 34 Principal Components version of a Rapid Eye TM 5m scene delineating  a 
cluster of hyperproductive seasonal S. damnosum s.l. trailing vegetation, 
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discontinuously canopied , turbid water habitats  in Chutes Dienkoa agro-village 
complex in Burkina Faso 
 
 

  
 
However, variance-based principal components may not adequately represent a 

moderate 5m-imaged resolution RapidEyeTM for an optimal decomposable, S. damnosum s.l., 
habitat image quality. As a result, a modified PCA approach based on maximization of a 
SNR in ArcGIS may be proposed. This approach, known as noise-adjusted principal 
components (NAPC) in ArcGIS, is an algorithm that arranges principal components in 
decreasing order of image quality rather than variance. One of the major disadvantages of this 
approach is that the noise covariance matrix must be estimated accurately from the data a 
priori. Another is that the factor of interference is not taken into account in MNF or NAPC in 
which the interfering effect tends to be more serious than noise in moderate resolution 
images. Ecologists, entomologist, or other researchers may consider the interference as a 
separate, unknown signal source from which an interference and noise-adjusted principal 
components analysis (INAPCA)  may be developed in ArcGIS in a manner similar to the one 
from which the NAPC is derived in ArcGIS. Two approaches, referred to as signal to 
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interference plus the noise ratio-based principal components analysis (SINR-PCA) and 
interference-annihilated, noise-whitened, principal components analysis (IANW-PCA), may 
then be proposed for the INAPCA to aid in identifying unknown and un-geosampled, 
iteratively interpolated,hyperproductive habitats. It  may be then shown that   interference in a 
seasonally hyperproductive, discontinuous, infrequently canopied, sparsely shaded,  5m, 
spatial resolution, RapidEyeTM , trailing vegetation, turbid water, seasonal,  capture point, 
endmember, Simulium habitat, forecast-oriented,  vulnerability model is remotely, 
regressively, and qualitatively quantitated employing SINRPCA and IANW-PCA as eco-
epidemiological, eco-georeferenceable, residualized eigenvector forecasts to significantly 
improve APC. In addition, interference annihilation may improve the estimation of the noise 
covariance matrix for optimally identifying unknown, un-geosampled, hyperproductive, eco-
epidemiological, capture point, S. damnosum s.l. habitats in seasonally explanative 5m 
RapidEye™ imaged data.  

Currently, there is presently a lack of coupled, retrospective, land-atmosphere 
observational synthesis activities conducted for atmospheric analyses/re-analyses or classical 
African narrow riverine tributary water resources surveys in areas populated by trailing 
vegetation, discontinuous, infrequently canopied, eco-georeferenceable, S. damnosum s.l. 
habitats. This gap in the  literature results in serious deficiencies in budget preparations and 
optimally forecasting between what atmospheric re-analyses say runoff should be, for 
example, for  an African riverine , agro-village, complex ecosystem and what it is observed at 
a parameterizable, agro-village, complex ecosystem,  turbid water,  narrow,African  riverine 
tributary, eco-georferenceable, Similium habitat, capture point level. From the terrestrial 
ecohydrologic side, detailed analyses of streamflow  may be employable in regional,water 
budget studies while very crude estimation methods for regional evapotranspiration or poorly 
resolved geospatial and temporal distributions of precipitation  may be implemented at the 
agro-village, seasonally explanative, ecohydrological, capture point,  eco-georeferenceable 
level. Many such analyses may tend to however,  neglect the often-significant effects of 
human management, which can also lead to erroneous conclusions about coupled, narrow, 
African, riverine tributary, turbid water, cycle processes involved in onchocerciasis 
transmission. Each of these shortcomings results in the translation of errors into flux and/or 
state variables, which would have deleterious impacts on coupled process for understanding 
hypeproductive geolocations of unknown, un-geosampled, ago-village , narrow tributary, 
eco-georferenceable, riverine foci. By improving the integration of inter-disciplinary 
observational efforts into coupled land-atmosphere modeling and data assimilation systems in 
an ArcGIS cyberenvironment, there exists significant opportunity to better  determine, and 
forecast immature Similium productivity estimates which are, in turn, critical to 
understanding how various mechanisms of environmental change will impact coupled land-
atmosphere exchange processes associated to seasonal variables associated to 
hyperproductivity (e.g., low hanging riverbank vegetation immersed in fast flowing water).  

        Depending on the field of application, a discrete Kosambi-Karhunen–Loève transform 
(KLT) in ArcGIS may be applicable to the RapidEye™ uncoalesced, 5m, wavelength, 
emissivity transmittance, signal processing. By doing so, the Hotelling transform in a 
multivariate, proper orthogonal decomposition or a singular value decomposition (SVD), 
eigenvalue decomposition (EVD) of XTX, factor analysis may be optimally devised in 
ArcGIS. The Hotelling Transform is a conventional image processing transformation 
(www.esricom) By employing this transmformation an S. damnosum s.l. habitat capture 
point, eco-epidemiological, forecast, eco-georefernceable geo-spectrotemporally 
uncoalesced, endemic transmission-orinted, vulnerability, covariance matrix in ArcGIS all the 
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mathematical endmember eigenvector relations may be qualitatively quantiated . In so doing, 
the eigenvalues and vectors may be obtained from a., RapidEye™,5m, proxy signature which 
may be subsequentlt iterqatively interpolated for identying unknown, ungeosampled, 
parameterizable, agro-village, complex ecosystem,  turbid water,  narrow,African  riverine 
tributary, eco-georferenceable, capture point, uncoalesced, moderate resolution fractionalized, 
endmember eigenvector, wavelength, transmittance, emissivities forecast-oriented, 
vulnerability mode estimators.  

For the purposes of further spectral processing, the inherent dimensionality of 
unmixed, geosampled, 5m-imaged RapidEye™, geo-spectrotemporally uncoalesced, 
fractionalized, endmember, capture point, habitat data in an SAS/GIS cyberenvironment may 
be remotely, probabilistically geospatially/geospectrotemporally regressed by examination of 
the eigenvalues in the geo- evaluated seasonal, images. The data space may be optimally 
divided into two parts: one part associated with large eigenvalues and coherent 5m 
eigenimages, and a complementary part with near-unity eigenvalues and the noise-dominated 
5m images (see Figure 35) 
 
Figure 35. Endmeber eigenvector diffusion object based map of a series of trailing 

vegation, discontinuously canopied, eco-georferenceable, hyperproductive seasonal,  S. 
damnosum s.l. habitat along a rice agro-village complex ecosystem in northern Uganda  

 

 
 By employing only the coherent portions, the noise in the habitat parameterizable, 

agro-village, complex ecosystem,  turbid water,  narrow,African  riverine tributary, eco-
georferenceable, , capture point, uncoalesced, moderate resolution fractionalized, endmember 
eigenvector,  wavelength, transmittance, emissivities., frequency-oriented explicative, 
forecast, vulnerability data may be separated from the waveband transmittance emissivity 
data. To begin, a non-locally weighted sum image of the original RapidEyeTM image may be 
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generated by utilizing the discontinuous, infrequently canopied, sparsely shaded, trailing 
vegetation, tubid water, geoclassifed mixels with a similar configuration of each extracted 
mixel in ENVI.  Next, a robust, gray-based, fuzzy algorithmic, similarity measure may be 
optimally defined by employing the fuzzy membership values amongst gray values in the 
new generated image in ArcGIS.  The similarity matrix obtained by this measure would only 
be dependent on the number of gray-levels, which may be stored in a spectral library in the 
object-based classifier. Finally, the spectral graph partitioning method may be applied to this 
similarity matrix to group the gray values of the new generated, geosampled, habitat image.  
The corresponding mixels in the image may be optimally reclassified to obtain the final 
segmentation result. In Jacob et al. [22] the segmentation experiments on synthetic and real 
5m, spatial resolution, RapidEyeTM, endmember, heuristically decomposed, eco-
georeferenceable, trailing vegetation, discontinuously canopied, sparsely shaded, 
fractionalized, prolific, eco-georferenceable,habitat image revealed that the  PCA method 
out-performed traditional spectral clustering methods and spatial fuzzy clustering employed 
in ArcGIS alone in efficiency and robustness [Figure 36]. The algorithm parsimoniouly 
rendered multiple descriptive, explanatively, orthogonally forecastable, vulnerability-
oriented, expositively fractionalized, endmember, eigenvector maps employing a discretized, 
Inverse FFT in the spectral domain in ArcGIS. 

Figure 36: Forecasted iteratively decomposed S. damnosum s.l. habitat site immature 
productiveity scores on the first and second axes of the analysis of a principal 
component analysis, with each score, delineated as a smoothed scalogram Moran's 
eigenvector map indicating the portion of variance (R2) explained by  Rapid Eye TM 5m, 
spatial scale. 

 
 

            
 
 
ArcGIS cyberenvironment computes the discrete Fourier transform (DFT) of a 

sequence, or its inverse, which mathematically converts a finite list of equally spaced 
informative samples of a function into the list of coefficients of a finite combination of 
complex sinusoids, ordered by their frequencies. The authors in Jacob et al [22] employed the 
expositorily tabulated DFT to convert the sampled function in a dataset of unmixed, 
hyperproductive, geo-spectrotemporally geosampled, S. damnosum s.l. habitats with trailing 
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vegetation-related, discontinuous,infrequently canopied,  eigenvector endmembers that were 
descriptively and heuristically optimizable in an ArcGI vulnerability, forecast model from its 
original domain (time) to the frequency domain in Geostatistical AnalystTM. The Fourier 
analysis converted the explanatively optimizable unmixed, 5m RapidEye™, wavelength 
transmittance, immature habitat, emissivity signal from its original geo-spatiotemporal 
domain to a representation in the geo-spectrotemporal frequency domain and vice versa. 
There are many different FFT algorithms involving a wide range of mathematics, from 
simple complex-number arithmetic to group theory and number theory in ArcGIS 
(www.esri.com). The FFT rapidly and iteratively computed the sparsely shaded, trailing 
vegetation, S. damnosum s.l., turbid water, hyperproductive, agro-village complex ecosystem, 
discontinuous, infrequently  canopied, capture point geolocations parsimoniously.  

Explanatively decomposable and interpretively orthogonlizable, trailing vegetation-
related, elucidatory eigenvector endmembers with moderate resolution, fractionalized 
discontinuous canopy transformations may be remotely and regressively mapped in ArcGIS 
by factorizing the DFT matrix into a product of sparse, mostly zero, factors. A DFT matrix is 
an expression of a transformation matrix that can be strategically applied in ArcGIS to a 
signal through matrix multiplication (www.esri.com). As a result, the ArcGIS 
cyberenvironment may manage to reduce the complexity of computing the DFT from , 
which occurs when auto-probabilistically regressing decomposable, randomizable, riverine 
habitat vulnerability, fractionalizable, endmember eigenvector, moderate resolution in 
unmixed, wavelength transmittance emissivities in a stochastic interpolator.  

     In mathematics, big O notation describes the limiting behavior of a function when the 
argument tends towards a particular value or infinity, usually in terms of simpler functions 
[34]. In the ArcGIS interface, big O notation is employed to geoclassify residual algorithms 
by how they respond (e.g., in their processing time or working space requirements) to LULC 
changes in input size. Jacob et al. [26] parsimoniously estimated the autoregressive error 
(e.g., spatial heteroskedasicty) committed while replacing the asymptotic size and an 
asymptotic mean size of an arithmetical function tabulated in Geostatistical AnalystTM by a 
mean value, by employing a large finite argument for constructing a robustifiable, eco-
cartographic, seasonally eco-georeferenceable, immature habitat, Landsat TM  ,vulneabilty, 
forecasting model. 

   Spatial heteroskedasticity and autocorrelation consistent (spatial HAC) estimators in a  
empirically explanative, eco-epidemiological, field-operationizable, uncoalesced, datasets of 
parameterizable, iterative, hyperproductive, S. damnosum s.l., capture point, immature, 
discontinuous, infrequently, seasoanlly canopied, trailing vegetation, optimally 
parameterizable, elucidative, agro-village African, narrow, riverine tributary, habitat, 
autoregressive, moderate resolution, geoclassifiable, interpolatble, elucidative,  LULC 
estimators may be remotely and qualitatively quantitated employing covariance matrices in a 
SAS/GIS cyberenvironment.  In probability theory and statistics, a covariance matrix (also 
known as dispersion matrix or variance–covariance matrix) is a matrix whose element in the 
i, j position is the covariance between the ith and jth elements of a random vector (that is, of a 
vector of random variables) [24]. Generalizable spatially explanative, decomposable, HAC 
estimators may apply the  residually forecastable, autoregressive, fractionalized, 
decomposable, endmember eigenvector, spatiallyprobabilistic  uncertainties rendered from an 
eigenfunction decomposition algorithm in SAS/GIS, may generate robustifiable, non-linear, 
geo-spectrotemporally and geospatially intuitive vulnerability, eco-epidemiological, forecast 
model forecasts with moment conditions. In doing so, ecologists, entomologists and other 
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researchers may establish eco-epidemiological, RapidEyeTM 5m, data for optimally mapping 
geo-spectrotemporally, geospatially uncoalesceable, 5m, wavelength transmittance, 
frequency-oriented emissivities with their respective, heuristically optimizable, consistency 
rates of convergence and asymptotic truncated RSMD. Based on the asymptotic, truncated, 
mean square, error criterion, the optimal bandwidth parameter may be derived which may 
suggest moderate resolution, dependent, data estimation,  decomposable, iteratively 
interpolative, orthogonal procedures by employing a Bayesian  parametric plug-in method in 
SAS/GIS. [35].Jacob et al. (26) estimated several normal mean vectors in an empirical 
Bayesian hierachical framework spatially adjusted decomposable, parameterizable 5m 
RapidEye™, geo-spectrotemporally, geospatially adjusted unmixed, S. damnsoum s.l. 
habitats with auto-probabilistic and autoregressive uncoalesced, paramterizable, covariate, 
wavelength frequency-oriented transmittance [ Figure 37] . 

Figure 37 Bayesian covariance landscape estimators of S. damnsoum s.l. in an 
agrovillage narrow tributray riverine complex in Burkina Faso with parameterizable, 
Rapid EyeTM quantized endmember covariate estimators of the mean  

 

 
 

A Bayesian, hierarchical, general, framework enables the development of robust 
probabilistic analysis of error and uncertaintyin model predictions by explicitly 
accommodating measurement error, parameter uncertainty, and model structure imperfection 
[24]. In Jacob et al. [22] a Bayesian hierarchical formulation for simultaneously calibrating a 
S. damnosum s.l. aquatic biogeochemical model  at multiple  capture point systems (immature 
hyperproductive, trailing vegetation, sparsely shaded,   discontinuously canopied, sites) with 
differences in their trophic conditions, prior precisions of model parameters, available 
information, measurement error and  inter-seasoanl  variability. The statistical formulation 
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also explicitly considered the uncertainty in model inputs (model parameters, initial 
conditions), the analytical/sampling error associated with thefield data, and the discrepancy 
between model structure and the natural system dynamics (e.g., missing key ecological 
processes, erroneous formulations, misspecified forcing functions). The comparison between 
observations and posterior predictive monthly distributions indicated that the  S. damnosum 
s.l. immature habitat models calibrated under the Bayesian hierarchical scheme provided 
accurate system representations for all the scenarios examined. The results also suggest that 
the Bayesian hierarchical approach allowed overcoming problems of insufficient local data 
by “borrowing strength” from highly relevant paarmeterized iteratively interpolative 
elucidative varaibles where  complete data could not be practically collected. Finally, the 
prospects of extending this framework to spatially explicit biogeochemical  along with the 
benefits for environmental management, such as the optimization of the sampling design of 
monitoring S. damnosum s.l. immature seasonally hyperproductive habitats  was examined 
.Interestingly, The Bayesianized endmember eigenvector, unmixed, 5m fractionalized 
emissivites was reduced due to estimating the inverse of a covariance matrix in the standard 
multivariate normal situation, which employed a particular loss function in ArcGIS. 
Estimators dominated by any constant multiple of the inverse sample covariance matrix may 
be qunatiated in ArcGIS (www.esri.com). These estimators shrunk the sample eigenvalues 
toward a central value, in much the same way a mean vector shrinks the ML estimators 
toward a common value which quantized the error disturbance terms in the paradigm.    
 

Uncertainty analysis of mathematical models has been a central topic in aquatic 
ecosystem research, and there have been several attempts to rigorously assess model error 
associated with model structure and parameter uncertainty [24]. Model uncertainty analysis 
essentially aims to make inference about the joint probability distribution of model inputs, 
reflecting the amount of knowledge available for model parameters, initial conditions, forcing 
functions, and model structure(www.esri.com0.. In this regard, Bayes’ Theorem provides a 
convenient means to combine existing information (prior) with current observations 
(likelihood) for projecting future ecosystem response (posterior) for remotely targeting 
iteratively interpolated geo-spectrotemporally uncoalesced, S. damnosum s.l., moderate 
resolution, fractional endmembers and eigenvector.  

 
Median parameter values, as well as the 95% credibility intervals (2.5 percentile and 

97.5 percentile values), were then generated in the residually forecasted, autoregressive, 
endemic transmission-oriented parameterized estimator dataset. As the S. damnosum s.l. 
riverine, hyperproductive, eco-epidemioloigical, trailing vegetation, discontinuously 
canopied, larval habitat sampling sites increased based on the geosampled georeferenced, 
explanatory covariate, Distance percent of hanging trailing vegetation, themedian log-count 
of larval count increased. The adjusted model quantized the independence among the time 
series, explanatorial, field and remote geospectrotemporal, endemic transmission-oriented, 
oberservational covariates representing the larval counts. The authors noted that the this 
model fit better that the model that adjusted for correlation within the narrow riverine 
tributary–agro-village complex, eco-epidemiological,  eco-georferenceable, capture point. 
study site in Burkina Faso  based on the RMSE. Hence, the Bayesian techniques were more 
informative than the conventional model calibration practices (i.e., mere adjustment of model 
parameters until the discrepancy between model outputs and observed data is minimized), 
and thus can be used to refine our knowledge of seasonal, S. damnosum s.l.  eco-
geoerferenceable,  narrow tributary, African agro-village complex input, elucidative,  capture 
point,   hyperproductive, parameters while obtaining predictions along with uncertainty 
bounds for output variable. 
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The estimation of covariance matrices in a SAS/GIS cyberenvironment, in the 

presence of spatial heteroskedascity and autocorrelation of unknown forms, in a seasonally, 
eco-georeferenceable, expositorily discontinuously, infrequently canopied, sparsely shaded, 
trailing vegetation, turbid water, Rapid Eye TM ,5m,  imaged,  S. damnosum s.l., immature, 
seasonally geospectrotemporally geosampled, eco-epidemiological, hyperproductive, capture 
point,  riverine, agro-village, complex ecosystem, tributary  habitat may reveal tainted 
iteratively interpolative  expositors. Currently available, orthogonally decomposed, 
endmember, fractionalized,  eigenvector estimators in SAS/GIS may be optimal for prolific, 
riverine agro-village, capture point, eco-georeferencable, immature habitat, vulnerability 
forecasting since the paradigm may be designed based upon the choice of a lag truncation 
parameter and a weighting scheme. Results may provide a condition of the growth rate of the 
lag truncation parameter when T is to ∞ in an explanatory, geo-predictive, seasonal, Simulium 
habitat, vulnerability interpolator.   That is, the SAS/GIS model may be sufficient for 
remotely and regressively quantitating seasonal consistency in a empirically explanative, eco-
epidemiological, field-operationizable, uncoalesced, dataset of parameterizable, iterative, 
hyperproductive, S. damnosum s.l., capture point, immature, discontinuous, infrequently, 
seasoanlly canopied, trailing vegetation, optimally parameterizable, elucidative, agro-village 
African, narrow riverine tributary, habitat, autoregressive, moderate resolution, 
geoclassifiable, interpolatble, elucidative,  LULC model in order to identify unknown, un-
geosampled high density, transmission foci. To date, there are no results available in the 
literature regarding the choice of lag truncation parameter in any software package for a fixed 
sample size, data-dependent, automatic, lag truncation with explanative, autoregressive 
probabilistic, parameters regarding the choice of a weighting scheme for a seasonally 
hyperproductive, S. damnosum s.l., immature, discontinuous, infrequently canopied, trailing 
vegetation, turbid water, eco-epidemiological, immature, capture point, eco-georeferenceable, 
hyperproductive habitat. As a consequence, available optimally parameterizable, 
Gaussian/non-Gaussian, explanatory, covariate coefficient fractionizable, empicial, geo-
spectrotemporal, moderate resolution, explanative, LULC indicators will not be entirely 
operational and the relative merits of the decomposed estimators would be unknown.  
Further, there would be no true forecasting capability by the model residuals for targeting 
unknown, ungeosampled, seasonally hyperproductive hyperproductive, S. damnosum s.l., 
capture point, immature, discontinuous, infrequently, seasoanlly canopied, trailing vegetation, 
optimally parameterizable, elucidative, agro-village African, narrow riverine tributary, 
habitats.  

 
 Applying the definition of DFT to  in ArcGIS, where n is  an unmixed 

multivariate, explanative, eco-georeferenceable, illuminative, field-operationizable, eco-
epidemiological, empirical datatset of  geo-spectrotemporally uncoalesced, seasonally 
explanative, geo-spectrotemporal, hyperproductive,  S. damnosum s.l., habitat endmember 
eigenvector and their geospatialized, moderate resolution, wavelength, transmittance, 
emissivity  frequencies, may allow for robustification and optimal  tabulation of iteratively, 
interpolative, expositively fractionalized observational, geoclassifiable, LULC covariate 
coefficient values obtained by the sequence of  5m  radiance values. This ArcGIS time series, 
overlay operation may be useful for identifiying exploratorial, eco-georeferenceable, 
explanative,  geo-spectrotemporally, geospatially geosampled, heuristically optimizable, 
within-canopy, immature, 5m, habitat-related, spatial resolution, uncoalesced  data for 
sparsely shaded, remotely, non-randomizable, infrequently canopied properties (e.g., dense 
floating, partially canopied,  dead vegetation). An overlay operation is much more than a 
simple merging of linework; all the attributes of the features taking part in the overlay are 
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carried through, where parcels (polygons) and flood zones (polygons) are overlayed (using 
the Union tool) to create a new polygon layer(www.esri.com) Parcels may be  split  in 
ArcGIS where they are crossed by agro-village African, narrow, riverine tributary, flood zone 
boundaries, and new, uncoalesced, parameterizable, iterative, hyperproductive, capture point, 
immature, discontinuous, infrequently, seasonally canopied, trailing vegetation, optimally 
parameterizable, moderate resolution, geoclassifiable, interpolatble, S. damnosum s.l habitat 
LULC polygons created. An FFT is a way to compute the same result more quickly: 
computing the DFT of N points in the naive way, using the definition, takes O(N2) 
arithmetical operations, while an FFT can compute the same DFT in only O(N log N) 
operations [24].  

FFTs are of great importance to a wide variety of applications in ArcGIS, from digital 
signal processing and solving partial differential equations, to algorithms for quick 
multiplication of large integers. The best-known FFT algorithms in ArcGIS depend upon the 
factorialization of N, but there are FFTs with O(N log N) complexity for all N, even for prime 
N(www.esri.com). Many FFT algorithms in ArcGIS only depend on the fact that is an 
N-th primitive root of unity, and thus, can be applied to analogous transforms over any finite 
field, such as number-theoretic transforms. This method can be applied when constructing a 
moderate resolution, eco-epidemiological, seasonal hypeproductive, eco-georeferenceable, 
trailing vegation, discontinuously canopied, sparsely shaded, capture point, immature habitat 
vulnerability models. In empirical datasets of iteratively quantiatively, explanatorily eco-
epidemiologically, interpolative, unmixed, multivariate, 5m imaged, RapidEyeTM, S. 
damnosum s.l., narrow, African tributary riverine, endemic, eco-georefernceable agro-village, 
hyperproductive, foci with fractionalized, moderate resolution, geospectrotemporally 
uncoalesced, wavelength, transmittance, emissivity, forecastable, covariate coefficient, 
parameterizable estimator datasets of explanatively, orthogonally decomposable, 
fractionlized,  eigenvector endmember ensemblized models, inverse DFT may be the same as 
the DFT, but with the opposite sign in the exponent and a 1/N factor, may be optimally 
devised in any FFT algorithm in  an ArcGIS cyberenvironment. 

Currently, two critical issues that need to be addressed in eco-epidemiological, 
forecast, vulnerability mapping of eco-georeferenceable, field-operationalizable, uncoalesced 
seasonally imaged, moderate resolution, geo-spectrotemporal, sparsely shaded, 
geoclassifiable, capture point, discontinuous, infrequently canopied, turbid water, narrow, 
African, riverine, agro-village, tributray  complexes, with geosampled discontinuous, 
infrequently canopied, trailing vegetation, S. damnosum s.l., immature habitat, geo-
spatializable, datasets  and informative fractionalized, moderate resolution, endmembers 
eigenvectors is (1) how to automatically quantitate the number of unmixed, stratifiable, 
illuminative, seasonal, hyperproductive, immature habitat, capture point, eco-
georeferenceable clusters and (2) how to perform effective, fractionalized, endmember geo-
predictive, clustering in the presence of noisy, decomposable, sub-mixel un-orthogonalizable 
eigenvector, data, feature attributes. An decompositional analysis of the residualized 
characteristics in eigenspace may be carried in Geostatistical AnalystTM, for iteratively 
revealing that not every quantitatable, explanative, fractionalized, endmember eigenvector 
rendered from the data affinity matrix  via an algorithmic deterministic model, is relevant for 
qualitatively quantitating autoregressive, immature habitat, geospectrotemporal, uncoalesced, 
trailing vegetation, sparsely shaded, discontinuously canopied, clustering explanators.  
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If  is an eigenvector of , with eigenvalue , then any scalar multiple eco-
georeferenceable,explanative,  field-operationalizable, uncoalesced seasonally imaged, 
moderate resolution, geo-spectrotemporal, sparsely shaded, geoclassifiable, capture point, 
discontinuous, infrequently canopied, turbid water,sparsely shaded,  narrow, African, 
riverine, agro-village, tributary  complexes, with geosampled discontinuous, infrequently 
canopied, trailing vegetation, S. damnosum s.l., immature habitat,  of with nonzero is 
also an eigenvector with eigenvalue, since 

.Moreover, if and are eigenvectors with the same 
eigenvalue and , then is also an eigenvector with the same eigenvalue  in the 
immature habitat dataset. In mathematics, scalar multiplication is one of the basic operations 
optimally defining a vector space in linear algebra (or more generally, a module in abstract 
algebra.In an intuitive geometrical context, scalar multiplication of a real Euclidean vector by 
a positive real number multiplies the magnitude of the vector without changing its 
direction[25]. Therefore, the operationizable dataset of S. damnosum s.l., immature habitat, 
eigenvectors with the same eigenvalue , together with the zero vector would be  a linear 
subspace of  , (i.e., eigenspace of associated to .If that subspace has dimension 1, it may 
be an eigenline (e.g., he lines defined by  fractionalized, seasaonlly explanatively 
hyppeorductive,  eigenvectors). [24], The eigenspaces of T always form a direct sum (and as 
a consequence any family of eigenvectors for different eigenvalues is always linearly 
independent). Therefore, the sum of the dimensions of the immature  habitat eigenspaces 
cannot exceed the dimension n of the space on which T operates, and in particular there 
cannot be more than n distinct eigenvalues.] 

Any subspace spanned by a database containing  geospectrotemporally uncoalesced, 
geospatially geosampled, seasoanlly eco-georferenceable, hypepordutive, eco-
epidemiological, capture point S. damnosum s.l. habitat, orthogonally elucidatively 
decomposed, fractionalized moderate resolution, endmember eigenvectors of  would be an 
invariant subspace of , and the restriction of T to such a subspace would be  diagonalizable 
in ArcGIS. In Geospatial Analyst TM , an invariant subspace of a linear uncoalesced 
seasonally imaged, moderate resolution, geo-spectrotemporal, sparsely shaded, 
geoclassifiable, discontinuous, infrequently canopied, turbid water, narrow, African, riverine, 
agro-village, tributary  complex, with decomposed, geosampled discontinuous, infrequently 
canopied, trailing vegetation, eco-georferenceable, capture point, hypeproductive, S. 
damnosum s.l., immature habitat explanative  mapping variables T : V → V may from some 
vector space. V to itself is a subspace W of V that is preserved by T; that is, T(W) ⊆ W[24] 
Consider a linear S. damnosum s.l., mapp that transforms: An invariant 
subspace of has the property that all vectors may then be  transformed by into 
vectors also contained in  This may  be stated as  in ArcGIS   

The affinity matrix in ArcGIS may be  optimally employed to transform orthogonally 
decomposed seasonal, empirically geo-spectrotemporally geosampled, uncoalesced, 
geospatially geosampled, seasoanlly eco-georeferenceable, hyperpordutive, eco-
epidemiological, capture point S. damnosum s.l. habitat, elucidatively decomposed, 
fractionalized moderate resolution, endmember eigenvectors for overcoming difficulties 
related to the lack of convexity in the shape of the data distribution. The explanative LULC 
value of the seasonally eco-georeferenceable, agro-village, narrow African, riverine tributary, 
complex centroid ( ) to the eco-georeferenced, hyperproductive, eco-epidemiological, capture 
point ( ) in the matrix may be remotely qualitatively quantitated as negative value of the 
Euclidean distance between  and , employing a Gaussian matrix in Geostatistical 
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AnalystTM. In linear algebra, Gaussian elimination (also known as row reduction) is an 
algorithm for solving systems of linear equations [24], which may be understood in ArcGIS 
as a sequence of operations performed on the associated matrix of coefficients. 

 
Further, optimally sub-mixel, descriptive, explanatively orthogonally decomposable, 

seasonal, hyperproductive, explanatively geo-spectrotemporally geosampled, immature S. 
damnosum s.l. habitat, frcationalize endmember eigenvector ensemble selections in an 
ArcGIS cyberenvironment may be critical for a robust, parsimonious iterative, interpretative, 
quantitative  interpolation of un-informative, fractionalized, moderate resolution, endmember 
eigenvectors, which may lead to poor immature habitat forecastable clustering results.  
Employing eco-georefernceable, trailing vegetation, immature, hyperproductive, 
seasonal,capture point,  S.damnosum s.l., turbid water, eco-georeferenceable, African, narrow 
tributary, immature, seasonal, riverine, habitats in an eco-epidemiological, transmission 
forecast-orinted, vulnerability analysis, a novel geospectral clustering algorithm may be 
proposed in ArcGIS. This differs from previous approaches in literature for optimally 
identifying unknown, hyperproductive, discontinuous, infrequently canopied, immature, 
sparsely shaded, turbid water, trailing vegetation, turbid water, eco-georeferenceable, narrow 
riverine, tributary, African, agro-village complex, capture point, Simulium habitats based on a 
cost effective, medium resolution, 5m RapidEyeTM,fractionalized, endmember eigenvector, 
seasonal habitat signatures.  In an algorithmic, proxy biosignature, decompositional exercise 
in Geospatial AnalystTM only pertinent explanatively optimally decomposeable, 
fractionalized, moderate resolution, endmember eigenvectors are employable for optimal 
rectification and optimal determination of the precise number of exploratory eco-
georeferenceable, trailing vegetation, turbid water,  discontinuous, infrequently canopied, 
narrow African, agro-village, tributary, S. damnosum s.l., eco-epidemiological, eco-
georeferenceable, capture point, seasonally hyperproductive, immature habitats are associated 
within an  iteratively quantitatively, explicatively interpolative, eco-hydrologic, eco-
cartographic cluster. The key element of the proposed customizable, iterative algorithm is 
simple since the  effective relevance learning  iterative technique in ArcGIS would  measure 
the relevance of a stochastic or deterministic, iteratively quantiatively  interpolative, 
empiricalized, model output for optimally  regressively geoclassifying any unmixed  
moderate resolution(e.g., 5m RapidEyeTM), explanatively orthogonally decomposeable, 
elucidative, eco-epidemiological, fractionalized,endmember eigenvector emissivties 
according to how well it can be separated into  eco-georeferenceable, immature habitat, geo-
spectrotemporal and geospatial  clusters. This quantitative, probabilistic regressive, unmixing 
algorithm in ArcGIS, with forecastable residual model output, may then be evaluated by 
employing orthogonalized, fractionalized, moderate reosolution, endmember eigenvector, 
synthetic datasets as well as real-world datasets generated from elucidative geosampled 
seasonal habitat, geo-sample frames.  

 

The dynamic provisioning of virtualized resources offered by ArcGIS cloud 
infrastructures allows applications deployed in a cloud environment for automatically 
increasing and decreasing the amount of usable resources.  This allows for geo-
spectrotemporally optimizable, eco-cartographical robust illustrations of eco-
epidemiologically eco-georefernceable,  forecastable vulnerability  models with a 
discontinuous, infrequently canopied, geo-classifiable, trailing vegetation, turbid water, 
geospatialized LULCs for optimally mapping orthogonally explanatively  decomposable, 
moderate resolution derived, eco-epidemiological, immature, capture point, S. damnosum s.l. 
habitats. This capability in ArcGIS is explanatively auto-scaliable; its main purpose is to 
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automatically adjust the scale of the eco-georferenceable, vulnerability, narrow African 
riverine, immature habitat, agro-village complex triburaty ecosystem, elucidatory model 
system for satisfing the varying workload with minimum unexplanative probabilistic 
uncertainty. The need for auto-scaling in ArcGIS is particularly important during workload 
peaks, in which applications may need to scale up to far more comprehensive systems [36]. 
Both the research community and the main cloud providers have developed auto-scaling 
solutions for ArcGIS. Most research solutions are centralized and suitable for managing 
large-scale narrow tributary, eco-georeferenceable, African riverine agro-village, complex 
eosystems; therefore, cloud providers' solutions are bound to the limitations of a specific 
provider in terms of resource availability, reliability, and connectivity. A decentralized, 
probabilistic, auto-scaling and explanative autoregressive residualizable, iteratively 
quantitative interpolative algorithm integrated into a ArcGIS architecture that is cloud 
provider-independent may allow the auto-scaling of algorithmic, residual mapping services 
over multiple cloud infrastructures to optimally iteratively interpolate geo-spectrotemporally 
geospatially  moderate resolution, S. damnosum s.l., decomposed decomposed, capture point  
immature habitat data  so as to eludicatively identify unknown, un-geosampled, 
hyperproductive, seasonal riverine, immature habitats. 

In expositive, constructive and multivariate statistics in ArcGIS, spectral clustering 
techniques make use of the spectrum (i.e., eigenvalues) of the similarity matrix of the data to 
perform dimensionality reduction before clustering in fewer dimensions. In machine learning 
and statistics, dimensionality reduction, or dimension reduction, refers to the process of 
reducing the number of random, iteratively quantitative interpolative eco-epidemiologically 
forecastable, operationalizable variables under consideration, which may be optimally and 
subsequently remotely divided into exegetically decomposable, geo-classifiable LULC, 
fractional, endmember eigenvector data with an attribute feature selection and feature 
extraction.The similarity matrix in ArcGIS Geospatial AnalystTM provides an output 
consisting of elucidatory qualitatively, quantitative autoregressive, probabilistic, assessments 
of the relative quantifiabilty of each explanative geo-spectrotemporally and seasonally 
geospatially geosampled, hyperproductive, S. damnosum s.l., seasonal, capture point in a eco-
georeferenceable, eco-epidemiological African narrow riverine, agro-village, eco-
epidmeiological study site with elucidative regression points in the non-hierarchical 
clustering dataset.  

Jacob et al. [22] proposed a n expositively fractionalized, 5m, spatial resolution 
RapidEyeTM, endmember eigenvector, image segmentation in an ArcGIS/ENVI 
cyberenvironment which rendered precise and orthogonalizable synthetic,  spatial filters for 
interpretatively iteratively utilizing LULC bidirectional, quantiated, uncoalesced, reflectance 
transmittance wavelength frequenceis. The fractionalized endmember eigenvectors eco-
cartographically illustrated non-homogeneous, regions according to some exegetically, 
iterative, interpolative criterion (e.g., discontinuous, infrequently, sparsely shaded, canopied 
trailing vegetation agro-village, narrow tributary geospatial eco-georeferenceable objects). 
The crux of spatial filtering lay in the linkage between eigenfunctions (i.e., geo-
spectrotemrpaolly uncoalesced, discontinuous infrequently canopied, S. damnosum s.l., 
seasonal, riverine, turbid water, eigenvectors and corresponding eigenvalues). Latent spatial 
autocorrelation is essential in eco-epidemiological, geosampled, narrow African, riverine 
tributary immature habitats that have been geo-spectrotemporally, geospatially, and 
exogenously specified through a decomposed matrix’s eigenvectors, and may be optionally 
employable as supplemental covariates in a regression framework [37].  This will aid in 
“filtering” out other probabilistic, autorgressive, residualized, spatial errors (e.g., non-linear 
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multicolinearity), thereby allowing for more efficient estimation of primary parameterizable 
covariates.  

Fractionalized, expositively, optimally decomposable, 5m RapidEyeTM eigenvector 
unmixed, wavelength transmittance emissivity, endmember ensembles in an ArcGIS 
cyberenvironment can account for most  image noise in a 5m, fractionalized eco-
georeferenceable, seasonally geo-spectrotemporally gesampled, narrow, African riverine 
tributary, eco-epidemiological, capture point,  S. damnosum s.l., habitat scene. Eco-
cartographically auto-probabilistically, autoregressively, and remotely quantitating, 
structurally diverse, eco-hydrologic geo-markers (e.g., foligae height), can serve as references 
for bio-optically quantitating non-homogeneity of clustering eco-georeferenceable, trailing 
vegetation or turbid water, 5m, orthogonally decomposed, noisy mixels in Geospatial 
AnalystTM [22].  Heuristically, orthogonally explanatively decomposeable, eco-geographic, 
forecasting, vulnerability-oriented, residual probabilistic, model applications employing geo-
spectrotemporal, geospatially geosampled, seasonally prolific, entomological,  vector 
arthropod, aquatic, larval habitat, moderate resolution, unmixed, data variables, both auto-
probabilistically and auto-regressed in ArcGIS, may quantitatively and eco-cartographically 
krige fractionalized, endmember, proxy   habitat signatures. In so doing, endemic 
transmission zones may be eco-cartographically illustratable in ArcGIS by employing 
stratifiable, iteratively quantitative, interpolative, fractionalized, endmember eigenvectors for 
ecohydrologically optimally representing positively autocorrelated and eco-georeferenceable, 
high density, foci, seasonal, African, riverine tributary, immature habitats containing 
immature Similum damnosum s.l.. Identifying unknown and un-geosampled, seasonally eco-
georeferenceable, explanatively hyperproductive, sparsly shaded, non-randomizable, partially 
canopied, trailing vegetation, discontinuous, infrequently canopied, S. damnosum s.l., turbid 
water, seasonal, hyperproductive, immature, agro-village, narrow tributary, African agro-
village complex,  riverine habitats requires monitoring environmental changes in immature 
fly productivity through an ArcGIS cyberenvironment, while simultaneously aggressively 
aggregating elucidative, orthogonally decomposed, quantifiable, Euclidean, geoclassifiable, 
LULC distances in ArcGIS from eco- eco-epidemiolgical, capture points [22].  

      Comparing seasonally hyperproductive, explanative, riverine, S. damnosum s.l. 
discontinuous, infrequently canopied, trailing vegation, sparsely shaded, turbid water, capture 
point, immature habitats in sub-mixel, fractionalized and geo-classifiable iteratively 
interpolatively interpretative LULC, unmixed, moderate resolution,  endmember eigenvector 
radiance classes from multi-temporal, RapidEyeTM 5m resolution exploratory images may aid 
in providing a catalog of remote footprints (i.e., eco-georeferenceable, agro-village complex 
habitat proxy LULC signatures). Employing rasterizable, elucidatively eco-georeferenceable, 
unmixed 5m, image data, feature attributes may also aid in geolocalizing seasonal, immature 
habitats of eco-georefernceable, hyperproductive, S. damnosum s.l.  and their  trailing 
vegetation, sparse shading, photosynthetic and non-photosynthetic variables, and turbid 
water, parameterizable,  covariate coefficients  defining discontinous, infrequently canopied, 
characteristics. An operationalizable, fractionalized,  endmember eigenvector dataset created 
in an ArcGIS geodatabase can have informative mosiac raster datasets added to it directly, or 
they can be created by employing a selection of probabilistically, autoregressively, remotely 
qualitatively quantitative unmixed, iterative interpolative, data feature attributes from a raster 
catalog or mosaic dataset (http://help.arcgis.com/).  

The explanative, expositorily fractionalized, optimal renderings of illuminatively, 
ortogonally  decomposable, residualizable, unmixed,  moderate resolution (e.g., 5m, 
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RapidEyeTM imaged) , S. damnosum s.l., immature habitats that are rasterizable through 
moderate resolution, explicatively rendered data in ArcGIS from a descriptive, mosaic, eco-
epidemiological, endmember eigenvector, wavelength ,transmittance frequency in an 
interpolative emissivity dataset does not have to be adjoining or overlapping. Thus, 
decomposed, trailing vegetation or turbid water synthetic, orthognalized, spatial filter, 
endmember eigenvectors in ArcGIS  can be iteratively quantitatively  interpolated in sub-
mixel, heuristically quantitatively  optimizable, geo-spectrotemporally, geospatially 
uncoalesced, eco-georefernceable, dataset of immature Similimu habitat data, feature 
attributes.  These elucidative attributes may exist in such eco-epidemiological field-
operational datasets as geo-spectrotemporally geospatially unconnected, discontinuously 
infrequently canopied, “pure” fractionalized, endmember eigenvectors. Geosampled, 
unmixed S. damnosum habitats with explanatively geo-classifiable, eco-epidemiological, 
uncoalesced, geoclassifiable, LULC datasets can manage raster data in an unmanaged raster 
catalog.  Therefore, the procured  tables In ArcGIS will have similar descriptive, 
orthogonalizable, sparsely shaded, explicatively fractionalized, non-homogenously, 
uncoalesced, disontinuous, infrequently canopied, turbid water, endmember eigenvector, 
robust, proxy signatures from an autoregressively indexed perspective, while queries in 
ArcGIS may be simultaneously orthogonally performed on the collections.  

Mosaic datasets utilize raster types to read and ingest the required information from 
raster datasets (http://help.arcgis.com/en/arcgisdesktop/). Empirical, vulnerability, mosaic 
metadata, such as seasonal geo-spectrotemporally, geospatially geosampled, eco-
epidemiological, narrow, African, riverine tributray, capture point, agro-village complex, S. 
damnosum s.l, immature habitat, moderate reosolution, satellite  acquisitions (e.g., larval 
count, percentage trailing vegetation, levels of turbidity, etc.), within a raster format may also 
be interpretively and optimally quantitized in ArcGIS. In so doing, explanative raster types 
can read raster data in its simplest form by employing a raster format, such as TIFF or JPEG 
Metadata, to summarize basic information about the geospatializable, uncoalescable data. 

       There are exploratory geoprocessing algorithms in the Data Management toolbox in 
ArcGIS to create and edit mosaic, explanative dataset of  sub-mixel, orthogonally 
explanatively  decomposeable, fractionalized, eigenvector endmembers with a moderate 
resolution and log-normalized, wavelength, transmittance emissivity descriptors.  These 
algorithms are especially useful when remotely autoregressing, seasonally partially canopied, 
unmixed, photosynthetic, or non-photosynthetic covariates for eco-hydrologically, eco-
cartographically illustrating seasonally trailing vegetation paramterizable covariate 
coefficients in non-homogenously canopied, hyperproductive, S. damnosum s.l., turbid water 
habitats.  

Many specific raster types of eco-epidemiological, eco-cartographic, field-
operationalizable, empirical datasets of geo-spectrotemporally, geospatially geosampled 
immature Simulium habitats are functional in an unmixed, iteratively interpolative, optimally 
parameterizable, uncoalesced RapidEyeTM endmember emittance that has been quantitated 
from a eco-georeferenced, geosampled, African riverine, agro-village complex, decomposed, 
5m RapidEyeTM scene. This can include a rasterizable explanatory eco-georferenceable 
dataset with several bands and other metadata, which affect the spatial reference. Since 
sensor waveband 5m, decomposable data products have five bands at this specified 
resolution, the raster type processing in ArcGIS may create a product that improves the 
geosampled, fractionlized, endmember, Simulium habitat, eigenvector  dataset by pan-
sharpening. “Pan Sharpening” is shorthand for “Panchromatic sharpening,” which is simply 
using a panchromatic (single band) image to “sharpen” a multispectral image [38]. 
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         Thus, mosaiked, fractionally unmixed moderate resolution, endmember eigenvectors in 
an autoregressive ArcGIS model can optimally represent seasonally eco-georeferenceable, 
geo-spectrotemporally explanative clustering of  geosampled,  hyperproductive, eco-
georeferenceable, trailing vegetation S. damnosum s.l. discontinuous, infrequently canopied, 
sparsely shaded, eco-epidemiological, capture point,  riverine habitats in an 
stochastic/deterministic, interpolator In Geospatial Analyst TM  for eco-epidemiological 
datasets which would be particularly sensitive to testing for kriged, fractionalized 
endmember, iterative unmixed, data feature, decomposable attributes of raster data in 
ArcGIS.  Based on the cell sizes, the 5m, wavelength fractionalized, transmittance, emissivity 
dataset may display the immature habitat, RapidEyeTM imagery at the most appropriate 
scales. With some display control properties in ArcGIS, a ecologist, entomologist or other 
researcher may  be able to control temporal information about geospatial clustering of 
seasonally hyperproductive, turbid water, S.damnosum s.l., immature, narrow tributary, agro-
village complex, ecosystem,   discontinuous, infrequnetly canopied, trailing vegneation, 
hypeproductive seasonal habitats. This allows for the parsimonious viewing of the 5m 
resolution images for specific seasonal sample frames (e.g., riverine flooding) in ArcGIS 
(e.g., Geospatial Analyst TM) . 

Mosaic methods in an ArcGIS cyberenvironment can elucidate geo-spectrotemporally 
autoregressable, probabilistically remotely descriptive, fractionalized,  moderate resolution,  
endmember eigenvectors which could represent ecogeoreferenceable clustering of S. 
damnosum s.l., immature, narrow African, tributary riverine, agro-village, complex habitats. 
Decomposed, 5m, wavelength transmittance emissivities may control what the raster data 
presents each time a mosaic from the field-operational, unmixed dataset displays an S. 
damnsoum s.l. related cluster in eigenspace in ArcGIS. By default, the mosaic generated by 
displaying the raster dataset that is the closest to the center of a 5m, RapidEyeTM spatial 
resolution of an African, narrow tributary riverine agro-village complex image may remotely 
reveal sparsely shaded, non-homogenously canopied, optimized hypeproductive immature 
habitat geolocations. Topographic geoclassifiable, ecogeoreferenceable, LULC affects the 
fraction of direct and diffuse canopy radiation received on a 5m extractable optimalizable 
mixel, which changes the sun–target–sensor geometry, resulting in variations in the observed 
radiance [22]. Retrieval of surface–atmosphere, explanatively geoclassifiable, uncoalesced 
LULC properties from top-of-atmosphere (ToA), 5m RapidEyeTM topographic, 
discontinuous, canopied,  radiance account for hyperproductive, S. damnosum s.l. immature 
seasonal, habitats that consist of clustering of trailing vegetation and turbid water radiance 
effects. Top-of-atmosphere reflectance is defined as the reflectance measured by a space-
based sensor that is flying higher than the earth's atmosphere and whose unmixed reflectance 
values can include contributions from clouds and atmospheric aerosols and gases [39]. 

    
The gap fraction of a canopy is quantifiable in an ArcGIS cyberenvironment as the 

fraction of view that is unobstructed by canopy in any particular direction. Canopy structural 
diversity information of a seasonally hyperproductive, narrow, African, agro-village 
complex, tributary, immature habitat,  S.damnosum s.l. immature habitat, eco-
epidemiological, capture point, including the amount and orientation of foliage, can be 
remotely estimated from measurements of gap fractions in ArcGIS.  The gap fraction of a 
canopy is the fraction of view in some direction from beneath a canopy that is not blocked by 
foliage [40].   
. 
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          The gap fraction technique in ArcGIS is at present the most powerful and practical tool 
available for indirect sensing of discontinuous canopy structure.  Recently, Armston et al. 
(2013) demonstrated that a new, physically-based method for direct retrieval of canopy gap 
probability Pgap from waveform Lidar in ArcGIS can improve the estimation of Pgap over 
discrete return Lidar data. The success of the approach was demonstrated in a savanna 
woodland environment in Australia. The  data solved the canopy contrast term (i.e. the ratio 
of the reflectance from crown and ground), ρv/ρg. In this way the method avoided local 
calibration to overcome differences in either ρv or ρg. To be more generally useful the ArcGIS 
demonstrated the enmdmeber data on different geoclassified explanatorial LULC sites in the 
presence of slope and different sensor and survey configurations. The robustness of the 
retrieval of Pgap from waveform Lidar using a Watershed Allied Telemetry Experimental 
Research dataset, over the Heihe River  Basin region of China. The data contained  
significant  discontinuous canopy , terrain and survey variations,  presenting a rather different 
set of LULC conditions to those previously used in disocnmtinuous cap gap calculations.  
Results show that ρv/ρg was stable across all flights and for all levels of spatial geo-
aggregation. This strongly supported the robustness of the new Pgap retrieval method, which 
assumes that this relationship was stable. A comparison between Pgap estimated from 
hemiphotos and from the waveform Lidar showed agreement with Pearson correlation 
coefficient R = 0.91. The waveform Lidar-derived estimates of Pgap agreed to within 8% of 
values derived from hemiphotos, with a bias of 0.17%. The new waveform model was shown 
to be stable across different off-nadir scan angles and in the presence of slopes up to 26° with 
R ≥ 0.85 in all cases. The authors also show that the waveform model can be used to calculate 
Pgap using just the mean value of canopy returns, assuming that their distribution was 
unimodal. Lastly, the authors showed that the method can also be applied to discrete return 
Lidar data, albeit with slightly lower accuracy and higher bias, allowing Pgap comparisons 
with previously-collected lTdar datasets. The ASrcGIS model results revealed that new 
method  was applicable for estimating Pgap robustly across large areas, and from lLdar data 
collected at different times . A discontinuous canopy gap 5m Rapid Eye model  may be 
applicable not only to detect discontinuity in vegetation related geoclassifiable LULCs 
seasonally explanative, hyperproductive, African riverine, narrow tributary, agro-village 
complex, tributary habitat, seasonal canopies, but also to settings, which can be modeled by 
discrete foliage containing envelopes, such as row structure, individual shrubs/trees, etc.   
        
           The seemingly uniform geo-spectrotemporally geolocated trailing vegetation 
geosampled, eco-georferenceable, immature, trailing vegetation-related, geoclassifiable, 
moderate resolution,  LULCs, discontinuous, infrequently canopied, hyperproductive, eco-
epidemiological, capture point,  Simulium habitats may be abruptly interrupted by fuzzy-
edged, uncoalesced, 5m RapidEyeTM spatial resolution sunflecks of a variety of shapes, sizes, 
and intensities, which constantly shift and change as the sun moves. These sunflecks, 
however, may provide a powerful tool for remotely qualitatively quantitating indirect, 
bidirectional partially sparsely shaded,  canopied habitat reflectance  with structural diversity 
sub-mixel measurements in ArcGIS for accurately,  identifying non-continuous, eco-
georeferenceable, canopy gaps in a turbid water, trailing vegetation, S. damnosum s.l., tubid 
water, discontinuous, infrequently canopied,  narrow, African, riverine tributary, agro-village 
complex ecosystem, immature capture point,  hyperproductive habitat. ArcGIS  may 
qualitatively quantitate immature habitat canopy gap fractions that cause the sunflecks in the 
immature, riverine habitat-based, 5m RapidEyeTM, geo-spectrotemporally uncoalesced, 
fractionalized wavelength transmittance emissivity, forecast, vulnerability model, as well as 
its residual endmember renderings (e.g., seasonally forecasted, optimal geosampled time 
frames and immature productivity count data values). The fractional sunfleck of the LULC 
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reflectance area is equivalent to the heuristically optimized gap fraction endmember variables 
in the solar direction in an ArcGIS cyberenvironment (www.esri.com). 

 
An unmixed, 5m, RapidEye™ sunfleck, fractionalized radiance, sub-mixel, estimating 

algorithm in SAS/GIS may quantitate the unmixed, endmember eigenvectors representing the 
S. damnosum s.l. habitat, eigenfunction, orthogonalizable, spatial filters, when rendered in an 
ArcGIS cyberenvironment. By doing so, the residual forecasts optimally can reveal an 
illuminativme parameterizablem covariate habitat proxy signature that can be used as an 
estimator encompassing the gap fraction with solar angle, optimizable measurements.  If the 
foliage in the empirical habitat datasets is truly randomly positioned, then the probability of 
direct beam radiation passing through the canopy crown without intercepting any habitat 
foliage may be remotely quantified in ArcGIS by employing the zenith angle of incidence, 
which may then be tabulated by elucidating a parameterizable, ellipsoidal foliage inclination 
distribution. With this, clustering immature habitats that are geoclassifiable through a eco-
georefrenceable, agro-village complex, narrow African, ago-village ecosystem complex 
geoclassifiable, LULC area projected in some direction may be autoregressively, 
probabilistically, remotely, qualitatively deciphered. The path length through the foliage and 
the foliage density (i.e., area of foliage per volume of immature discontinuous, habitat 
canopy) functions of position in geo-space may also be robustly quantitated by employing a 
function of azimuth angle in ArcGIS.  

 
 For a uniform, 5m RapidEyeTM, seasonal hyperproductive, sparsely shaded, narrow, 

African, riverine tributary, eco-georeferenceable, explanatory, immature, capture point, 
hyperproductive  habitat, the tabulated  quantizable canopy height path length may be 
optimally devised in an ArcGIS cyberenevironment by a discrete, iteratively, quantitative 
interpolativel quantitatble,, remotely decomposable, expositively parameterizable, 
uncoalesced, moderate resolution, wavelength frequency transmittance, dataset of proxy 
bisiganture values which may represent the sum of the path lengths through sub-canopies 
only.  Thus, only direct quantitable measurements can be optimally rendered from a suitable 
geometric illuminative, eco-epidemiological S. damnosum s.l. discontinuous canopy, forecast, 
vulnerability model  

 
Conversely, if the sunfleck fraction and corresponding path lengths in an 

hyperproductive, S. damnosum s.l., capture point, geo-spectrotemporally , geospatially 
geosampled, capture point, immature habitat are measured in ArcGIS and sparsely shaded, 
quantitable, discontinuous explanative, mcanopied,  path  value is obtained, then it may be 
possible to remotely quantitize the foliage density of a fractionalized, 5m, spatial resolution 
endmember eigenvector  using RapidEye™ images for determining  seasonally 
hyperproductive, capture point, eco-georefernceable, habitat data and a decompositional 
eigenfunction algorithm in an ArcGIS cyberenvironment. To robustly and parsimoniously 
extract both foliage density and foliage orientation, spatial filter, orthogonalized 
autoregressive probabilistic estimates rendered from an eigendecomposition function may 
provide more decomposable, expository Similium habitat information in ArcGIS. This 
information could include a dataset of geo-spectrotemporally uncoalesced moderate 
resolution (e.g., panchromatic Rapid Eye TM  data) of a  proxy LULC signature which then 
may be  employed to remotely deduce positively autocorrelated unknown, un-geosampled, 
hyperproductive, seasonally explanative, immature, narrow tributary, eco-georeferenceable, 
elucidative, African agro-village, complex ecosystem, capture point, immature, habitats.  In 
so doing, an IVM may be implementable habitats (e.g., “Slash and Clear”) employing a 
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buffered geoclassified gridded map eco-cartographically illustrating eco-georeferenceable 
agro-village LULC zones targeting these prolific habitats.  
 
            To date, optimizable remote sensing methods have concentrated on various vegetation 
indices (VIs) signature employing and leaf inclination angles, where azimuthal orientation of 
the foliage is assumed to be random. Since a   discontinuous, infrequently canopied, seasonal 
capture point,  S. damnosum s.l. immature habitat canopy is a three-dimensional structure of 
leaves stems, branches, etc., the radiation emitted from any single phytoelement from an 
ecogeoreferceable, hyperproductive, trailing vegetation, turbid water,  eco-epidemioloigical, 
capture point, will interact with many other canopy structures  before it leaves thehabitat 
canopy. Such multiple reflections and transmissions can modify the originally emitted  
habitat leaf spectrum. This becomes intuitivelyclear when it is realized that all phytoelements 
in a S. damnosum s.l. hypeporductive riverine foci, canopy structure falls into 3 categories: 
fully illuminated, fully shaded, or partially shaded/illuminated by the incomingsolar 
radiation.  It is obvious that a shadow spectrum is different from a sun-lit leaf spectrum[24]. 
Thus, the magnitude of such  geospectrotemporal geospatialized, geoclsssifiable, ArcGIS-
derievd LULC changes will depend on the immature eco-georferenceable, capture point, 
canopy architecture and the external seasonal illumination direction. .Unfortunately 
misspecification in tabulations from unmixing geometrical algorithms are common in 
hierarchical discontinuous moderate resolution real-time canopied paridigms. 
 

Other hierarchical generalizable mosaic default, residual algorithmic methods in 
ArcGIS can define a query based on iterativeinterpolative clustering of seasonally 
hyperproductive, S.damnosum s.l., immature habitats  employing fractionalized, endmember 
eigenvector values and bidirectional moderate resolution, radiance, such as cloud cover-
oriented and wavelength frequency-related transmittance covariates  as geosampled in an 
African riverine, narrow, tributary, agro-village complex using 5m imaged, georeferenceable, 
RapidEye™ mutlitemporal scenes. The generalizable properties of these heuristically 
optimizable methods are similar to those for explanative raster datasets in ArcGIS, such as 
the data source, extent, cell sizes, and bit depth. The default properties are specific to the 
mosaic, descriptive, optimizable,  endember eigenvector, fractionalized, moderate reoslution, 
eco-epidemiological datasets, and can include all the non-raster, dataset-specific, 
fractionalized, endmember eigenvector, immature habitat, geo-spectrotemporal  information. 
These uncoalescable properties will affect how 5m RapidEyeTM imaged, S. damnosum s.l., 
agro-village complex, riverine habitats with non-homogenously canopied, interpretively 
decomposed, fractionalized, endmember eigenvectors are presented in ArcGIS, 
(ecohydrologically,  geospatially) etc. Key metadata properties are parsimoniously and 
remotely obtainable from the 5m decomposable data products in ArcGIS, which may be 
optimally   definable for a mosaic dataset.  The residualized eco-epidemiological dataset 
would contain 5m RapidEyeTM band and wavelength transmittance emissivity renderings and 
some residual processing noise. The product definition can be modified thereafter in an 
ArcGIS cyberenvironment.  

A simple endmember eigenvector of a spatial filter, eco-epidemiological forecast 
vulnerability model in ArcGIS can describe non-random, discontinuously canopied, unmixed 
processes in terms of their bio-geophysical, photosynthetic elucidatively decomposable 
attributes thuis allowing for tabulating geo-spectrotemporal and geospatial association sof 
immature Simulium habitat productivity in an ArcGIS model in geo-space using a moderate 
resolution, wavelength emissivity distribution. Eco-cartographically robustly illustrating the 
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positive and negative binomiality of discontinuous, fractionalized, canopy, endmember non-
randomness in an empirically regressable, heuristically optimizable, geo-spectrotemporally  
geosampled S. damnosum s.l., moderate resolution, imaged capture point, immature  habitat 
in ArcGIS employing a curve-fitting parameter may reveal directly measurable [i.e., proxy 
indicator Vegetation Index (VI)] from a photosynthetic,  S. damnosum s.l. habitat 
discontinuous, sparsely shaded, iteratively interpolative, discontinuous  canopy, endmember 
eigenvector. This model may distinguish habitat fractional canopy gaps.   

It is fortuitous that orthogonally decomposable explanative processes offset each other 
in an ArcGIS cyberenvironment to one degree or another,thus allowing field-operational 
forecasting vulnerability models to capture the heterogeneity of a eco-georferenceable, 
hypeporductiuve, capture point, S. damnosum s.l. trailing vegetation, turbid water, sparsely 
shaded, narrow African, tributary agro-village, capture point,  immature habitat that is 
reasonably well geoclassified through uncoalesced, elucidative, quantitable LULC reflectance 
surfaces (e.g., 15%) by employing one specific photosynthetic, iteratively interpolative, 
discontinuous catgeorical variable.  This variable may subsequently reveal spectral indices 
for precise geoprediction of leaf pigment content that is relatively sensitive to Simulium 
species and leaf structure variation linked with immature Simulium productivity.  This could 
be applied in larger scale remote-sensing studies without extensive calibration in ArcGIS. 

 ArcGIS mosaic querying capabilities allow for access to every optimizable, 
explicative, fractionalized, moderate reoslution,  endmember eigenvector raster dataset within 
a mosaic, hyperproductive, moderate reoslution imaged, eco georeferenceable, S. damnosum 
s.l. immature, narrow, African, riverine tributary , trailing vegetation, sparsely shaded, 
discontinuous, infrequently canopied capture point,  with discontinuous canopy cover, even 
when there is overlap. Additionally, if the correct rational polynomial coefficient (RPC) 
information is provided in an ArcGIS module (e.g., Geospatial AnalystTM), this raster type 
could be optimally employable to improve on the fused, endmember data products by 
performing an orthorectification. Orthorectification is the process of removing the effects of 
image perspective (tilt) and relief (terrain) effects for the purpose of creating a 
planimetrically correct image [25]. The resultant orthorectified image has a constant scale 
wherein features are represented in their 'true' position. Orthorectification refers to the 
elimination of the effects in an image perspective (e.g. tilt, relief, or terrain) to create a 
planimetrically correct image [40]. Rational Polynomial Coefficient is a sensor model 
commonly used by the remote sensing industry to determine the ground coordinates of mixels 
in moderate and high resolution satellite imagery(www.esri.com). Rational Polynomial 
Coefficients (RPCs) provide a compact representation of a ground-to-image geometry, 
allowing photogrammetric processing without requiring a physical camera model [40]. 

By employing the correct raster type, explanative automodel seasonally explanative, 
eco-georefernceable, hyperproductive S. damnosum s.l. capture point, immature habitats with 
geo-spectrotemporally geospatializable unmixed proxy biosignature endmembers 
eigenvectors, iteratively interpolated in ArcGIS can be automatically defined.  This 
interpolation is applicable for on-the-fly, field-ecoepidemiolgical, operational intrepretation 
when the raster datasets are accessed. However, a resultant clustering, fractionalized, 
orthorectifiable, endmember ecogeoreferenceable S. damnosum s.l. habitat, analyszed 
through an eco-georefernecable  descriptive explanator, may not possess a constant scale in 
non-ArcGIS algorithms wherein moderate resolution, fractionalized  endmemberseigenvector 
of geoclassifiable, LULC, interpolative, bio-signature data feature attributes may be robustly 
represented in their absolute 'true' geospatial positions in ArcGIS. 
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A two-stream approximation, forecasting, eigenvector endmember, emissivity, 
forecast-oriented, vulnerability model constructed in ArcGIS may be optimmaly employed to 
remotely tabulate and summarize clustering synthetic endmember, eigenvector, reflectance 
values representing orthogonalizable, hemispheric, partially discontinuously  canopied, 
geoclassifiable LULCs by employing transmittance, frequency-oriented, uncoalesced 
emissivities of unmixed, 5m visible and NIR, frequency intervals. The two-stream 
approximation may be applied to the equation of two–stream, 5m RapidEyeTM resolution of 
the emissivity, habitat model in ArcGIS for qualitatively quantitating the transfer of unmixed 
canopy radiation through an optically thin plane-parallel atmosphere. In doing so, the 
emissivity model can include the dependence of the 5m reflection and the transmission of the 
atmosphere on the angle of the incident radiation, as well as the angular dependence of the 
scattering phase function of the medium. Model residualized forecasts arise from different 
methods for treating the incident radiation [40]. These models may reduce to the thin-
atmosphere approximation thresholds in ArcGIS, as the limit of the optical depth of the 
atmosphere commonly approaches zero in arid and semiarid narrow, African riverine 
tributary, trailing vegetation, discontinuous, infrequently canopied, ecosystem environments. 
In this limit, the sign of heating, caused by the presence of a scattering and absorbing layer 
over the forecastable habitat in a reflecting surface moderate resolution, fractionalized, 
endmember eigenvectors, may be optimally derived in a spatial filter eigenfunction through a 
decompositional algorithm in ArcGIS. This model may reveal the importance of both the 
zenith angle and the angular dependence of the scattering phase function in a 
hyperproductive, S. damnosum s.l., immature habitat. Two-stream approximation is 
commonly employed in parameterizations of radiative transport in global circulation models 
and in weather, eco-epidemiological, forecasting, vulnerability models. Global circulation 
models (GCMs) in ArcGIS simulate past and projected future climatic changes by 
numerically integrating the fluid dynamical equations of motion for the atmosphere with 
boundary conditions that incorporate various factors influencing the climate system 
(www.esri.com). 

A simple, sparsely shaded, trailing vegetation, turbid water, hyperproductive, 
immature, eco-georferenceable, S. damnosum s.l. habitat in a photosynthetic leaf model is 
optimally parameterizable through orthogonalizable, spatial filter, endmember, eigenvector, 
covariate estimators may be integrated over geo-spectrotemporally geospatially tabulated, 
leaf orientation and canopy depth orthogonal predictors.  Uncertainty quantitation of 
statistical significance is attained when a p-value is less than the significance level [22]. The 
p-value is the probability of obtaining at least as extreme results given that the null 
hypothesis is true whereas the sgnificance or alpha (α) level is the of rejecting the null 
hypothesis given that it is true [41]. 

           Suganum et al. [42] estimated discontinuous canopy biomass in a riverine agro-village, 
narrow tributary area to clarify the relationship between uncoalesced moderate resolution, 
LULC endmembers in unmixed, data feature attributes of stand structure and woodland 
biomass obtained by moderate resolution remote sensing in Western Australia. The authors 
examined stand structure and estimated woodland biomass in an arid LULC region in 
ArcGIS. The research site was near Leonora located 600km from Perth in Western Australia. 
The annual rainfall is approximately 200 mm in this region. The dominant woody vegetation 
LULC species is Acacia aneura. The ecological characteristics of the woodland in this region 
are littered with unclosed canopies and tree crown silhouette. The authors established 35 plots 
(approx. 50m × 50m) and bio-optically determined the diameters at 1.3m and 0.3m heights, 
height, and canopy silhouette area of all trees contained in the plots.  Each tree biomass was 
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calculated by allometric equations employing a destructive geo-sampling method in ArcGIS.  
Results of multivariate regression analysis indicated that the appropriate stand structural 
attributes for estimation of woodland biomass were stand basal area (SBA) and canopy 
coverage (CC). SBA had the highest estimation accuracy of woodland biomass, but was not 
suitable for optimal estimation by moderate resolution satellite imagery (www.esri.com). The 
woodland biomass estimation accuracy by CC (R2 > 0.94, P < 0.0001) was lower than that by 
SBA (R2 > 0.99, P < 0.0001), but CC was considered to be a powerful indicator for woodland 
LULC biomass estimation by the satellite imagery, where open forest was distributed. In the 
case of arid land, the probabilistic correlation between CC and woodland biomass was 
reported in the Salhel region of Africa and in Queensland, Australia.  Therefore, the unmixed 
forest biomass estimation method by CC was considered to be applicable to other arid- and 
semiarid-area open forests and woodland LULCs. 

 Statistically significant LULC explanators of discontinuous canopy bulk stomatal or 
canopy resistance may be geospatially correlated with seasonal hyperproductivity, immature 
productivity counts sampled at riverine, narrow, tributary, African, agro-village S. damnosum 
s.l. habitats in ArcGIS. The simple ratio (SR) of the 5m, NIR and visible canopy reflectances 
may be found to be a near-linear indicator of the absorbed photosynthetically active radiation 
absorption (APAR), by the canopy, minimum canopy resistance, 1/r c, and photosynthetic 
capacity (PC) in an ArcGIS/ENVI cyberenvironment. The ENVI family of geospatial 
software enables use of information extracted from geospatial imagery, including 
panchromatic, multi and hyperspectral LiDAR and Synthetic Aperture Radar (SAR) 
[http://www.exelisinc.com/solutions]. ENVI tools are based on demonstrated scientific 
methods, and are designed for highly specialized tasks, from rigorous orthorectification and 
feature extraction to atmospheric correction algorithms (www.esri.com).  

Photosynthetically active radiation (PAR) is tile solar radiation in the 5m RapidEyeTM 
wavelength interval that falls approximately between 400-700nm (i.e., 0.4-0.7 jxm). The 
discontinuous, canopy-absorbed APARCAN is the solar energy consumed in the discontinuous 
canopy photosynthetic process [43]. Highly nonlinear emissivities, however, may not be a 
reliable predictor of leaf biomass. 

It may be possible to quantify the biomass allocation endmember eigenvector patterns 
to discontinuous, immature habitat, canopy leaves, stems and roots in fractionalized, 
decomposable, 5m RapidEyeTM, vegetative plants on a geoclassifiable, sparsely shaded, 
trailing vegetation, turbid water, imaged proxy with decomposable signature (5m NDVI), as 
well as quantifying these biomass allocation patterns are influenced by the growth 
environment, plant size, and seasonal competition. Dose–response curves of immature habitat 
canopy allocation may be constructed in ArcGIS by means of a meta-analysis from a wide 
array of geosampled decomposed endmember data variables. This dataset may reveal that the 
fraction of whole-plant mass represented by the unmixed endmember eigenvectors of eco-
georeferenceable, immature, trailing vegetation, discontinuously canopied, canopy, habitat 
leaves which increases most strongly with flooding and decreases most strongly with 
droughts. Correction for size-induced allocation patterns diminishes the LMF response to 
light, but makes the effect of temperature on LMF more apparent [44]. There may be a clear 
explanatory effect on seasonally eco-georeferenceable, unmixed, S. damnosum s.l. habitat, 
fractionalized, discontinuous, infrequently  canopy imaged through a 5m, RapidEyeTM 

wavelength, transmittance-oriented, frequency-related,  LULC allocations. Plants growing at 
high densities may show a clear increase in the stem fraction in an immature, S. damnosum 
s.l., narrow, African, riverine tributary, immature habitat, eco-georeferenceable geolocation. 
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However, in most comparisons across Simulium species, groups or environmental factors, the 
variation in LMF is smaller than the variation in one of the other components of the growth 
analysis equation: the leaf area: leaf mass ratio (SLA). In competitive situations, the stem 
mass fraction increases to a smaller extent than the specific stem length (stem length: stem 
mass). Thus, it may be concluded that explanative, hyperproductive, agro-village African, 
narrow riverine, tributary, S. damnosum s.l. immature habitat, discontinuous, canopy plants 
may be less able to adjust non-homogenous, canopy allocations than to alter organ 
morphology seasonally.  
 

Due to the difficulty of acquiring extensive narrow, African riverine tributary, eco-
georeferenceable, seasonally explanative, hyperproductive, immature, S. damnosum s.l. 
habitat, temporal observation data (which may elucidate seasonal flooding), increasing efforts 
are being devoted to estimating canopy bulk stomatal conductance efficiencies in ArcGIS 
employing APARCAN from optical, cost-effective, moderate resolution data. For example, 
Jacob et al. [22] generated a robust RapidEyeTM signature in order to remotely quantitate 
APAR at a geosampled, seasonally hyperproductive, discontinuously canopied, S. damnosum 
s.l., 5m capture point level. The immature habitat was geosampled in an African, riverine 
agro-village, tributary complex in Burkina Faso. The APAR was obtained from the 
downwelling PAR at the surface (SFC). PARSFC↓, in an ArcGIS/ENVI cyberenvironment, 
which  then optimally defined APAR as the product of APARSFC and the PAR absorbed by 
the green canopy only to APARSFC (i.e., RPAR). APARSFC is the total PAR absorbed by all 
discontinuous canopy, ipervious surface materials including soil, litter, etc., while RPAR is 
the ratio of the PAR absorbed by the green canopy second only, to APARSFC [43].The 
advantage of this approach, according to Jacob et al. [26], is that a 5m RapidEyeTM resolution 
in APARSFC can be remotely quantitated more accurately and readily than PARSFC↓, while 
the determination of RPAR may be as accurate as that of PAR for autoregressively precisely 
quantitating, hyperproductive, S. damnosum s.l., immature, capture point, hyperproductive 
habitats in fractionalized, endmember eigenvectors. The whole eco-epidemiological, geo-
predictive, sub-mixel, iterative interpolative, vulnerability modeling approach in ArcGIS (i.e., 
Geospatial AnalystTM) was introduced in two parts in Jacob et al. [26].  Part I, was presented 
as a model output that dealt with the retrieval of APARSFC in an ArcGIS cyberenvironment 
using Rapid Eye TM 5m data. By employing a complex atmospheric model in ArcGIS, 
APARSFC was found to be related to the upwelling PAR reflected at the ToA, PARTOA↑of the 
eco-georeferenceable, explanatorial, capture point. Of the eco-epidemiological, eco-
georeferenced capture point illuminatively parameterizable, descriptive, iteratively 
interpolative covariate coefficients, the most statistically significant variable was Percentage 
of trailing vegetation.  The quantitated relationship was independent of cloud parameters and 
moderately dependent on ozone amount and aerosol optical properties at the agro-village 
complex study site. The parameterization was developed to estimate APARSFC from 
PARTOA↑ in ArcGIS, which was inferred from the unmixed, interpolative, RapidEyeTM visible 
and NIR bands.  Non-normalized, endmember diagnostic analyses were made employing the 
5m data model eco-epidemiological, wavelengthforecasts from both ArcGIS simulations and 
field observations. The parameterization was valid to within 3 W m−2 compared to the results 
of detailed radiation model simulations. The forecasted, hyperproductive, Simulium habitat 
observations revealed a bias error of −2.3 Wm−2 and a standard error of 31.4W m−2 for the 
instantaneous estimates of APARSFC. 

 
The PAR absorbed by the green canopy of a hyperproductive, trailing vegetation, S. 

damnosum s.l., discontinuous, infrequently canopied, eco-georeferenceable, narrow, African, 
agro-village complex, eco-epidemiological, immature habitat may be directly linked to 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

243 
Copyright © acascipub.com, all rights reserved.  

photosynthesis and net primary productivity (NPP) in the carbon cycle. One of the major 
uncertainties in predicting climate change comes from a full accounting of carbon-cycle 
feedbacks, which roughly double physical feedbacks [46]. Most of this uncertainty is a result 
of the many pathways and time scales at which African narrow riverine tributary  ecosystems 
interact with the climate systems and how these will respond to LULC change (e.g., 
flooding). The relationship between leaf nitrogen and the carbon cycle may be found to be 
key to many African riverine ecosystems that are hyperproductive for immature S. damnosum 
s.l. and consist of trailing vegetation and sparsely shaded, riverine-related, discontinuously 
canopied processes, since photosynthesis provides the energy and carbon-cycle molecules for 
growth, reproduction and decomposition for nutrient cycling. Ecologists, entomologists and 
experimenters have long recognized that nitrogen is the most limited nutrient for plant growth 
[46].  

 
Quantifying geocalssifiable LULC changes in seasonal canopy nitrogen content in a 

hyperproductive, seasonally explanative, S. damnosum s.l., immature habitat, capture point 
may provide direct information about the narrow, African, riverine, agro-village complex, 
tributary,  ecosystem while providing methods to detect and monitor LULC changes in 
response to climate by employing moderate resolution imaging spectroscopy in ArcGIS. 
Direct detection of canopy nitrogen from airborne imaging spectrometers can reveal selective 
pressure on plants in competition for light, water, and nutrients which may result in suites of 
biochemical and structural traits that integrate their functional strategies [46]. Thus, structural 
traits affecting light scattering of sparsely shaded, seasonally discontinuous, trailing 
vegetation, Simulium, immature, turbid water, seasonal, hyperproductive habitats with 
unmixed, discontinuous, infrequently canopied, decomposable variables may be convergent 
with their biochemical traits. Explicitly testing whether assumptions that discontinuous, 
infrequent, canopy structure can be ignored in quantifying biochemical composition with a 
detailed analysis of the bio-geophysical processes of photon scattering from leaves and plant 
canopies of a hyperproductive habitat may reveal shifts in seasonal, immature, S. damnosum 
s.l. productivity.  There is recognition of the importance of multiple scattering, particularly in 
moderate resolution NIR bands where canopy plant compounds do not display strong 
absorption features [46]. It may be possible to quantify discontinuously infrequently 
canopied, trailing vegetation, S. damnosoum s.l. turbid riverine water, eco-georeferenceable, 
immature habitats. 
 

Since PAR accounts for nearly half of the total solar radiation at the canopy surface of 
an eco-georferenceable,  S. damnosum s.l. habitat in an African riverine agro-village 
ecosystem [43], it also would contribute significantly to the exchanges of energy and water 
between the discontinuous canopy habitat, uncoalesced,  LULC surface and the atmosphere. 
Therefore, knowledge of the ecogeographical, meterological distribution and seasonal 
temporal variation in APAR is necessary to achieve optimal, elucidatory forecast, 
vulnerability risk modeling results of seasonally hyperproductive Simulium habitats in 
ArcGIS.  
 

 Jacob et al [45] extended previous work and investigated seasonal, African riverine 
meandering processes (e.g., flooding), giving rise to the near-linear dependence of APAR, PC 
and l/r,, on Simple Ratio (SR) for employing an unmixed, 5m RapidEyeTM, eco-
epidemiological, dataset of hyperproductive S. damnosum s.l. habitats with fractionalized, 
endmember wavelength, transmittance eigenvector, covariate emissivities in ArcGIS. It was 
demonstrated that under flooded,eco-georeferencable, explanative,  riverine field conditions, 
the NIR 5m RapidEyeTM, unmixed reflectance term controlled the variation of SR, employing 
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various vegetation indices (e.g., leaf area).  As a result, near-linearity between SR and APAR, 
Pc or 1/r~, a scattering coefficient in the RapidEyeTM NIR region, satisfied the following 
equality: 1 - [G(~)/2/t]2(1-n), where the canopy leaf's effective scattering coefficient for 
PAR, G(/~) was the average leaf projection in the direction /x, and /x was the cosine of the 
zenith angle of the incoming flux. It was shown that a variety of auto-probabilistically 
regressable, wavelength transmittance, covariate emissivity, uncoalesced combinations are 
well configured for the estimation of APAR, Pc and 1/rC in a hyperproductive, immatue 
habitat imaged through a 5m RapidEyeTM, wavelength, explicative interpolative 
transmittance emissivity and eco-epidemiological habitat,  forecast, vulnerability model.  
Responding to leaf scattering coefficients quantitated in the 5m bands, the final model 
forecasts conformed to the mathematical expressions in ArcGIS, which allowed the authors 
to regressively and remotely quantitate the relationships between SR and APAR, Pc and I/r, 
which they found to be increasingly nonlinear as soil reflectivity around a seasonally 
geosampled, hyperproductive riverine habitat increased. 
 

Fluorescence information is also complementary to unmixed, reflectance-based, 
spectral vegetation indices [47]. Popular greenness-based indices such as the normalized 
difference and enhanced vegetation indices, NDVI respectively, are linked to canopy 
chlorophyll content which are related to potential photosynthesis, whereas fluorescence is an 
indicator of actual photosynthesis. The photochemical reflectance index (PRI) is sensitive to 
the de-epoxidation state of pigments within the xanthophyll cycle, a protection mechanism 
that may evolve in parallel to fluorescence to dissipate excess energy in a 5m resolution, 
RapidEyeTM imaged, seasonal, S. damnosum s.l. habitats may reveal geolocations of seasonal 
high density, immature foci.  Xanthophylls are known to be the yellow pigments typically 
seen in leaves, and are considered to be oxygenated carotenoids that are synthesized within 
the plastids [47].  Interpolating extracted unmixed, discontinuous, canopy pigments from a 
hyperproductive, seasonal, S. damnosum s.l. habitats capture point, African, riverine, agro-
village tributary complex.  

 
Knowledge of global chlorophyll fluorescence emissions may be also important for 

optimal retrievals of trace-gas concentrations, including CO2, that require very high accuracy 
and precision.  This may be vital for precisely, geolocalizing, seasonally hyperproductive, S. 
damnosum s.l.,immature  habitats employing 5m RapidEyeTM data.  The emission occurs 
within the O2 A-band, which may be employed to estimate canopied photon path lengths for 
an eco-georeferenceable, hyperproductive habitat in ArcGIS. In principle, moderate 
resolution, oxygen A-band, derivative, endmember spectra can discriminate atmospheric 
scattering from canopy multiscattering, and, therefore, can provide an operational technique 
to retrieve cloud and aerosol macrophysical/microphysical properties with 5m RapidEyeTM 
resolution, oxygen A-band measurements in ArcGIS.  Elucidative habitat pieces reveal red 
and IR elucidative decomposed radiances and experimental plot biomass, leaf water content 
for remotely and probabilistically regressing unmixed radiance variables evaluated.  The 
linear combinations of the IR/red ratio, the square root of the IR/red ratio, the IR-red 
difference, the vegetation index, and the transformed VI may also be precisely optimally 
generated in ArcGIS. In addition, the corresponding green and red linear endmember 
combinations may be evaluated for comparative purposes. Depending on the instrument 
resolution, the out-of-band (OOB) rejection, and the Signal-to-Noise (S/N) ratio in the 
decomposed, 5m, wavelength transmittance emissivity, eco-epidemiological, immature 
habitat, orthogonalized eigenvectors of the endmember, forecast, vulnerability model and 
unknown geospatialized clusters (positively autocorrelated hyperproductive immature 
habitats) may be geolocalized by unmixing an explicatively, 5m RapidEyeTM image for 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

245 
Copyright © acascipub.com, all rights reserved.  

seasonal, sparsely shaded, discontinuously canopied, trailing vegetation, turbid water, 
hyperproductive, S. damnosum s.l., capture point, geo-spectrotemporal, geospatialized 
habitats. 

A fundamental goal in remote sensing is maximizing the S/N ratio.  In other words, 
how much of the recorded signal that appears as a unmixed, 5m, RapidEyeTM S. damnosum 
s.l., immature habitat mixel is useable, and how much is unwanted distortion or noise. The 
sensor system with its optics, detectors, and spectral discrimination system converts energy 
from one form to another (e.g., radiant energy into remotely sensed energy).  This is 
significant as this variation of the original signal allows an increase in the noise to the sensing 
procedure being examined.  In order to optimize this modelling system in an ArcGIS 
cyberenvironment, design tradeoffs can be made by balancing instantaneous field of view 
(IFOV). The IFOV is a vital calculation used in the determination of how much one detector 
mixel is able to see in regards to the field of view (FOV), as well as the time it takes to 
complete the sample and the spectral resolution data [43]. Field of View is the largest area 
that an imager can see at a set distance, typically described in horizontal degrees by vertical 
degrees, for example, 23º X 17º (www.esri.com). 

Instantaneous field of view is defined as the angle subtended by a single detector 
element on the axis of the optical system.  IFOV has solid angle attributes through which a 
5m RapidEyeTM detector may be sensitive to S. damnosum s.l.-related canopy radiation.  
Quantitated, 5m RapidEyeTM discontinuous, canopy spectral invariants in an ArcGIS 
cyberenvironment express, iterative, interpolative, sub-mixel, hyperproductive, S. damnosum 
s.l. habitat, endmember eigenvector observations by employing simple algebraic 
combinations of leaf and canopy spectral transmittance and reflectance wavelength, moderate 
resolution, transmittance, frequency-oriented covariates as independent coefficients.  This 
eco-epidemiological dataset in ArcGIS includes the discontinuous canopy interceptance, the 
recollision, and the escape probability of variables specific for tabulating and quantitating an 
accurate relationship between the geo-spectrotemporal seasonal response of the immature 
habitat, geocalssifiable, vegetation-related LULC canopy to the incident solar radiation at the 
leaf and canopy scale, while allowing for precise parameterizations of the partitioning of 
incoming radiation. Employing a 5m RapidEyeTM uncoalesced, wavelength emittance, eco-
epidemiological, forecast, vulnerability model in ArcGIS, S. damnosum s.l. habitats and their 
fractionalized, endmember eigenvector, structural variables quantitate spectral seasonal, 
invariant relationships between immature productivity and radiative properties of narrow, 
African, riverine agro-village, immature habitat, non-homogenous  vegetation canopies. Eco-
epidemiological vulnerability and data analysis on leaf and canopy spectral transmittance 
through geospectral LULC reflectances collected during the model construction exercise in 
ArcGIS allowing for efficient targeting of unknown, un-geosampled,  hyppeorductive, S. 
damnosum s.l. habitats in narrow African tributary, sparsely shaded,  riverine agro-village  
communities.  The eco-georeferenceable residual forecasts from the vulnerability model 
allow for optimal separation of the structural and radiometric components of the 
measured/modeled 5m signal.  The canopy spectral invariants offer a simple and accurate 
parameterization for the shortwave radiation block in many global  moderate resolution, 
forecasting models of climate, hydrology, biogeochemistry, and ecology [48].  Content from 
the 5m data can be fully exploited if the wavelength-independent variable, non-randomized 
covariate coefficients can be retrieved, as they are more directly related to structural 
characteristics of a vegetation-related, discontinuous LULC canopy associated with 
hyperproductive habitats. 
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 Retrieving atmospheric photon-pathlength data from detailed spectroscopy of the O2 
band near 760nm may also include atmospheric pressure-related, moderate resolution, 
wavelength transmittance emissivity variables. If not properly accounted for, fluorescence 
emission could produce significant errors in retrievals rendered from a habitat [47]. The 
effect of fluorescence on an aerosol, plume height retrieval from the O2 A-band for immature 
habitats geosampled in African turbid riverine geolocations may be investigated using a 
linear, non-normality, diagnostic analysis in ArcGIS of IFOV data.  

 
One means of measuring small fluorescence moderate resolution, S. damnosum s.l. 

habitat signals synthesized from moderate spatial resolution data is through dark features in 
the reflected spectrum, either from telluric absorption or deep solar Fraunhofer lines. In 
ArcGIS, these lines are spectral absorption dark lines which are produced whenever a cold 
gas arises between a canopied covered broad spectrum photon source and the detector.  
Ground, aircraft, and space-based approaches have utilized filling-in of the dark and 
spectrally wide O2 A-band (760 nm) and O2 B-band (690 nm) through data feature attributes 
in order to detect the weak fluorescence signal. The geolocation of these oxygen absorption 
features, as well as other absorption bands and solar Fraunhofer lines, are revealed in an 
ArcGIS-constructed, eco-epidemiological forecasting map employing broadband red and far 
red fluorescence emission features that peak near 685 and 740 nm, respectively. 

 Optionally, a seamline feature class for seamline mosaicking can be generated in 
ArcGIS for image extraction of a riverine, geospatial object, (e.g., a hyperproductive habitat). 
An explanatory feature class that defines habitat canopy boundaries can also be utilized in 
ArcGIS, so that a set of rules can be employed to dynamically mosaic the rasters. A set of 
iterative, interpolative properties in ArcGIS may be control the mosaicking. Sharing access to 
a mosaic dataset ensures that those utilizing it cannot make modifications to the source 
dataset, which could impact other users.  Or, if raster catalog exists of endmembers of geo-
spectrotemporally geosampled immature habitats as eco-epidemiological data of 
transmittance emissivities can be created that may serve the raster catalog. In the latter case, 
the existing raster catalog can be a standard raster catalog in ArcGIS when constructing 
seasonal, forecast vulnerability maps.  

 
The eco-georferenceable, immature S. damnosum s.l. hyperproductive habitats with 

unmixed, emissivity covariate coefficient datasets may be employed for logging during data 
loading and other operations in ArcGIS. A color correction table that defines the color 
mapping for each raster in the raster catalog may be employable for distingushing habitats 
based on interpolative endmember eigenvectors. There is no mixel data loss or metadata loss 
when using mosaic datasets, as the source mixels are never altered or converted, and the files 
are never moved (www.esri.com). Therefore, any metadata files will remain in a geolocation 
of a seasonal habitat, capture point that is remotely analyzed in ArcGIS.  Because the mosaic 
dataset does not alter the source data or its geolocation, the unmixed riverine habitat mixel, 
wavelength transmittance emissivity values will not be altered. Users have access to the 
mosaicked image as well as the source data.  Therefore, there is no data loss occurring for 
overlapping datasets (http://help.arcgis.com/en/arcgisdesktop). 

 
Overviews, which are similar to raster pyramids, can be generated for a S. damnosum 

s.l. habitat, fractionalized, moderate resolution, eigenvector endmembers of a radiance dataset 
in an ArcGIS cyberenvironment. A pyramid is a series of reduced resolution, probabilistic 
representations of an eco-epidemiological dataset.  A pyramid is mainly used to improve the 
display performance of rasters when not working with the iterative interpolative mixel 
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information at full resolution, which may contain a number of layers, each resampled at a 
more generalized level [49].  Thus, each level of the pyramid is a resampled representation of 
the raster at a coarser spatial resolution.  Pyramids  allows ArcSDE to fetch only data at the 
specified resolution, or level required for the display. Building pyramids is performed on the 
ArcSDE server side whenever the underlying raster is modified or updated [49]. 

Generating orthogonal fractionalized uncoalesced, geo-spectrotemporal, geospatial, 
uncoalesced, fractionalized, eco-georeferenceable, S. damnosum s.l. immature habitat, 
medium resolution, orthogonally eigen-decomposable, explanative, endmember eigenvectors 
of a hyperproductive habitat in data pyramids requires the resampling of multiple input 
mixels so that fewer output mixels need to be generated [49]. At each higher pyramid level 
the mixel size doubles, resulting in four times fewer mixels. ArcSDE generates pyramids 
depending on the maximum number of levels and type of mixel data provided by the user 
(www.esri.com). The pyramid begins at the base, or level 0, which contains the original 
mixels of a 5m RapidEyeTM spatial resolution image, and proceeds toward the apex by 
coalescing four decomposed mixels from the previous level into a single mixel at the current 
level. This process continues until less than four mixels remain, or until ArcSDE exhausts the 
defined number of levels. 

A pyramid must always be generated from the upper leftmost coordinate, which is 
considered the image origin (www.esri.com). If the origin of the habitat image is moved, the 
entire endmember habitat data pyramid must be regenerated.  Hence, it is useful to preset the 
origin or the eigenvector and endmembers,  orthogonally decomposed by a eco-
georeferenceable, immature S. damnosum s.l. hyperproductive, immature habitat data 
pyramid reference point when the raster is created in ArcGIS.  When mosaicking raster data 
in ArcSDE or in a file geodatabase, pyramids can be built on a raster dataset as raster data is 
being mosaicked into the raster dataset, or they can be built when the loading is complete 
(www.esri.com). Data pertaining to each pyramid level is stored in the Raster Block table.  
Thus, higher level moderate resolution, 5m, immature habitat mixels are optimally 
decomposed and stored in the Block table in advance.  Additional levels of the pyramid will 
increase the number of raster block table rows. However, since it is possible to specify the 
number of levels in habitat data, the true apex of the pyramid may not be obtainable, limiting 
the number of records added to the Raster Block table. The pyramid allows ArcSDE to 
provide the application with a constant 5m RapidEyeTM sensor resolution of mixel data, 
regardless of the rendering windows scale (see Figure 33). Data of a large raster transfers 
more quickly to the client when a pyramid exists, since ArcSDE can transfer fewer cells of a 
reduced resolution [49]. The different levels are created by resampling the original 
RapidEyeTM empirical dataset, and then interpolating mixels in the original unmixed, 5m 
wavelength transmittance emissivities.However, it is recommended that you use nearest 
neighbor for discrete (nominal) data or raster datasets with color maps, such as land-use data, 
scanned maps, and pseudo color images.  

    ArcGIS allows for partial pyramid construction, which rebuilds only the part of the 
pyramid overlapped by the source data during a mosaic operation. This may helps when 
updating a mosaicked eco-georeferenceable, immature, S. damnosum s.l., hyperproductive, 
immature habitat,uncoalesced,  data raster dataset, because if a new raster dataset is added, 
the entire raster dataset does not need to rebuild pyramids in ArcGIS( see Figure 38). 
However, if update the data at the capture point, uncoalesced, geo-spectrotemrpoal, raster 
dataset's origin (i.e., pyramid reference point), the pyramid needs to be rebuilt  in ArcGIS for 
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the entire raster dataset.has grown because of a number of raster dataset source files (or other 
raster datasets) that have already been mosaicked to it. 

Figure 38  Hypothetical mosaicked simulation of a discontinuously canopied, 
hyperproductive, trailing vegetation turbid water, 3-level of a S. damnosum s.l. 
immature habitat pyramid. 

 

 

 

 

 

 

 

   
 
 

 
 
 
Overviews can be defined as reduced resolution datasets that are generated in order to 

progress the speed at which the mosaic is demonstrated (www.esri.com).  Default overviews 
can be parsimoniously generated over an entire endmember eigenvector dataset through a 
RapidEyeTM capture point employing a 5m resolution, wavelength transmittance emissivity 
dataset in ArcGIS.  Alternatively, the downsampling ratio may be quantified. In digital signal 
processing, decimation is the process of reducing the sampling rate of a signal (in this case, a 
hyperproductive, S. damnsoum s.l.,immature habitat with a trailing vegetation tubid water, 
discontinuously canopied, illuminative, proxy LULC  biosignature).  Complementary to 
interpolation, which increases sampling rate, the ratio is a specific case of sample rate 
conversion in a multi-rate, digital signal processing system. Jacob et al. [22] states that 
decimation utilizes filtering to mitigate aliasing distortion, which can occur when 
downsampling a moderate resolution, hyperproductive, trailing vegetation, discontinuous, 
infrequently canopied, turbid water, S. damnsoum s.l., immature, capture point, narrow 
tributary, African agro-village,  seasonal habitat in an interpolative 5m, RapidEyeTM,unmixed  
signal. Digital signal processing (DSP) is the numerical manipulation of signals, which is 
commonly utilized to measure, filter, produce or compress continuous analog signals [50]. 
An analog, or analog signal, is any continuous signal for which the time varying feature eco-
cartographic variable of the signal is a representation of some other time varying quantity 
(i.e., analogous to another time varying signal).  
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Theoretical analyses and deriviations are typically performed on discrete-time signals 
in endmember models, created by the process of abstract sampling in ArcGIS. The processed 
result may be a frequency spectrum or a set of statistics, but it is often another digital signal 
that is converted back to analog form by a digital-to-analog converter (DAC). Even if the 
entire sequence is more complex than analog processing and has a discrete value range, the 
application of computational power to signal processing in ArcGIS allows for many 
advantages over analog processing in many heuristically optimizable, fractionalized, 
endmember eigenvector, foreast, vulnerability applications.  These include propagational 
error detection and correction transmission, as well as data compression.  Digital signal 
processing and analog signal processing in ArcGIS are subfields of signal processing [50]. 
The DSP applications include signal processing, sonar and radar signal processing, sensor 
array processing, spectral estimation, statistical signal processing, digital image processing, 
signal processing for communications, control of systems, biomedical signal processing, and 
seismic data processing, among others(www.esri.com). Digital signal processing in ArcGIS 
of a 5m, resolution, geospectrotemporally uncoalesced, moderate resolution, 
hyperproductive, narrow African, agro-village complex, trailing vegetation, turbid water, eco-
georferenceable,capture point, discontinuous, sparsely shaded, infrequently canopied, riverine 
tributary, immature habitat can involve linear or nonlinear descriptive operations. Nonlinear 
signal processing is closely related to nonlinear system identification in ArcGIS and can be 
optimally implemented in the time frequency and hyperproductive S. damnosum s.l. habitat 
domains. 

Mosaic datasets are excellent data models for storing and managing endmembers of 
immature habitat data in ArcGIS for model construction of possible seasonal clusters of 
hyperproductive immature habitats.  Simulium habitat datasets are ideal for distributing data 
in Geospatial AnalystTM, as they can be directly accessed by ecologists, entomologists and 
other researchers and easily utilized.  Properties of the mosaic dataset can thereafter be 
modified, such as the maximum image size, the level of metadata, the compression method, 
or the maximum number of downloads, in order to achieve the maximum performance out of 
their server and meet customizable needs for interpolating a habitat endmember eigenvector 
biosignature. When clients connect to a server to see the mosaic image, their application 
controls the same mosaic methods and other properties that users with a direct connection 
have.  They may also select raster datasets and download them to their local disk 
(www.esri.com). The mosaic dataset is a necessary tool for the disseminating imagery in 
addition to managing and visualizing data [50]. 

 ArcGIS offers two methods for mosaicking immature habitat raster data:  either as a 
virtual mosaic, employing a mosaic dataset, or by permanently appending (i.e., mosaicking) 
raster datasets together. A mosaic dataset is a data model within the geodatabase which 
creates a mosaicked image on-the-fly according to the mosaicking rules as defined within its 
properties [50]. Jacob et al. [45] suggests handling overlapping, eco-georeferenceable,  
narrow, African riverine, agro-village, complex environments where trailing vegetaion, turbid 
water, discontinuous, in frequently canopied, partially shaded, seasanally, narrow tributary , 
agro-village complex,  hyperproductive habitats occur by choosing to only keep raster turbid 
water, sub-mixel, decomposable, fractionalized ,endmember eigenvectors, through moderate 
resolution, optimally synthezied, orthogonally decomposable,  emissivity vulnerability 
covariate coefficient explanators from the first to last radiance datasets.  This will optimally 
blend the overlapping cell count values with the radiance data in an ArcGIS module (e.g., 
ArcSDE geodatabase) within a weight-based algorithm.  By doing so, the mean of the 
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overlapping immature, capture point, cell values would be quantitated by employing 
tabulated min or maxi values. 

When mosaicking discrete data, the First, Minimum, or Maximum options give the 
most meaningful results (http://resources.arcgis.com/).  The Blend and Mean options are best 
suited for unmixed 5m, RapidEyeTM,spatial resolution data.  According to Jacob et al. [22], if 
any of the input, posivitively or negatively, autocorrelated values in an empirical dataset of 
explanatory, geo-spectrotemporally, geospatially clustered, seasonally 
hyperproductive,immature habitats that have been geosampled as endmember eigenvector 
rasters are floating point, the output would be floating point.  If all the inputs are integer and 
First, Minimum, or Maximum is employed the output would be an integer.  Jacob et al. [22] 
also recommends rebuilding the eco-georeferenceable pyramid for an African, agro-village 
complex, narrow, riverine tributary, riverine, immature habitat that has been geosampled 
through descriptive information after the mosaic operation for file-based, raster datasets has 
been performed.   

        Unfortunately, raster datasets stored within a file geodatabase or an ArcSDE geodatabase 
cannot support partial pyramid updating. Therefore, selected orthogonalized explanatively 
fractionalized, 5m, endmember, eigenvectors, of S. damnosum s.l. immature habitats are 
pyramids which ideally should be built during the mosaic operation rather than after.  By 
setting the upper left coordinate, ArcGIS can avoid rebuilding the positively autocorrelated, 
heuristically optimizable,  clustering, eco-georefernceable, immature, seasonal, 
hyperproductive, agro-village complex, narrow tributary, S. damnosum s.l., trailing 
vegetation, turbid water, discontinuous, infrequently canopied, seasonal, uncoalesced, eco-
georeferenceable immature, capture point, habitat explanators, which have been geo-
spectrotemporally geosampled through fractionalized,  endmember eigenvector, seasonal 
pyramids for an entire, rasterizable,  explanatorial dataset. 

In spite of successes in geo-classifying some immature, hyperproductive, S.damnosum 
s.l.  habitats employing conventional supervised or unsupervised techniques in ArcGIS, it has 
been difficult to obtain consistent geoclassifiable, LULC classes from seasonally flooded, 
narrow  African, agro-village complex, eco-georferenceable, riverine, immature,  habitat 
images, owing to variability in illumination, atmospheric effects, and instrumental response. 
As a result, with a few exceptions (e.g., Jacob et al. [22], Jacob et al. [51], monitoring of 
seasonal, sparsely shaded, discontinuously  canopied, proxy  biosignature LULC changes in 
study sites quantitated by moderate resolution, remote sensing onchocerciasis-
relatedexplanative models have been restricted to measurements of changes in  
ecohydrologic, geo-spatialized, descriptive, interpretative random patterns.  Less attention 
has been granted to interpolative LULC, sub-mixel, reflectance waveband transmittance 
changes. 
     

A 5m, RapidEyeTM ,unmixed S. damnosum s.l. trailing vegation, discontinuous, 
infrequently canopied, turbid water, capture point, narrow tributary,  African, agro-village 
complex, ecosystem, eco-georeferenceable, seasonal image can be considered as an image 
cube in ArcGIS where the third dimension is the interpretive,  geospectrotemporal, 
explanatorial, sub-mixel, domain, eco-cartographically represented by hundreds of 
elucidative, descriptive, geo-spectrotemporal, uncoalesced, parameterizable or non-
parameterizable  uncoalesced, covariate, wavelength transmittance emissivities, may be 
robustly quantitated. Hyperspectral imaging, like other spectral imaging, collects and 
processes information from across the electromagnetic spectrum with the goal of obtaining 
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the spectrum for each mixel in the image of a scene in order to optimally identify topographic 
materials [52].  As a result, an eco-georeferenceable hyperspectral image of an explanatively 
hyperproductive, S. damnosum s.l., capture point, immature habitat, that is geo-
spectrotemporally extracted in a moderate resolution, non-homogenous mixel is actually a 
quantifiable column vector with dimension equal to the number of spectral bands, which 
commonly contains valuable information that can be employed to account for fractional, 
endmember eigenvector, variability, similarity, and discrimination.  Jacob et al. [22] 
presented a new explanatively hyperspectral, geo-spatiotemporal measure to optimally  
describe illuminatively fractionalizable, 5m resolution, Rapid Eye TM  geo-spectrotemporal, 
eigenvector endmembers that were eventually used as interpolative and heuristically, 
optimizable sub-mixels to create a Rapid EyeTM , forecasting vulnerability model.   These 
orthogonal, endmember space-time, heuristically optimizable space-time eigenvectors 
quantitated variability employing two criteria, information divergence and discriminatory 
probability in an eigenfunction decomposition algorithm in an ArcGIS/ENVI 
cyberenvironment for optimally delineating sub-mixel heteroskedascity in an eco-
georeferenceable,  hyperproductive, capture point, immature habitat, geo-spectrotemporally 
geosampled in a narrow tributary, agro-village complex, riverine community in Burkina Faso. 
The geospectral information measure is an information-theoretic measure which treats each 
mixel as a random variable employing its spectral signature histogram as the desired 
probability distribution [52]. 

 
In Jacob et al. [22] Spectral Information Divergence (SID) in ENVI compared the 

similarity between multiple geo-spectrotemporally extracted variables  in a dataset of 
immature hyperproductive, narrow African, agro-village complex, trailing vegation, turbid 
water, capture point, eco-georeferenceable, discontinuous, sparsely shaded, infrequently 
canopied, riverine tributary, immature habitat with optimizable, geospectrotemporally 
emissivity, covariate estimators by measuring the probabilistic discrepancy between the 
corresponding fractionalized, endmember eigenvector biosignature forecasters. The 
discriminatory spectral probabilities of a geospectral database (i.e., library) were set relative 
to the sub-mixel, explanatorial, descriptive regressors to achieve optimal topographic, 
material identification in ArcGIS using a proxy, LULC, interpolated biosignure.  

 
In order to compare the discriminatory power of the decomposed LULC endmember, 

geospectral and geospatial regression measure relative to another, a criterion was introduced 
in Jacob et al. [22] for performance evaluation, based on the power of discriminating one eco-
georeferenceable,  capture point, immature habitat with riffle water, orthogonally 
decomposed, fractionalized, endmember, space-time eigenvectors from the discontinuous, 
sparsely shaded,  trailing vegetation endmembers relative to a reference mixel. The 
experimental results demonstrated that the moderate resolution and cost-effective, 5m, 
RapidEyeTM data could measure and remotely characterize geospectral variability more 
effectively than the commonly used Spectral Angle Mapper (SAM) in ENVI for finer 
resolution sensor data.  
 
 SAM is a geo-physically-based geospectral classification that employs an n-
dimensional angle to match mixels to derivative reference, proxy, LULC biosignature, geo-
spectrotemporally uncoalescable, derivative 5m, forecast endmember spectra. In Jacob et al. 
[22], a, explanatorial, decompositional algorithm in ArcGIS optimally quantitated the 
elucidative, geospectral similarities between eco-georeferenceable explanative, trailing 
vegetation and partially canopied, turbid water, sub-mixel, eco-epidemiological forecasts in a 
fractionalizable, endmember, eigenvector derivative, geospectrotemporal decomposition of a 
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synthesized dataset of RapidEyeTM emissivity coefficient, endmember, forecastable, 
derivative spectra by calculating the angle between the spectra and treating them as vectors in 
a geo-space with dimensionality equal to the number of 5m bands. Eigenvector endmember 
S. damnosum s.l., geoclassifiable, uncoalesced, proxy, LULC signature, immature, capture 
piint,  habitat data in decomposable forecast spectra employed by SAM did not come from 
ASCII files.  Instead, they were accessed from ENVI spectral libraries.  The authors validated 
the extracted, fractionalized, endmember eigenvector, 5m, wavelength transmittance, imaged, 
immature habitats directly from the RapidEyeTM  viable and NIR data as ROI average and Z-
profile spectra.  SAM compared the angle between the S. damnosum s.l. emissivity 
endmember spectrum vector and each mixel spectrum vector in n-D space. Smaller angles 
represented closer matches to the reference expository spectrum. Mixels further away than 
the specified maximum angle threshold in radians were not geoclassified. 

 
In the SAM rule image, the mixel values of the rule, seasonal, hyperproductive 

habitat, fractionalized, 5m image represented the spectral angle in radians from the reference 
spectrum for each S. damnosum s.l. immature habitat in a geo-classified LULC class in 
ENVI.  Lower spectral angles represented better matches to the sub-mixel, tabulated forecast 
in a heuristically optimizable dataset of  descriptive, and expository derivative, illustrative, 
fractionalized, endmember eigenvector spectra in the object-based classification. Areas that 
satisfied the selected radian threshold criteria were carried over as LULC areas from the 
geosampled 5m, hyperproductive, immature habitat image. The SAM classification image 
remotely revealed turbid and non-turbid water, Narrow tributary, discontinuous, infrequently 
canopied, S. damnosum s.l. narrow tributary,  riverine, agro-village, complex ecosystem 
LULC areas, were geo-classified as dense and sparse trailing ,partially canopied,  vegetation 
and LULCs in the RapidEyeTM data.  

         Spectral Information Divergence is a geospectral classification method that employs a 
divergence measure to match mixels to reference spectra; the smaller the divergence, the 
more likely it is that the mixels are similar [53]. In Jacob et al [22], in the SID, seasonal eco-
georeferenceable, immature S. damnosum s.l. hyperproductive habitats in unmixed 5m 
RapidEyeTM mixels with a measurement greater than the specified maximum divergence 
threshold were not classified.  Endmember, riverine, agro-village complex, narrow tributary, 
geoclassifiable, LULC forecastable, derivative endmember spectra employed by SID also 
came from spectral libraries in ENVI.  The authors did not have to extract them directly from 
the immature habitat RapidEyeTM image as ROI average or Z-profile spectra.  In the SID 
calibrated image, the mixel values of the rule image represented the SID value (i.e., the 
output of the equation that defined SID for a pair of geo-spectralized, trailing vegetation, 
turbid water geo-classified LULC vectors). Lower spectral divergence measures eco-
geohydrologically represented better matches to the forecastable, iteratively interpolated, 
eigenvector, derivative, 5m endmember spectra. Areas that satisfied the maximum divergence 
threshold criteria were carried over as sparsely shaded, canopied, sub-mixel, areas in the 5m 
image. The authors proposed an information theoretic criterion, called SID for spectral 
similarity and discriminability using moderate resolution hsatellite data.. 

      It is derived from the concept of divergence arising in information theory and can be used 
to describe the statistics of a spectrum. Unlike spectral angle mapper (SAM) which extracts 
geometric features between two spectra, SID views each mixel spectrum as a random variable 
and then measures the discrepancy of probabilistic behaviors between two spectra. In order to 
evaluate SID. SAM compares the angle between the endmember spectrum vector and each 
pixel vector in n-D space. Smaller angles represent closer matches to the reference spectrum. 
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SAM classification assumes reflectance data. However, if you use geo-spectrotemporally  
uncoalesced, explanative, time series,  radiance data, the error is generally not significant 
because the origin is still near zero(https://www.harrisgeospatial.com).  The SAM algorithm 
is a simply based on the measurement of the spectral similarity between two spectra. The 
spectral similarity can be obtained by considering each spectrum as a vector in q -
dimensional space, where q is the number of bands. The SAM algorithm determines the 
spectral similarity between two spectra by calculating the angle be- tween the two spectra, 
treating them as vectors in a space with dimensionality equal to the number of bands.  SAM 
is used for comparison via hyperspectral data. Mixel with minimum or zero spectral angles in 
comparison to the reference spectrum is assigned to the class defined by reference vector. 
However, when threshold for classification based on spectral angle is modified, the 
probability of incorrect object detection may increases.  
 

Experimental results show that SID can characterise spectral similarity and variability 
more effectively than SAM Compared to the Spectral Angle Mapper (SAM), which has been 
widely used in the past for vector arthropod remote sensing, SID was more effective in 
preserving hyperproductive habitat, sub-mixel, decomposed 5m, eigenvector endmember, 
expository properties (see Figure 39). 
 
Figure 39.  Spectral Angle Mapper (top left), Spectral Information Divergence (top 
middle), RapidEyeTM classification images (top right), of a canopied S. damnosum s.l. 
habitat with a decomposed trailing vegetation (bottom left), and turbid water 
biosignature (bottom right) fractional curves. 

 

 
 

 
In Jacob et al. [22], the SAM of the capture point in an interpolative 5m RapidEyeTM 

immature habitat empirical endmember output appeared to have more noise. The authors 
compared the Spectral Profile for this selected mixel data with the proxy 5m biosignature for 
seasonally hyperproductive, S. damnosum s.l. larval habitats from the ENVI spectral library. 
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The trailing vegetation and turbid water,  submixel variables were easily seen when 
interpolated to each other. 

 
In many explanative, hyperspectral seasonal applications, it is required to identify a 

target in an unknown image scene via a spectral library, or a database. To meet this need, a 
criterion is introduced to calculate the spectral discriminatory probabilities of signatures in 
the ENVI library as to provide the likelihood for robustly identifying the target (e.g., a S. 
damnosum s.l. habitat). In order to compare the relative discriminatory power between two 
geospectral measures (e.g., canopied trailing vegetation, turbid water fractionalized LULC, 
uncolaesced, eigenvector endmembers), another criterion may be proposed, based on the ratio 
of the spectral similarities of a 5m RapidEyeTM extracted mixel to another mixel relative to a 
reference mixel. In practice, variation in the identified habitat LULC biosignatures from one 
seasonal image to another may be observed, due to varying acquisition conditions.  This may 
possibly produce significant unquantifiable, propagational, sub-mixel estimation errors. 
Against this background, hyperspectral unmixing of several seasonal, vector arthropod 
habitat images acquired over the same area is of considerable interest. Such a vulnerability, 
forecastable  signature derivative, with  parameterizable wavelength transmittance in an 
emissivity geo-spectrotemporal and geospatial endmember, descriptive vulnerability, 
forecast, residual  analysis may enable unmixed, canopied, interpolatively decomposed, 
sparsely shaded, endmembers extracted from a 5m RapidEyeTM scene to be tracked in 
ArcGIS/ENVI. The corresponding sub-mixel object variability may then be eco-
geographically and ecohydrologically characterized. Sequential endmember estimation from 
a set of hyperspectral images is expected to provide improved performance when compared 
to methods analyzing multi-seasonal images independently [54].  

 
However, with the significant size of a within–canopy, seasonally hyperproductive S. 

damnosum s.l. immature, capture point, habitat, eco-epidemiological, narrow, African 
tributary, agro-village, trailing vegetation, turbid water, discontinuous, infrequently canopied, 
geo-spectrotemporally uncoalesced, moderate resolution, fractionalized, endmember 
eigenvector predictors may preclude the use of batch procedures to jointly estimate the 
mixture of 5m resolution, wavelength, transmittance covariates of a sequence of multiple 
seasonal habitat scenes.  Provided that each elementary geoclassifiable, LULC component is 
present in at least one eco-georeferenced, African agro-village, narrow riverine, tributary 
ecosystem image, an online unmixing strategy in ArcGIS may be optimally employable for 
quantitating temporal sub-mixel variability. The online hyperspectral unmixing algorithm 
may be formulated as a two-stage stochastic program, which may be solved using classical 
ArcGIS techniques (e.g., co-kriging). 

Stochastic elucidation approximation methods are a family of iterative stochastic 
optimization algorithms in SAS/GIS that attempt to find zeroes or extrema of functions which 
cannot be computed directly, but only estimated via noisy observations. Stochastic 
optimization (SO) methods generate and utilize randomizable, descriptive, geo-predictive 
variables[24]. For resolving stochastic problems in SAS/GIS, the sub-mixel, randomized 
variables may have to appear in the formulation of the optimization problem itself, which 
could involve qualitatively quantitating random objective functions or random constraints, for 
example, in Geospatial AnalystTM.  Stochastic optimization methods for targeting seasonal 
hyperproductive and orthogonally decomposable, immature habitats by seasonally tabulated, 
quantiated, immature productivity counts may also include ArcGIS geo-statistical algorithms 
with random iterates (e.g., exact and approximate Bayesian posterior statistsics in PROC 
MCMC in SAS/GIS.  
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PROC MCMC uses a random walk Metropolis algorithm to obtain posterior samples. 
For details on the Metropolis algorithm, see the section Metropolis and Metropolis-Hastings 
Algorithms(www.https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/
viewer.htm#statug_mcmc_sect019.htm) For the actual implementation details of the 
Metropolis algorithm in PROC MCMC, such as the blocking of  5m regressable, elucidative, 
hyperproductive S. damnosum s.l. immature, capture point, habitat, eco-epidemiological, 
narrow, African tributary, agro-village, trailing vegetation, turbid water, discontinuous, 
infrequently canopied, geo-spectrotemporally uncoalesced, moderate resolution, 
fractionalized, endmember eigenvector predictors and tuning of the covariance matrices, see 
the section Tuning the Proposal Distribution at www.sas.com. By default, PROC MCMC will 
assume that all sub-mixel observations in the S. damnosum s.l uncoalesced dataset are 
independent, and the logarithm of the posterior density is calculatable as follows: 

where is a parameter or a vector of parameters. The 
term is the sum of the log of the prior densities specified in the PRIOR and 
HYPERPRIOR statements. The term is the log likelihood specified in the 
MODEL statement. The MODEL statement can specify the log likelihood for a single geo-
spectrotemrpoally geosampled S. damnsoum s.l. 5m endmember eigenvector decomposed 
observation ( e.g., witnin-canopy,riffle water)  in an eco-epidemioligcal, hyppeorductive , 
eco-georeferenceable, narrow, African tributary, agro-village, trailing vegetation, turbid 
water, discontinuous, infrequently canopied, capture point.  

The statements in PROC MCMC are in many ways like DATA step statements; 
PROC MCMC evaluates every statement in order for each observation( www.sas.com). The 
procedure cumulatively will ads the log likelihood for each S. damnsoum s.l. geo-spectral, 
geospatial, empiricallly regressable observation. Statements between the BEGINNODATA 
and ENDNODATA statements are evaluated only at the first and the last observations. At the 
last observation, the log of the prior and hyperprior distributions may be  added to the sum of 
the log likelihood to obtain the log of the posterior distribution in the  moderate resolution, 
optimally images, eco-georferenceable, immature, eco-epidemiological narrow, African 
tributary, agro-village, trailing vegetation, turbid water, discontinuous, infrequently canopied, 
geo-spectrotemporally uncoalesced capture point, habitat, moderate resolution, fractionalized, 
endmember eigenvector predictors.  

With multiple PARMS statements (multiple blocks of parameters), PROC MCMC wll 
update each block of time series S. damnsoum s.l. parameters while holding the others 
constants. The procedure still steps through all of the programming statements to calculate 
the log of the posterior distribution, given the current or the proposed values of the updating 
block of parameters. In other words, the procedure will not calculate the conditional 
distribution explicitly for each block of parameters, and it uses the full joint distribution in the 
Metropolis step for every block update. If you wish to model dependent data—that is, 

—you can use the PROC option JOINTMODEL. See the section 
Modeling Joint Likelihood for more details at https://support.sas.com/documentation).  

 Some stochastic optimization methods may employ random iterates to solve 
stochastic challenges, combining both meanings of stochastic optimization for optimally 
identifying unknown geolocations (e.g., S. damnosum s.l. habitats) in SAS/GIS.Jacob et al. 
[55] proposed a Gaussian process in a spatial filter analysis and a hierarchical, Bayesian 
probabilistic, uncertainty-oriented, estimation matrix in SA/GIS for deriving qualitative 
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probabilistic inferences from an eco-epidemiologically, field-operationizable, autoregressable 
and heuristically optimizable dataset that wasiniotally applied to noisy,immature, capture 
point,  uncoalesced, eco-georeferenced habitats. The authors’ optimally simulated unbiased, 
unmixed, 5m, wavelength, frequency-oriented,  transmittance, emissivity, fractionalized, 
endmember eigenvector, covariate, coefficients based on geospatial and geospectral 
aggregations of productive immature habitats within a riverine agro-village complex, narrow 
tributary, discontinuous, trailing vegetation, turbid water, eco-epidemiological study site in 
Togo by introducing a descriptive latent variable into a non-linear, probabilistically 
generalizable, autoregressive equation. The inverse Wishart distribution revealed a 
probability distribution defined by the positive-definite matrix generated in ArcGIS for 
probabilistically quantitating the time series-dependent, empirical dataset of capture point,  S. 
damnosum s.l. larval habitats that are stochastically interpolatable in eco-epidemiological, 
parameterizable, interpretive covariates.  

 
In the expository, hierachical, explanative, SAS/GIS Bayesian model, the inverse 

Wishart distribution helped generate the conjugate prior for the covariance matrix of a 
multivariate normal distribution. In Bayesian probability theory, if the posterior distributions 
p(θ x) are in the same family as the prior probability distribution p(θ), the prior and posterior 
are then called conjugated distributions, and the prior is called a conjugate prior for the 
likelihood [56]. The multivariate Gamma function, Γp(⋅), was a generalization of the Gamma 
function in the capture point, S. damnosum s.l. riverine, narrow tributary, African agro-
village, immature habitat with an eco-epidemiolgical, ArcGIS-constructed risk model, which 
generated  an uncoalesced geo-spectrotemporal estimator dataset. The Gamma function is an 
extension of the factorial function with its argument shifted down by 1 to real and complex 
numbers and, as such, n is a positive integer: Γ(n) = (n − 1)! [56]. The gamma function was a 
solution to the immature habitat interpolation for eco-cartographically delineating a smooth 
curve in ArcGIS that connected the points (x, y) given by y = (x − 1)!, employing the 
geosampled tabulated empiricalized,  discrete integer values for x. A plot of the first few 
factorials derived from the probabilistically regressed dataset of field and remote specified, 
endemic transmission, unmixed, covariate coefficients made it clear that a smooth curve can 
be drawn in ArcGIS.  Howevever, the authors found it preferable to have a formula that 
precisely described the curve, in which the number of operations did not depend on the size 
of xi.  

 
The simple formula for the factorial, n! = 1 × 2 ×…× n, in SAS/GIS however, could 

not be employed directly for quantitating the fractional, orthogonally decomposable, 
fractionalized, 5m, eigenvector endmember, immature, capture point, habitat values of x since 
it was only valid when x was a positive integer. Remote data can have negative values (e.g., 
Normalized Difference Vegetation Indices) [23]. There are, relatively speaking, no such 
simple solutions for factorials; any combination of sums, products, powers, decomposable 
exponential functions or logarithms can be employed for constructing a robust, time series 
dependent, operationalizable eco-epidemiological, vulnerability, forecast, vulnerability model 
with a fixed number of terms to express x! [57].  

 
In Jacob et al [45], the Gamma function appeared commonly during the computation 

of the PDFs in ArcGIS and the inverse Wishart distributions. The calculation of moments of 
complex Wishart and complex inverse Wishart distributed random matrices in the time series 
specified, explanatorial, field and remote, geo-spectrotemporally  geosampled, Simulium 
larval habitats that were geoclassified as endemic transmission-oriented and geo-predictive in 
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an elucidatively operationalizable, time series descriptive, partially canopied, trailing 
vegetation, eco-epidemiological forecast, vulnerability model with parameterizable and 
empirically probabilistically regressable, wavelength, frequency-oriented, transmittance 
emissivity  estimators was then addressed in SAS/GIS. In applications such as radar sonar or 
seismics complex, Wishart and complex inverse, Wishart distributed, random matrices are 
used to model the statistical properties of complex sample covariance matrices and complex 
inverse sample covariance matrices, respectively [58]. Moments of random matrices were 
needed for qualitatively quantitating the asymptotic properties of moderate resolution, 
optimally derived irradiance covariate coefficient estimates. A derivation of the PDF of 
complex inverse Wishart distributed random matrices was then attained.  

 
In Jacob et al. [45], interpretive strategies were outlined for the calculation of the 

moments of both complex Wishart and complex inverse Wishart distributed matrices. 
Distributions rendered from the hypeporductive, seasonal, capture point, eco-georferenceable, 
orthogonally decomposed, narrow tributary, African, S. damnosum s.l. larval habitat data in 
ArcGIS revealed an inverse Wishart distribution A ~ W−1(Ψ, m). Autocorrelation 
scatterplots revealed that the Moran’s coefficient was 0.634, while the Gearys ratio was 
0.462. Improvement of fit of a hierarchical, Bayesian estimation matrix then demonstrated 
that the presence of trailing vegetation was statistically important to prolific geosampled S. 
damnosum s.l. seasonal, immature habitats.  The performance of such a regressable, 
probabilistic, Bayesian estimation paradigm may be evaluated on synthetic and on real S. 
damnosum s.l. immature habitats in wavelength transmittance emissivities in PROC MCMC 
which is a SAS/STAT procedure which specifies prior distributions for the parameters with 
PRIOR statements and the likelihood function for the data with MODEL statements for 
deriving inferences from simulation rather than through analytic or numerical methods (see 
https://support.sas.com/). A comparison with independent unmixings of each eco-
georeferenceable, immature, hyperproductive, imaged, immature habitat, seasonal image by 
state-of-the-art stochastic optimization method in an ArcGIS cyberenvironment may robustly 
and parsimonously implement proposed larval control strategies in African riverine 
ecosystems. 

 
Cost-effective, hyperspectral, eco-georeferenceable, vector arthropod, immature 

habitat imagery has been of increasing interest over the past decade to researchers due to the 
significant spectral information it conveys. Acquired in hundreds of contiguous moderate 
resolution spectral bands from 300nm to 2600nm, hyperspectral images facilitate the 
identification of the elements composing the imaged scene [54]. However, the geospectral 
and geospatial resolution of these images is mitigated by mixel forecast fractionalized 
endmember, eigenvector, derivative spectra compositions of mixtures of reference proxy 
LULC biosignatures.  Spectral unmixing of seasonal, hyperproductive S. damnosum s.l. 
immature habitats consists of quantitating and precisely determining the reference spectral 
biosignatures, their composing 5m, endmembers, and their abundance fractions in each mixel 
according to a predefined mixture model for quantitating several environmental factors [54]. 
Provided elucidative, orthogonally decomposed quantiated interactions between the moderat 
resolution, capture point, immature habitat materials of the imaged scene are negligible and 
the relief of the scene is flat, a linear mixing model (LMM) may be used to describe the data. 

 
However, varying unquantifiable, wavelength transmittance acquisition emissivity 

conditions, such as illumination or natural evolution of a S. damnosum s.l. habitat, 5m, 
RapidEyeTM scene may significantly alter the shape and the amplitude of a spectral 
biosignature acquired, thus affecting the extracted fractionalized endmembers eigenvector 
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geo-spectrotemrpaolly extracted from seasonal images. In this context, unmixing of several 
images acquired over the same riverine, agro-village complex in a geo-classifiable, narrow 
tributary, geoclassifiable LULC achieved through an ArcGIS overlay of an  eco-
epidemiological capture point polgonized, study area at different time instants is of 
considerable importance. Such an analysis of an eco-epidemiological, decomposed, immature 
S. damnosum s.l. habitat, capture point enables the decomposed endmembers from the 5m 
RapidEyeTM scene and the sub-mixel variability to be optimally assessed, thus improving 
sub-mixel estimation when compared to independent image analyses performed with any 
state-of-the-art unmixing method in ArcGIS. So far, sub-mixel, geospectral and geospatial, 
5m endmember, variability quantitation processes in ArcGIS within a given hyperproductive, 
S. damnosum s.l. immature, capture point, habitat, has been considered in various forecast-
orinted, vulnerability, risk models, either derived from a statistical or a deterministic point of 
view in ArcGIS. Commonly, the first class of methods assumes that the endmember variables 
are realizations of multivariate, normalized distributions. The second class of method would 
then represent these sub-mixel proxy LULC biosignatures as members of spectral libraries 
associated with each unmixed, eco-georeferenceable and geosampled habitat in a geolocation 
material (e.g., bundles).  

 
Another recently proposed approach for remotely approximating unmixed, moderate 

resolution, wavelength transmittance emissivity, geo-spectrotemporal, decomposable 
covariate coefficient estimators was introduced within an SAS/GIS cyberenvironment. Geo-
spectrotemporally, geospatially, probabilistically, and regressively quantitating sub-mixel, 
hyperproductive S. damnosum s.l. habitats in fractionalized, endmember eigenvector 
variability was analyzed within a decomposition algorithmic, sub-mixel framework proposed 
in Jacob et al. [59] in an SAS/GIS module (i.e., AUTOREG). Nevertheless, hyperspectral, S. 
damnosum s.l.  prolific seasonal habitats, in the partially canopied, decomposed endmember, 
fractionalized, unmixed, interpolative and parameterizable covariate eigenvector estimators 
encompassing a significant number of clustered, seasonalnarrow tributary, African, agro-
village complex, ecosystem, immature, capture point, habitat images or several large images 
precludes the use of batch estimation procedures, due to limited memory and computational 
resources. In conventional block matching estimation algorithms employed in vector 
arthropod, 5m, uncolaesced, wavelength transmittance emissivity, forecast,  vulnerability 
models, motion accuracy may be achieved by searching the best matching block in an 
enlarged (i.e., interpolated) reference search area [60]. 

SubME is the MATLAB implementation of a block matching motion estimation 
algorithm that achieves sub-mixel accuracy without interpolation. SubME can integrate a 
seasonal habitat block matching algorithm in an ArcGIS/ENVI cyberenvironment and optical 
wavelength transmittance emissivity in a 5m RapidEyeTM flow method to estimate the 
motion.  Vectors may then be determined by a two-stage algorithm, the first stage being a 
single layer block matching, and the second stage being a first order optical flow by solving a 
2x2 linear system. It is possible to use successive, parabolic, explantorial interpolator for 
doing sub-mixel interpolation. In the case of non-sub-mixel interpolation, it is very easy to 
apply successive parabolic interpolation, as there may be a continuous function that exists in 
the vulnerability, eco-epidemiological S. damnosum s.l. risk model.  Still, in the case of 
parameterizable, submixel endmember eigenvector interpolation, the S. damnosum s.l. data 
may be discrete and it may not possess function values at floating point xx. In a successive 
parabolic interpolator matlab code, a seasonal, riverine habitat image, or a canopied line (e.g., 
trailing, sparsely shaded, discontinuous geoclassifiable, LULC vegetation cover), may be 
optimally highlighted and deduced at y=f(x) y=f(x). However, there is no current 
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methodology in ArcGIS literature to implement successive parabolic interpolation in the case 
of a function f in a vector arthropod, eco-epidemiologcal, forecast, vulnerability  model which 
employs unmixed, 5m resolution, eludicatively orthogonally  decomposable wavelength 
transmittance for canopied endmember emissivities values parameterized only on integer 
indices.  

Since remotely identifiable, orthogonally decomposable, trailing vegetation, unmixed, 
5m resolution wavelength transmittance, parameterizable, frequency-oriented, emissivity 
covariates of turbid water, riverine, sparsely shaded, partially canopied endmember 
eigenvectors can be considered as time-varying reference, perturbed forecastors of a linear 
mixing model (PLMM) in ArcGIS/ENVI can be employed to account for quantitating any 
sub-mixel eigenvector, probabilistic uncertainties in a hyperproductive, S. damnsoum s.l. 
habitat modeled in a 5m RapidEyeTM scene.  

Next, a two-stage stochastic program in the cyberenvironment would allow the 
fractionalized, orthogonalized, endmember immature, capture point, S.damnosum s.l., habitat, 
decomposition algorithm to reveal  a robustifiable datset of empirical, moderate resolution, 
geo-spectrotemporally uncoalesced, wavelength transmittance emissivities of statistical 
significance online. To determine whether a result is statistically significant, p-value would 
need to be calculated.  The p-value can be the probability of observing an effect given that the 
null hypothesis is true in an eigenvector endmember, eco-epidemiological, decomposed, 
unmixed, interpolative, wavelength transmittance emissivity, vulnerability model parameter 
estimator, linearized dataset[22]. The null hypothesis is rejected if the p-value is less than the 
set significance of the α-level [23].   Unmixed, hyperspectral, partially canopied, iteratively 
interpolative, discontinuous, infrequently canopied, trailing vegation, turbid water, S. 
damnosum s.l. immature, capture point, hyperproductive habitats seen in a cost-effective 5m 
RapidEyeTM formulated dataset of endmember eigenvectors would be employable while 
accounting for temporal variability in a two-stage stochastic program in an ArcGIS/ENVI 
cyberenvironment.  

The PLMM may account for temporal variability in seasonal S. damnsoum s.l. 
habitats with geo-spectrotemporally geospatially expository and explicatively stratifiable 
clusters as described in an on-line algorithm to solve the resulting optimization problems in 
an eco-epidemiological dataset of unmixed, empirical, 5m, dataset of resolution RapidEyeTM 
uncertainty endmember eigenvector emissivities. Experimental results may be 
parsimoniously obtained on synthetic and real riverine, agro-village, complex, narrow 
tributary, decomposable, immature capture point, hyperproductive habitats seen through 5m 
resolution, partially canopied, sparsely shaded, trailing evgation, turbid water, orthogonally 
decomposed fractionalized, data endmembers. The results may be optimally obtained with 
the proposed algorithm, and may be systematically compared to those of the vertex 
component or fully constrained least squares analysis. 

 The model in Jacob et al. [22] employed an empirical, operationizable, eco-
epidemiological, 5m, resolution RapidEyeTM  descriptive dataset of unmixed, multitemporal, 
fractionalized endmembers in an interpolative, decomposable and parameterizable 5m 
wavelength emissivity covariate transmittance estimators, non-linearly quantitated dataset 
using  a weighted, uncertainty-oriented, geospatial probabilistic, autocorrelation, ArcGIS-
derivable, eigenfunction decomposition matrix. Canonical scalar products on Euclidean 
matrix spaces were optimally rendered employing a spatial filter orthogonal decompositional 
algorithm. 
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In orthogonally decomposable, eco-epidemiological, moderate resolution, forecast, 
vulnerability modelling, Euclidean space primarily encompasses the two-dimensional 
Euclidean plane [61, 62], "Euclidean" distinguishes these spaces from other types of spaces 
considered in modern geometry; they also generalize to higher dimensions.  Classical Greek 
geometry defined the Euclidean plane and Euclidean three-dimensional space using certain 
postulates, whilest the other properties of these spaces were deduced as theorems.  Geometric 
constructions are also used to define rational numbers. When algebra and mathematical 
analysis were developed in ArcGIS, this relationship reversed.  Currently, it is more common 
to define Euclidean space in vector arthropod, immature, epidemiological, capture point, 
explicative, hyperproductive habitats in decompositional, vulnerability forecast risk models 
employing Cartesian coordinates and the ideas of analytic geometry.  

A Cartesian coordinate system in ArcGIS specifies each point uniquely in a plane by a 
pair of numerical coordinates, which are the signed distances to the point from two fixed 
perpendicular directed lines, measured in the same unit of length (www.esri.com). Both 2D 
and 3D Cartesian coordinate systems in ArcGIS can provide the mechanism for describing an 
eco-geographic location and shape of immature capture point, S. damnosum s.l., immature 
habitat, synthetic features employing x- and y-values [22]. Each reference line in a 
descriptive, eco-epidemiological habitat model, for example, would be a coordinate axis or 
just axis of the system, and the point where they meet would be its origin, usually at ordered 
pair (0, 0). The coordinates can also be defined as the positions of the perpendicular 
projections of the eco-georeferenceable immature, capture point , narrow tributary, agro-
village complex, trailing vegetation, turbid water, discontinuous, partially canopied, sparsely 
shaded, S. damnosum s.l. immature habitat, interpretive point onto the two axes, expressed as 
signed distances from the origin in ArcGIS. 

 Thus, seasonal hyperproductive, S. damnosum s.l. immature, agro-village narrow 
riverine tributary, immature habitat points in ArcGIS/ENVI algorithmic decomposition 
regressional geospace may be eco-cartographically specified with collections of real 
numbers, (e.g., endmember, forecastable, orthogonalized explanatorial, sub-mixel, 
interpolative unbiased, optimally parameterizable proxy LULC bosignature uncoalesced, 
covariate coefficient estimators) and geometric shapes which may be defined as equations 
and inequalities. This approach utilizes algebra and calculus for geometrical features in 
habitat empirical datasets, which may be subsequently generalized to Euclidean spaces of 
more than three dimensions. With Cartesian coordinates this unique dimesionality may be 
precisely modeled by the real coordinate space (Rn) of the same dimension in the 
ArcGIS/ENVI cyberenvironment. In one dimension, the eco-epidemiological, immature 
habitat, forecasting, vulnerability, residualized, model output would be quantitated on a real 
line.  In two dimensions, it would be quantitated by the Cartesian plane.  In higher 
dimensions it would be a coordinate space with three or more real, parameterizable, unmixed 
wavelength transmittance, georeferenceable, coordinates. Mathematicians denote the n-
dimensional Euclidean space by En if they wish to emphasize its Euclidean nature, but Rn is 
used as well, since the latter is assumed to have the standard Euclidean structure, and these 
two structures are not always distinguished [62].  

Jacob et al. [59] autoregressively and remotely quantitated Euclidean spaces in an 
unmixed, explanatorily fractionalized, decomposed, proxy LULC biosignature representing a 
dataset of sparsely shaded, trailing vegetation, turbid water, discontinuously canopied, 
endmember wavelength transmittance, 5m resolution emissvities with a finite dimension. 
Geo-predictive vulnerability risk maps were highlighted in an ArcGIS/ENVI 
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cyberenvironment of S. damnosum s.l. larval habitats in an endemic riverine community in 
northern Uganda.  Previously, the standard methods for quantitating stochastic or 
deterministic bidirectional radiance for deducing seasonally clustering tendencies in sparsely 
shaded, trailing vegetation, LULCs in endmember regressand datasets of orthogonally 
decomposed, eigenvector, covariate coefficient, estimator datasets of immature S. damnosum 
s.l. habitats was achieved by inefficient eco-cartographic, non-ecohydrologic and non-
parameterized tools. These observational, risk models postulated eco-geographically 
unmixed, probablistically, time series dependent, seasonal,moderate resolution, 
transmittance, frequency emissivities (i.e., Percent of interpolative, partially canopied, 
sparsely shaded, discontinouous, trailing vegetation endmember eigenvectors) to Simulium 
endemic foci while  accounting for neither slope coefficients, nor weighted, varying intra-
cluster, probabilistic residuals with obscure, autocorrelation effects.   

Generally, inferential statistics derived from ArcGIS-gridded, residual, algorithmic 
sample frames for risk mapping vulnerability residuals for seasonal S. damnosum s.l. habitats 
in a hyperendemic study site, employing decomposable sub-mixel endmeber eigenvector 
estimators, derived from  within-canopy objects (e.g., sparsely shaded, trailing vegetation), 
LULCs of unmixed reflectance, wavelength transmittance endmember emissivities are 
riddled with endmember uncertainties [59]. In eco-epidemiological datasets of S. damnosum 
s.l., parameterizable, covariate estimators and their quantizable, decomposable wavelength 
frequency emissivity uncertainties, forecasted correlations (e.g., multicolinearity) may be 
rendered from two sources: (1) the design of the quantitated random effects with their 
assumed covariance from the multiple levels within the immature, georeferenceable, habitat 
multivariate, endmember regression model; and, (2) the dependence correlation structure of 
the canopied, time series dependent, LULC reflectance explanators [51].  

In loose usage, endmember fractionalized, 5m decomposed RapidEyeTM wavelength, 
probabilistic, emissivity transmittance, residual uncertainty correlations in  geoclassifiable 
LULCs of S. damnosum s.l. habitats, with uncoalesced, wavelength transmittance 
endmember, predictor covariates and parameterizable estimators in ArcGIS, can refer to any 
departure of two or more random variables (e.g., Percent of trailing vegetation at an eco-
epidemiological capture point) from independence [22]. This occurs in ArcGIS when 
remotely quantitating geo-spectrotemporal and geospatial relationships between extrapolated 
and tabulated mean values. Instrument noise quantitated amongst seasonal S. damnosum s.l. 
capture point, immature habitats of unmixed, moderate resolution, scene components and 
fractionizable variability of these scene components is not explicitly evaluated as part of 
classification and forecast mapping efforts which employ multispectral, cost-effective 
images.  Changes in these factors directly affect eco-epidemiological regression mapping 
accuracy. An analytical framework may be proposed in ArcGIS such that these factors can be 
quantified within the context of a spectral mixture analysis. In applying these analyses to a 
RapidEyeTM images, hyperproductive, immature, capture point, seasonal habitat through a 5m 
scene in ArcGIS may reveal that the greatest uncertainty in abundance estimation arises from 
spectral variability in unmixed endmembers. Spectral variability in any discontinuos, partially 
canopied, sparsely shaded, orthogonally decomposable, endmember eigenvector can result in 
abundance uncertainty quantitation of all fractionalized, sub-mixel decomposable data. A 
sub-mixel analytical strategy may be employed in ArcGIS/ENVI whereby fractionalized 
endmember subsets of a 5m RapidEyeTM image may be quantitated into regions of lowest 
canopied, endmember geo-spectrotemporal dimensionality in order to minimize probabilistic 
uncertainties and to maximize detection of new unmixed, wavelength transmittance LULC, 
geo-spectrotemporally uncoalesced,  emissivity materials. Then, trailing vegetation and sub-
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mixel, discontinuous, partially canopied,  emittance data may be optimally, remotely and 
regressively parameterized and geo-spectrotemporally geospatially iteratively interpolated in 
an ArcGIS/ENVI cyberenvironment to identify unknown, hyperproductive S. damnosum s.l. 
habitats.  

There are several coefficient, gridding algorithmic delineations in ArcGIS for 
precisely measuring the degree of sub-mixel, intra-cluster endmber correlation in a 
geoclassifiable Rapid Eye TM  ,LULC, eco-epidemiolgical, heursitically optimizable,  risk 
mapping of seasonal, ecohydrologic variables in ArcGIS.  For example, bidirectional line 
gridding in ArcGIS rapidly interpolates roughly parallel line-based, trailing vegetation, 
discontinuous, turbid water, infrequently canopied, hyperproductive, S. damnosum s.l. 
immature, capture point habitats that are regressively parameterizable in a 5m RapidEyeTM, 
unmixed dataset of decomposed, wavelength, tranmittance , frequency-oriented,  emissivity 
covariate estimators, especially if there is a high sample density down the lines relative to the 
line separation in the geodatabase. The interpolation employs linear, minimum curvature or 
Akima splines, which can be defined as a particular spline used due to its stability against any 
outliers [64]. Further, on the intervals in an ArcGIS graph which are next to the outlier, the 
spline would noticeably deviate from the given function because of the outlier in any S. 
damnosum s.l. forecasting vulnerability paradigm.  

An important property of the Akima spline is its locality - function values in [xi , xi+1 ] 
depends on fi-2 , fi-1 , fi , fi+1 , fi+2 , fi+3 only [64] . The disadvantage of cubic splines for 
optimally remotely targeting hyperproductive, trailing vegetation, discontinuous, infrequently 
canopied, sparsely shaded, seasonally narrow tributary, African agro-village complex,   S. 
damnosum s.l. immature, capture point, seasonal habitats, which are geo-classifiable based on 
previously geosampled, immature productivity,immature  count data in African, agro-village 
complex, narrow tributary, riverine environments, is that they could oscillate in the 
neighborhood of an outlier. Another Akima spline property which should be taken into 
account is the non-linearity of the unmixed, geo-spatiotemporally geo-spectrotemporally 
geosampled, orthogonally decomposable, forecastable, eco-georeferenceable geo-predictive 
variables, as the result of stochastic interpolation of the sum of two functions in ArcGIS.  
These may or may not equal the sum of the interpolation schemes constructed on the basis of 
the given functions. No less than 5 points are required to construct the Akima spline [64]. In 
the inner area (i.e., between x2 and xN-3), where the index goes from 0 to n-1, the interpolation 
error has order O(h 2). Unfortunately, the spline is only available in Oasis montaj and cannot 
be employed to interpolate randomly distributed XYZ data.  Oasis montaj is an exploratory 
technological solution that provides a scalable environment for efficiently importing, 
viewing, modelling, analysing and sharing large volume geophysical, geochemical and eco-
geological data, all within one integrated environment (http://www.geosoft.com). 

Triangular irregular network (TIN) gridding can be used for irregularly geo-
spectrotemporally geosampled, immature seasonal, Simulium productivity data through 
regressive and remote quantitation of 5m Rapid Eye TM data. TIN gridding seasonally 
hyperproductive, S. damnosum s.l., immature hyperproductive, trailing vegetation, 
discontinuous, infrequently canopied, sparsely shaded, seasonally narrow tributary, African 
agro-village complex,   capture point,  habitats that have been fractionalized as proxy LULC 
biosignature endmembers eigenvector iteratively interpolated results in an ArcGIS stratified, 
5m resolution RapidEyeTM dataset of grid cell values may loosely match the magnitude of the 
original unmixed, geosampled, riverine data at known XY positions. The interpolation is 
entirely local and every geosampled,hyperproductive, immature habitat, eco-georferenceable  
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point will be influenced either by its nearest or natural neighbours depending on the 
parameter chosen. This algorithm is available in Oasis montaj and Target.  However, in 
ArcGIS, this algorithm is only available when gridding drillhole data for plan maps, section 
maps, or plan grids in illustrative 3D maps.  

Inverse distance weighted gridding (IDW) may also be employed when remotely 
targeting hyperproductive S. damnosum s.l. habitats.  Within an ArcGIS cyberenvironment, 
sparsely shaded, trailing vegetation, and turbid water habitats with geosampled fractionalized 
interpolative, discontinuous, partially canopied, sparsely shaded, endmembers and the habitat 
capture point, S. damnosum s.l. surface is not expected to be smooth or continuous between 
data points. The data points are weighted so that the influence of one point relative to another 
declines with distance. Three key parameters which may be set in ArcGIS that will influence 
the interpolation are the search radius, the weighting power, and the weighting slope [65]. 
IDW can be used to create 2D grids in an ArcGIS cyberenvironment (www.esri.com). Inverse 
distance weighted gridding is also an option for 3D gridding of unknown, un-geosampled, 
seasonal habitats seen in a 5m RapidEyeTM, parameterizable, wavelength transmittance 
emissivity, covariate analyses in a vulnerability forecasting risk model 

Direct ArcGIS gridding is designed for highly or oversampled hyperproductive S. 
damnosum s.l. habitats in geospatial and geo-spectrotemporally geo-classifiable 5m 
decomposed, wavelength transmittance emissivities, such as RapidEyeTM sensor data in 
ArcGIS. The output value will be determined based on the minimum, maximum or the mean 
of the data points that fall within the grid cell. This algorithm is available in Oasis montaj and 
Target for 2D gridding. Direct gridding is an option for 3D gridding in Oasis montaj, as well 
as in ArcGIS. 

Linear regression analysis with one 5m RapidEyeTM grid cell as dependent, and 
multiple grids as independent in ArcGIS, may reveal statistically significance [e.g., tabulated 
p-values] based on the probability of observing a hyperproductive S. damnosum s.l. habitat 
with trailing vegetation and turbid water effect (flooding), given that the null hypothesis is 
true. In statistics, the p-value is a function of the observed sample results (a statistic) that is 
used for testing a statistical hypothesis [23]. The p-value for a hyperproductive, S. damnosum 
s.l. habitat decomposition, eco-epidemiological, frequency transmittance, emissivity 
endmember, vulnerability forecasting risk model may be defined as the probability of 
obtaining a result equal to, or "more extreme," wavelength outliers than what was actually 
observed, assuming that the hypothesis under consideration is true [22]. Here, a value being 
defined as "more extreme" is dependent on the way the hypothesis is tested in ArcGIS. 
Before the sub-mixel endmember, fractionalized test is performed, a threshold value is 
chosen, (i.e., significance level), in SAS/GIS cyberenvironments (e.g., traditionally 5% or 
1%) and denoted as α. If the p-value is equal to or smaller than the significance level (α), it 
suggests that the observed, fractionalized eigenvector endmember of decomposed, 
interpolative, 5m RapidEyeTM hyperproductive, trailing vegetation, discontinuous, 
infrequently canopied, sparsely shaded, seasonally narrow tributary, African agro-village 
complex,   S. damnosum s.l. immature, capture point, seasonal habitat data are inconsistent 
with the assumption that the null hypothesis is true.  Thus, that hypothesis must be rejected, 
but this does not automatically mean the alternative hypothesis can be accepted as true. When 
the p-value is calculated correctly, such a test is guaranteed to control the Type I error rate to 
be no greater than α. Since the p-value is used in frequentist inference (and not Bayesian 
inference), it does not in itself support reasoning about the probabilities of hypotheses, but is 
only used as a tool for deciding whether to reject the null hypothesis in ArcGIS. 
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 By unbiasedly determining significance levels in seasonal hyperproductive, 
discontinuous, infrequently canopied, sparsely shaded, seasonally narrow tributary, African 
agro-village complex,   S. damnosum s.l. immature, capture point, seasonal habitats eco-
epidemiological geo-predictive variables, quantifiable trailing vegetation or turbid water 
endmember fractionalizable, interpolative regressors may be determined. Details of 
regression correlation analysis may be saved to a table in a SAS/GIS cyberenvironment, as 
well. Optionally, the descriptive regression model may be employed to create a new grid with 
a forecastable dataset of optimizable regression based on decomposable, geo-
spectrotemrpaolly uncoalesced, geospatialized, sub-mixel 5m RapidEyeTM wavelength 
transmittance emissivity values.  This way, the immature S. damnosum s.l. habitat regression 
analysis can assume the existence of a causal relationship between a dependent and an 
independent variable that have been geosampled in a geo-spectrotemporal, unmixed and 
orthogonally explanatively decomposable 5m RapidEyeTM medium resolution emissivity. 
These regression analysis equations can be expressed as: Y= a + bX (linear), Y= a + b/X, Y= 
a/(b-X), Y= a * X^b (power), Y= a e^(bX) (exponential), and Y= a + b * ln(X) (logarithmic), 
where Y is the dependent variable, and X the independent variable. The coefficient “a” 
represents the intercept, and “b” is the independent variable X. The intercept represents the 
value of Y when the value of the independent variable is equal to zero.  The parameter 
coefficient indicates the change in Y for a one-unit increase in the corresponding independent 
variable (i.e., the slope of the line) in ArcGIS [51]. This module could employ a point shapes 
data layer to represent the dependent variable and a single grid data layer as the independent 
variable in an eco-epidemiological risk model. Details of regression/correlation analysis may 
be saved to a table and exported to SAS/GIS for constructing robust non-linear, eco-
epidemiological risk model estimators for precisely identifying unknown, hyperproductive, 
trailing vegetation, discontinuous, infrequently canopied, sparsely shaded, seasonally narrow 
tributary, African agro-village complex,   S. damnosum s.l. immature, capture point, seasonal 
habitats S. damnosum s.l. habitats. i 

Correlation and regression analyses relate to 5m RapidEyeTM imaging of S. 
damnosum s.l. turbid water immature habitats in the sense that both deal with relations among 
variables [63]. The correlation coefficient is a measure of linear association between two 
variables [66]. Values of the correlation coefficient in an ArcGIS cyberenvironment (e.g., 
Geostatsitical AnalystTM) are always between -1 and +1 (www.esri.com). A correlation 
coefficient of +1 indicates that two variables are perfectly related in a positive linear sense, 
while a correlation coefficient of -1 indicates that two variables are perfectly related in a 
negative linear sense, and a correlation coefficient of 0 indicates that there is no linear 
relationship between the two variables. According to Jacob et al. [45], in unmixed, 
interpolative datasets of 5m RapidEyeTM imaged S. damnosum s.l. habitats containing trailing 
vegetation or turbid water, risk-related, decomposable, linear regression, the sample 
correlation coefficient will be the square root of the coefficient of determination.  The sign of 
the correlation coefficient will be the same as the sign of the coefficient in the estimated 
regression equation. Neither regression nor correlation analyses can be interpreted as 
establishing cause-and-effect relationships [67]. Such interpretive models can indicate only to 
what extent 5m imaged, S. damnosum s.l., imature, capture point, hypeproductive immature 
habitat,  uncoalesced, wavelength transmittance emissivities are associated with each other. 
The correlation coefficient measures only the degree of linear association between two 
variables [66]. Any conclusions about a cause-and-effect relationship must be based on the 
judgment of the researcher in ArcGIS. 
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A probabilistic regression analysis formula in an ArcGIS may be employable to 
calculate hyperproductive, trailing vegetation, discontinuous, infrequently canopied, sparsely 
shaded, seasonally narrow tributary, African agro-village complex,   S. damnosum s.l. 
immature, capture point, seasonal habitats in endmember fractionalized eigenvtor, moderate 
resolution  data values based on an output grid data layer. The most common of these is the 
Pearson correlation coefficient, which is sensitive only to a linear relationship between two 
geopredictive explanative variables, which may exist even if one is a non-linear function of 
the other. In statistics, the Pearson product-moment correlation coefficient (sometimes 
referred to as the PPMCC or PCC or Pearson's r), is defined as a measure of the linear 
correlation between two georeferenceable/non-geo-referencable variables X and Y, rendering 
a value between +1 and −1 inclusive, where 1 is total positive correlation, 0 is no correlation, 
and −1 is total negative correlation [66]. This coefficient is widely employed in unmixed 
endmember data geosampled in wavelength transmittance emissivity, geopredictive, vector 
arthropod, risk modelling in ArcGIS as a quantifiable measure of the degree of linear 
dependence between two observational, parametizable and probabilistic predictors [68]. 
Correlation also refers to any of a broad class of statistical relationships involving 
dependence [66]. 

Truncated singular value decomposition (SVD) techniques have been widely employed in 
inversion paradigms in ArcGIS. Although the method of truncation determines the quality of 
a truncated singular value decomposition (SVD) solution, truncation has often been 
conducted arbitrarily in vector arthropod, eco-epidemiological mapping in ArcGIS. The 
truncated SVD is considered as a method for regularization of ill-posed, linear least squares 
and eco-geographic predictors [69]. In statistics and mathematics, linear least squares is an 
approach fitting a mathematical or statistical model to data in cases where the idealized value 
provided by the model for any data point is expressed linearly in terms of the unknown 
parameters of the model. The resulting SVD-fitted model in ArcGIS can be used to 
summarize the data, to predict unobserved hyperproductive, trailing vegetation, 
discontinuous, infrequently canopied, sparsely shaded, seasonally narrow tributary, African 
agro-village complex,   S. damnosum s.l. immature, capture point, seasonal habitats 
iteratively interpolated , moderate resolution orthogonally uncoalesced values from the same 
system, and to understand the mechanisms that may underlie the system. 

In particular, the truncatcd SVD solution may be comparable with a usual regularized 
solution in ArcGIS for eco-epidemiological forecast modeling of hyperproductive habitats. 
The truncated SW in ArcGIS may be a favorable alternative to standard form regularization 
in cast of ill-conditioned matrices in other software packages with a well-determined rank. 
The first workable criterion for truncation in a S. damnosum s.l. habitat forecast model may 
be based on F-statistical testing in Geostatistical AnalystTM for aiding in geophysical 
inversion of autoregressively and heuristically optimizable, parametrizable covariates 
representing RapidEyeTM-derived, fractionalized, seasonal wavelength transmittance 
emissivities in various evironmental settings. 
 

   The L-curve approach may be utilized in SAS/GIS applications for any interdisciplinary 
inverse problems in an expository S. damnosom s.l. habitat, RapidEyeTM image-derived, eco-
epidemiological forecast model. The L-curve is a log-log plot of the norm of a regularized 
solution versus the norm of the corresponding residual norm. In ArcGIS, the L-curve may be 
a convenient graphical tool for displaying the trade-off between the size of a regularized 
solution and its fit to the given dataset of decomposable, parameterizable estimators 
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representing S. damnosum s.l. habitat endmember data in 5m RapidEyeTM wavelength 
frequency, unmixed, trasmittance emissivities as the regularization parameter varies. The L-
curve may give insight into the regularizing properties of the underlying regularization 
method in ArcGIS for immature habitats in discontinuous sub-mixels of geo-predictive, 
interpolative unmixed variables.  Simultaneously, the L-curve may aid in choosing an 
appropriate dataset of regularization, covariate coefficient estimators for the given 
vulnerability, sub-mixel, autoprobabilistic, autoregressable, uncertainty-oriented, residualized 
dataset. 

  
A new quality-based algorithm for truncation in SAS/GIS may be proposed for 

multiple, RapidEyeTM–derivable, biophysical, photosynthetic and NPV decomposable, S. 
damnosum s.l. habitat covariate estimators geosampled in an African agro-village narrow 
tributray, riverine ecosystem. These estimators may be also remotely investigated for 
comparison in regularizing discrete, unstable, ill-posed problems, based on the F-statistic, the 
L-curve, and a quality-based mean  squared error (MSE) criteria in Geostatistical AnalystTM 
for the estimation of capture point, proxy LULC biosignature interpolators. Validated, F-
statistic-based estimators may marginally improve the least squares (LS) solution to the ill-
posed downward continuation challenge through a long-term average of seasonal 
hyperproductive S. damnosum s.l. habitats in unmixed covariate estimators depending on pre-
selected significance levels (95% confidence intervals).  
 

        The simulations in ArcGIS of frequency wavelength emissivity, vulnerability estimators 
may improve conditional coefficients of a linearized, unstable, discontinuously canopied, 
trailing vegetation, turbid water, S. damnosum s.l. modeling system. In this way, the F-
statistic criterion may lead to precise discardings of uncertainty-oriented, wavelength 
transmittance emissivity components from a stochastic/deterministic interpolator.  The 
estimator, by means of an L-curve, may then provide optimal stability for any ill-posed 
problems (e.g., over-discarding) in geosampled, unmixed riverine habitats with 
georeferenceable and eco-epidemiological capture point components. Biases and mean 
squared error roots of the solution may be provided in ArcGIS of the autoregressively, 
spatially adjusted, Bayesian probabilstic, optimized fields of interpolated, decomposed 5m 
RapidEyeTM endmembers of parameterizable, wavelength transmittance, fractionalized 
emissivity eigenvectors.  

 

Bayesian Optimization (BO) is a probabilistic description of the task of finding the 
global extremum of a function that is not “directly” accessible, either because it is embodied 
in some physical process, or because it has very high evaluation cost[24].. A good example is 
the search for gregressable ecogeorferenceable, explicative geo-spectrotemporally 
uncoalesced turbid watre, discontinuously canopied, sparsely shadeed, trailing vegtation, 
parameters of a robotic control problem (where each function evaluation involves a physical 
experiment), or finding good setups for a large machine learning algorithm, such as a deep 
net (where each function evaluation involves training the net to convergence, which may take 
weeks on a cluster).  The simulations may indicate that other algorithms in ArcGIS are also 
be able to achieve a mean accuracy of 5m for geo-spectrotemporal and geosaptial uncertainty 
anomalies from the satellite radiometric weighted variables, if the few largest biases are left 
out of the computation (see Figure 40).  
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Figure 40.  A heirachically Bayesian simulated Gaussian random field for quantitating 
unmixed, geo-spectrotemporally, geospatialized immature S. damnosum s.l. habitat, 
trailing vegetation and turbid water  parameterizable estimators in an ArcGIS 3-
dimensional graph. 

 

 

 Standardized random samples of the integrand use a conventional Monte Carlo for 
satisfying formal dependence in an unmixed endmember, decomposable, eco-
epidemiological, Bayesianized dataset of immature hyperproductive, trailing vegetation, 
discontinuous, infrequently canopied, sparsely shaded, seasonally narrow tributary, African 
agro-village complex,   S. damnosum s.l. immature, capture point, seasonal habitats with 
forecastable vulnerability wavelength emissivities in WinBUGS based on the BUGS 
(Bayesian inference Using Gibbs Sampling). 

 PROC MCMC derived, endmember eigenvectors of trailing vegetation, reflectance, 
turbid water paradigms employ randomized, sub-mixel, log-transformable, continuous or 
catergorical auto-probabilistic and autoregressive data variables that satisfy probabilistic 
independence. In probability theory, two events (e.g., seasonal, georeferenced, 
hyperproductive, immature, S. damnosum habitat sample frames) are statistically 
independent, or stochastically/deterministically, independent if the occurrence of one does 
not affect the probability of the other [70].  
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Similarly, two medium resolution images of S. damnosum s.l. habitats as unmixed, 
itartively interpolatable, predictor variables would be explicatively independent if the 
realization of one geosampled endmember explanator does not affect the probability 
distribution of the other. Thus, two random interpolative variables, X and Y, are independent 
if and only if the elements of the π-system generated by them are independent.  That is to say, 
for every a and b in an eco-epidemiological, S. damnsoum s.l. habitat risk model, the events 
{X ≤ a} and {Y ≤ b} would be independent events.  

So, X and Y with cumulative distribution functions (CDFs)  and , and 
probability densities and , would be independent if the combined ecogeographic, S. 
damnosum s.l. habitats with regressively randomized, optimizable variables (X, Y) has a joint 
CDF , or if the joint density exists,  in the 
model forecasts. The CDF can describe the probability that a real-value, geo-
spectrotemporally sampled, hyperproductive S. damnosum s.l., randomizable variable X in an 
unmixing algorithm with a given probability distribution that can be optimally tabulated to 
have a value less than or equal to x [70]. In mathematics, a π-system (or pi-system) on a set Ω 
is a collection P of certain subsets of Ω, such that P is non-empty.A ∩ B ∈ P, whenever A and 
B are in P.  

As such, P in the hyperproductive, endmember fractionalized, S. damnosum s.l. 5m 
RapidEyeTM endmember, fractionalized, capture point, immature habitat is a non-empty 
family of subsets of Ω that is closed under finite intersections in a probabilistic regression-
autoregressive framework in ArcGIS. Hence, the unmixing of interpolatable, time series 
dependent independence in a 5m RapidEyeTM covariate coefficient, geo-spectrotemporally 
geospatially uncoalesced, wavelength transmittance emissivity estimator of geo-
spatiotemporal geosampled datasets can reveal georeferenceable, high density, riverine, black 
fly foci. Interpolation of the decomposed time series with endmember regressors could 
optimally extend to dealing with collections of two or more regressable, hyperproductive S. 
damnosum s.l., immature habitat, seasonal event (e.g. flooding), randomized variables.  The 
events, then, should be unbiasedly geoclassifiable as pairwise independent in ArcGIS, since 
each pair would be independent and thus, mutually independent of each other.  

In an empirical, eco-epidemiological, dataset of linear, mixed-effects and geo-
spatiotemporally 5m RapidEyeTM medium resolution of regressors in an ArcGIS 
parameterized, eco-epidemiological risk model, quantitative responses from a subject are the 
sum of so-called fixed and random effects. If an unquantitated, time series dependent, field or 
remote specified, covariate transmittance of 5m resolution, wavelength emissivity variables 
affect the geosampled population mean regressor in an empirical dataset of hyperproductive 
habitats as a vulnerability, eco-epidemiological, capture point, regression model with 
covariate estimators, the observational, unmixed predictors would be defined as fixed.  
 

Alternatively, if the immature, hyperproductive, trailing vegetation, discontinuous, 
infrequently canopied, sparsely shaded, seasonally narrow tributary, African agro-village 
complex,   S. damnosum s.l. immature, capture point, seasonal habitats within dataset of  geo-
spectrotemrpaolly uncolaesced, wavelength transmittance emissivity endmembers in 
fractionalized 5m RapidEyeTM and decomposable estimators may  be associated to the 
ecogeographic and ecohydrologic geo-sampling procedures (e.g., subject covariate effect 
extraction). In such circumsatnces, then the radiance, sub-mixel, 3-D catchment watershed 
predictor variables would be assumed to be random (e.g., chaotic, riverine, eco-
georeferenceable and geo-classifiable, seasonally hyperproductive and flooded S. damnosum 
s.l. habitat landscapes) (Figure 41). The presence of random effects often introduces sub-
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mixel correlation error in time series dependent, remotely sensed, LULC endmember 
reflectance, eco-epidemiological risk models [70]. The random effects assumption made in 
covariate endmember estimators of trailing vegetation or turbid water, hyperproductive, S. 
damnosum s.l. habitats in unmixed, wavelength transmittance emissivity, geomorphological, 
terrain-related risk models in ArcGIS is commonly individually decomposed of transmittance 
emissivity specific effects that are uncorrelated with the independent regressors [71] 
 
Figure 41 A 3-D, geomorphological, terrain-related, trailing vegetation, turbid water, 
hyperproductive, capture point, discontinuously canopied,  S. damnosum s.l. habitat 
risk model  
 

 
 

 
The fixed effect assumption is that time series, elucidatively  quantitated individual 

specific endmember effect is linearly/non-linerly correlated with the independent variables in 
immature S. damnosum s.l. habitats imaged in a 5m RapidEyeTM, ArcGIS, eco-
epidemiological, geo-spectrotemporally uncoalesced, wavelength, frequency-oriented, 
emissivity, forecast, vulnerability model. If the random effects assumption holds in the 
regressands in the reflectance model, the auto-probabilistically and remotely autoregressively 
quantitated random effects would be more efficient than the quantitated fixed effects for 
optimally iteratively interpolating  seasonal, narrow riverine, tributary, agro-village ,complex 
ecosystem, unmixed, proxy LULC, biosignature, hyperproductive, count data productivity 
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variables in unknown, ungeosampled capture points. However, if this assumption does not 
hold (i.e., if the Durbin–Watson test fails, ), the random effects model would not be 
consistent. Unquantitated, fractionalized, endmember eigenvector radiance with expositively 
parameterizable or non-parameterizable transmittance, covariates with uncertainty, 
heteroskedastic emissivity estimators, may create mixed effects in a reflectance, sub-mixel, 
eco-epidemiological, risk model with residualized estimates in ArcGIS. Erroneous 
transmittance emissivities tabulated from a frequency dataset of S. damnosum s.l. immature 
habitats with random effects in ArcGIS may contribute only to the covariance structures of 
the turbid water, trailing vegetation, decomposable, explicative, LULC model 5m, explicative 
regressors [22]. Though the fixed effect is the primary interest in most onchocerciasis studies, 
it is necessary to adjust for the structure of fractionalized endmember, eco-georeferenceable 
eigenvector covariances in time series dependent, uncoalesced, 5m, fractionalized, 
wavelength radiance transmittance emissivity, covariate, endmember estimators (i.e., trailing 
vegetation 5m RapidEyeTM, fractionalized, sub-mixel descriptive geo-predictors) in ArcGIS 
prior to commencing field verfication. The adjustment made in procedures like General 
Linear Model (GLM)-Univariate in SPSS is often not appropriate, as it would assume the 
independence of the unmixed, immature, capture point, geo-spectrotemporally, geosampled, 
habitat data. 
     

It is plausible to assume that a  dataset of geo-spectrotemporally uncoalesced,  eco-
georefernceable, hyperproductive, trailing vegetation, turbid water, discontinuous, 
infrequently canopied, sparsely shaded, S. damnosum s.l.,capture point habitats imaged in a 
dataset of 5m RapidEyeTM wavelength transmittance, fractionalized, emissivity endmember 
observations on the same meandering flooded, agro-village complex, riverine pathway are 
correlated in a common spectral radiance model. The downward transmittance of radiation to 
surface is a combination of the direct solar radiation from the sun to the ground surface.  The 
skylight, also known as the diffuse transmittance, is the solar radiation scattered by 
atmospheric gases and aerosols and redirected toward the ground surface being measured, 
and light, due to multiple, repeated endmember reflections and scattering from neighboring 
surfaces and the atmosphere [72]. Thus, for a seasonal, hyperproductive, immature, trailing 
vegetation, seasonally hyperproductive,  immature geo-spectrotemporally uncoalesced,  eco-
georefernceable, turbid water, discontinuous, infrequently canopied, sparsely shaded, S. 
damnosum s.l., capture point in a fractionalized, 5m RapidEyeTM wavelength emissivity 
endmember eigenvector dataset, the total upward transmittance would be a combination of 
the light reflected by the  narrow, riverine tributary, African agro-village complex, 
ecosystem, ground surface, light reflected by the discontinuous, immature habitat surface, 
and rescattered by atmospheric gases and aerosols, as well as sunlight scattered by the 
atmosphere and redirected toward the sensor without reaching a ground surface. Hence,  
fractionalized, S. damnosum s.l. eigenvector endmembers of an interpolative analysis of 
repeated measures of hyperproductive,immature habitat, geo-spectrotemporally uncoalesced, 
geoclassifiable, proxy   LULC biosignature, iterative  interpolative, experimental reflectance 
in an emissivity endmember dataset in ArcGIS must address the issue of inconspicuous 
covariation between probabilistic autoregressable measures on the same seasonal, riverine, 
agro-village complex, narrow tributary ,immature, capture point,  habitat unit over time and 
space.  

 
Until recently, algorithmic, eco-epidemiological risk analysis techniques, available in 

computer software only, offered ecologists, entomologists or other researchers limited and 
inadequate choices to perform decomposing unmixing algorithmic tasks for quantitaing 
seasonal, hyperproductive, immature, trailing vegetation, immature, geo-spectrotemporally 
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uncoalesced,  eco-georefernceable, turbid water, discontinuous, infrequently canopied, 
sparsely shaded, S. damnosum s.l., narrow, riverine tributary, African agro-village complex, 
ecosystem, capture point in a 5m RapidEyeTM , wavelength transmittance, fractionalized, 
emissivity endmember eigenvector dataset.  Typically, the choice was to ignore endmember 
covariance structures and make invalid assumptions during the emissivity covariate 
estimator, vulnerability model construction process. The endmember bundles, unmixing 
approach is designed to explicitly address geo-spectrtemporal variability and quantify the 
associated proportion indeterminacy [72]. 

 
Another methodology was to avoid the fractionalizable, moderate resolution, 

eigenvector endmember, covariance structure issues in the seasonal, hyperproductive, 
immature, trailing vegetation, seasonally hyperproductive,  immature geo-spectrotemporally 
uncoalesced,  eco-georefernceable, S. damnosum s.l., wavelength transmittance, 
fractionalized, endmember eigenvector emissivities for inadequately calculated 5m 
RapidEyeTM frequencies. Nonchalantly making adjustments to endmember eigenvector 
covariance structures of the sub-mixel, S. damnosum s.l., seasonal, hyperproductive, 
immature, trailing vegetation, uncoalesced,  eco-georefernceable, turbid water, discontinuous, 
infrequently canopied, sparsely shaded, narrow, riverine tributary, African agro-village 
complex, ecosystem, capture points at in a medium resolution, forecast, vulnerability model 
of covariate estimators and datasets may result in erroneous inferences.  However, avoiding 
the structures entirely would result in inefficient forecast estimation of seasonal, immature, 
eco-georeferenceable  productivity inferences for the uncoalesced, 5m data. If the true 
underlying sub-mixel, interpolative covariance structure were known in the immature narrow, 
riverine tributary, eco-epidemiological Simulium immature habitat model, the generalized, 
least squares, fixed effects estimates in ArcGIS Geostatical AnalystTM may render linearly 
unbiased estimates. 
 

Available mixed model methodologies in ArcGIS/SAS may reveal inconspicuous 
latent autocorrelation of erroroneous coefficients in datasets of endmember covariance 
structures to be incorporated in a hypothetical, seasonally, hyperproductive, immature, 
trailing vegetation, geo-spectrotemporally uncoalesced,  eco-georefernceable, turbid water, 
discontinuous, infrequently canopied, sparsely shaded, S. damnosum s.l., narrow, riverine 
tributary, African agro-village, complex ecosystem, capture point in a 5m RapidEyeTM 
wavelength transmittance, fractionalized, emissivity endmember eigenvector dataset, using a 
geostatistical spatial algorithm. The MIXED procedure of the SAS System provides a rich 
selection of auto-probabilistic and autoregressive covariance structures through the 
RANDOM and REPEATED statements. The MIXED procedure may resolve unmixed and 
misspecified 5m RapidEyeTM simulated, wavelength, transmittance emissivity frequencies in 
latent sub-mixel, covariance structures in an endmember of canopy radiance, sub-mixel, 
immature S. damnosum s.l. habitat model by providing the tools necessary to estimate fixed 
and random effects in one interpretive and interpolative model.  MIXED is based on 
maximum likelihood (ML) and restricted maximum likelihood (REML) methods, versus the 
analysis of variance (ANOVA) methods in GLM (http://support.sas.com/documentation).  
 
 In statistics, the REML approach is a particular form of ML estimation which does 
not base estimates on an ML fit of data products. Alternatively, REML employs a likehood 
function devised from a transformed set of data so that nuisance variables have no effect 
(e.g., non-parameterizable, discontinuous, infrequently canopied, sparsely shaded, trailing 
vegetation variables). In the case of variance component, probability estimations for an 
empirically interpolative, autoregressable dataset of seasonal, hyperproductive, S. damnosum 
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s.l.capture point, eco-georferenceable habitats geosampled in an African riverine 
environment, the original non-log transformed, parameterizable covariate estimators may be 
replaced by a set of tabulated contrasts calculated from the geo-classifiable data. In doing so, 
the likelihood function would be optimally calculatable from the probability distribution of 
these contrasts, according to the model for the complete dataset. 

 
 Explicative REML estimation is available in a number of general-purpose statistical 

software packages, including SAS/GIS. Other algorithms that can be strategically employed 
in the cyberenvironment to analyze seasonal, hyperproductive, immature, trailing vegetation, 
immature geo-spectrotemporally uncoalesced,  eco-georefernceable, turbid water, 
discontinuous, infrequently canopied, sparsely shaded, S. damnosum s.l., narrow, riverine 
tributary, African agro-village complex, ecosystem, eco-epidemiological, capture point in a 
5m RapidEyeTM wavelength transmittance, fractionalized, emissivity endmember 
eigenvector, forecast, vulnerability models with random effects include the MIXED and 
VARCOMP procedures. In particular, REML may be used as a method for fitting 
quantitative, linear mixed, time series, Simulium models.  

 
In contrast to the ML estimation, REML can robustly render time series dependent, 

unbiased probabilistic  regressands of variance and covariance tabulated measures in a 
fractionalized,  endmember eigenvector, heursitically optimizable of sub-mixel, seasonal, 
hyperproductive, immature, trailing vegetation, geo-spectrotemporally uncoalesced,  eco-
georefernceable, turbid water, discontinuous, infrequently canopied, sparsely shaded, S. 
damnosum s.l., narrow, riverine tributary, African agro-village, complex, ecosystem, in a 5m 
RapidEyeTM , wavelength, transmittance, fractionalized endmember, eigenvector emissivity, 
heuristically optimizable capture point, seasonal dataset  employing orthogonally 
decomposed fractionalized, quantitable wavelength transmittance covariate estimators in a 
residual  regression, eco-epidemiological risk model framework. The idea of underlying the 
REML estimation was put forth in 1937 by M.S. Bartlett.  Desmond Patterson first described 
the approach that has been applied to the estimating components of variance in unbalanced 
data [73].  

 
ANOVA methods produce only an optimum estimator (i.e., minimum variance) for 

balanced designs, whereas ML and REML asymptotically yield efficient time series 
dependent, explicative, endmeber eigenvector, fractionalized, covariate estimators for 
balanced and unbalanced designs in ArcGIS/SAS (ww.sas.edu). ML and REML thus present 
a clear advantage over ANOVA methods for quantitating fractionalized,  Rapid Eye TM 5m, 
orthogonally decomposable, endmembers eigenvector in a sub-mixel, wavelength 
transmittance 5m RapidEyeTM datset of unbiased immature, trailing vegetation, seasonally 
hyperproductive, geo-spectrotemporally uncoalesced,  eco-georefernceable, turbid water, 
discontinuous, infrequently canopied, sparsely shaded, S. damnosum s.l., narrow, riverine 
tributary, African agro-village complex, capture point and their polygonized, wavelength 
transmittance, fractionalized, emissivity endmember eigenvector estimators in ArcGIS since 
these data are often unbalanced. The asymptotic normality of ML and REML of 
autoregressive, probabilisc, endmember estimators that have been regressively quantitated 
from an empirical sub-mixel dataset of explanative, hyperproductive S. damnosum s.l., 
immature, capture point, geospectrally geosampled, uncoalesced, proxy LULC biosignatures 
may conveniently allow for robust inferences to be made on the decomposed, iteratively 
interpolated,  covariate coefficient estimators, which may be difficult to do in a generalized, 
linear model (GLM) framework. Further, an understanding of procedures for estimating 
probabilistic, random and seasonally geo-spectrotemporally geosampled, fractionalized, 
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Rapid Eye TM , endmember eigenvector effects may be vital in order to unbiasedly tabulate, 
heuristically optimizable, fixed and random effects when ecogeographically or 
ecohydrologically predicting, moderate resolution, geo- uncoalesced, fractionalized,  
wavelength emissivity transmittance of  S. damnosum s.l. immature, capture points in narrow, 
riverine tributary, agro-village, complex, African ecosystems. 

 
As previously mentioned, Jacob et al. [26] bridged the gap between the Bayesian and 

classical frequentist paradigms in ArcGIS for predictively interpreting an fractionalized, 
orthogonally decomposed, endmember eigenvector datasets of hyperproductive, trailing 
vegetation and turbid water S. damnosum s.l., immature habitats in a uncoalesced, 
wavelength covariate  coefficient dataset of  geo-spectrotemporally Rapid Eye TM 
transmittance emissivity estimators that were geo-spectrotemporally geosampled in a 
riverine, agro-village complex in Burkina Faso. Bayesian probability is one interpretation of 
the concept of probability, in contrast to interpreting probability as the "frequency" or 
"propensity" of some phenomenon. Bayesain probability theory provides a sound 
mathematical for extracting robust inferences from forecastable regregression equations. The 
foundations of Bayesianisms in a probability theroectional setiings have been controversial 
by  and vector ecologists, entomologists and other researchers. However more recently 
Bayseain probability theory has been employed by many in scientific research.   

 
Amongst the advantages of Bayesian matrices over tradiation binomialized logistic 

regression models is that the response variable does not have to be dictomoized. As such, 
count variables may be employed without log transformation. Although Poissonian 
probability models employ count variables as regressands, there are susceptible to outliers 
cuasing overdispersion (i.e., over Poissianisms), especially in vector entomological models 
due to inconspicuous geospatial outliers[25]. Outliers are extreme observations that can 
generate misspecifications in time series non-linearizable, networks [24].  Hierarchical, 
Bayesianized, probability models utilize subject-maximum likehood, conditional priors, 
multiple iterations (“ burn-in periods”)  and other geospatial, elucidative, techniques to  
quantitate  exogenous covariates that can render parameterizable covariate coefficients. In so 
doing, the relative validity of research hypotheses in the face of noisy , sparse or uncertain 
data may be quantitated. Bayesian paradaigms may also be employed to adjust the parameters 
of a specific geo-predictive, eco-epidemiological, forecasting, vulnerability model. 
Regardless, Bayesian models have been under utilized for optimally determining 
geolocations of unknown, un-geosampled, hyperproductive, trailing vegetation, 
discontinuous, infrequently canopied, turbid water, seasonal, S. damnosum s.l., narrow, 
African, tributary, agro-village complex, eco-epidemiological,   iteratively interpolative, 
capture points employing geo-spectrotemporally uncoalesced,wavelength transmittance 
emissivity proxy, biosgnatures and their  parameterizable and non-parameterizable covariates 
of statistical significance.  

 
 Initially, in Jacob et al. [26], results of a Poisson regression model Pseudo R2 were 

determined in PROC LOGISTIC for remotely quantitating an endmember, sub-mixel dataset 
of predictive, 5m, medium resolution, RapidEyeTM S. damnosum s.l., immature habitat 
capture points,  in transmission-oriented, stochastically or deterministically iteratively 
interpolatable, sub-meter resolution, emissivity fractionalized, covariate coefficients.  This 
process provided information for heuristically dependent, explicative, time-series, unmixed, 
fractionalized, endmember estimates of the prior distribution based on the regressed and eco-
georeferenceable main effect coefficients. This decomposed data was then exported into a 
Bayesian hierarchical, generalizable and optimizable matrix in PROC MCMC. The values for 
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estimates were employed as mean values and standard errors to parameterize prior expected 
values for regressing the interpolatable, trailing vegetation or turbid water, sparsely shaded, 
canopied, S. damnosum s.l. related, immature habitat decomposed biosignature variables in 
an heuristically optimizable, parameterizable covariate estimators. The prior expected mean 
value for the error term was assumed to be zero (0), with a standard deviation of 0.01.                                                                                                                             

The Bayesian procedures employed a special case of the Metropolis algorithm called the 
Gibbs sampler in PROC MCMC to obtain the posterior samplers. The authors in Jacob et al. 
[26] obtained samples from a univariate disribution of the regressable, geo-spatiotemporal 
datasets of riverine, narrow tributary African, agro-village complexes capture point, 
immature habitats in an eco-epidemiological, 5m, RapidEyeTM, medium resolution, risk 
model, optimally forecasted through sub-mixel derivatives with PDF .In the eco-
epidemiological, immature habitat endmember, forecasting vulnerability model,  was the 
th sample from . To employ the Metropolis algorithm, the authors needed to have an initial 

value , and a symmetric proposal density .  For , the iteration, or the 
regression algorithm generated in PROC NL, mixed a sample from  based on the sample 

, which subsequently rendered a decision to either accept or reject a new sample (i.e., 
uncoealesced 5m proxy LULC biosignature). If the new sample was accepted in the 
descriptive, explicative S. damnosum s.l., forecasting, vulnerability habitat model, the 
algorithm repeated itself by starting at the new sample. If the new sample was rejected, the 
algorithm then started at the current seasonal,eco-epidemiological, capture point and repeated 
itself in an ecogeographic and probabilistic regression space.  

Commonly, in least square regression models constructed in SAS geodatabases, some 
relations exist that are similar to principal components of regression frameworks. For 
example, a least square estimation algorithm may be optimally employed for parsimoniously 
deducing hyperplanes of minimum variance which may be efficiently quantitated in ArcGIS 
between the response and independent hyperproductive, S. damnosum s.l., habitat 
independent variables. The model may project clustered foci of seasonal, hyperproductive, 
immature habitats employing observable variables to a new ecogeographic and ecohydrologic 
regression space. Because both the X and Y data in the vector arthropod, eco-epidemiological 
model are projected into new space, the least square regression may be transformed in  SAS 
into a bilinear factor model. In doing so, fundamental relationships between the response 
variable (e.g., immature geosampled, explanatorial, productivity rates) and other independent 
variables (e.g., meterological medium resolution 5m RapidEyeTM synthesized, eigenvector 
endmember covariates of landscape probabilistic regressable, log-transformed estimators and 
vegetation indices) may be extrapolated and evaluated. These models may try to determine 
between multiple, autoregressive, weighted matrices (e.g., latent autocorrelation diagnonal 
matrices)  for quantitating latent, immature, geosampled, discontinuous, infrequently 
canopied, turbid water, seasoanlly hyperproductive Simulium habitat biosignature correlated 
variables to precisely predict risk mapping variables of the endmember covariance structures 
in regression spaces.  

Optimally, a forecasting paradigm will try to tabulate and parsimoniously quantitate 
multi-dimensional direction in X space that explains the maximum multi-dimensional 
variance direction in the Y space. Both X and Y would be projected into regression spaces in, 
for example, a  empirical dataset of, eco-georeferenceable, immature habitat, forecastable, 
vulnerability risk model, biogeophysical ecophysiological, heursitically optimizable  
forecasts in ArcGIS. In so doing optimally iterated, hyperproductive, trailing vegetation, 
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discontinuous, infrequently canopied, turbid water, seasonal, S. damnosum s.l., narrow, 
African, tributary, agro-village complex, eco-epidemiological,   iteratively interpolative, 
seasonal unknown , ungeo-sampled, capture points may be identified.  

However, many sensor networks that collect spatio-temporal information are prone to 
failure, resulting in missing data. To complicate matters, the missing data is often not missing 
at random, and is characterised by long periods where no data is observed. The performance 
of traditional univariate forecasting methods such as autoregressive probabilistic models 
decreases with the length of the missing data period because they do not have access to local 
temporal information. However, if geo-spatiotemporal autocorrelation is present in a space–
time series then Bayesian approaches have the potential to offer better forecasts. A non-
parametric, geo-spatiotemporal, kernel regression model may be  developed in ArcGIS to 
forecast iteratively interpolative, seasonal hyperproductive, trailing vegetation, discontinuous, 
infrequently canopied, turbid water, seasonal, S. damnosum s.l., narrow, African, tributary, 
agro-village complex, eco-epidemiological forecast, vulnerability models   under the 
assumption of sensor malfunction. Only topographic patterns of iteratively interpolated 
LULC variables of the upstream and downstream geospatialized, neighbouring links  may be 
used to inform the eco-georferenceable, capture point forecasts. The model performance may 
be compared with another form of non-parametric regression, K-nearest neighbours inan 
ArcGIS cyberenviropnment, which is also effective in forecasting under missing data. The 
methods may show promising forecasting performance, particularly in periods of high 
congestion in geo-spectrotemrpoally uncoalesced datasets of moderate resolution S. 
damnosum s.l., capture points.  

Partial least squares discriminant analysis (PLS-DA) is a variant used when the Y is a 
categorical variable. PLS is used to find the fundamental relations between two matrices (X 
and Y), (i.e. a latent variable approach to modeling the covariance structures in these two 
spaces). A PLS of sparsely shaded, hyperproductive, canopied, turbid water S. damnosum s.l., 
geo-spatiotemporally and geo-spectrotemporally, ArcGIS geoclassifiable, immature seasonal 
habitats as an eco-epidemiological, 5m RapidEyeTM vulnerability model will try to find the 
multi-dimensional direction in the X space that explains the maximum multi-dimensional 
variance direction in the Y space. PLS regression is particularly suited when the matrix of 
descriptive, elucidatory predictors has more variables than explicative observations, and 
when there is multicollinearity amongst X values [74]. By contrast, standard regression will 
fail in these cases, unless it is regularized. 

     The PLS algorithm is employed in partial least squares path modeling, a method of 
modeling a "causal" network of latent variables. Latent variables are causes cannot be 
determined without experimental or quasi-experimental methods.  A latent variable model is 
typically based on the prior theoretical assumption that latent variables cause manifestations 
in their measured indicators [59,75]. This technique is a form of structural equation modeling, 
distinguished from the classical method in being component-based, rather than covariance-
based. An alternative name for PLS, and better term according to Svante Wold [35], is 
projection to latent structures, but the term partial least squares is still dominant in geo-
predictive, eco-epidemiological, endmember risk vulnerability modelling. Although the 
original applications were in the social sciences, PLS regression is today most widely used in 
chemometrics and related areas, as well as in bioinformatics, sensometrics, neuroscience and 
anthropology. In contrast, PLS path modeling is most often used in social sciences, 
econometrics, marketing and strategic management 
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In Jacob et al. [59], Markov Chain Monte Carlo (MCMC) methods revealed an ensemble 
of “walkers” that moved around randomly in PROC MCMC. At each field and remote 
specified, seasonal riverine immature habitat of endemic, unmixed, sparsely shaded, 
discontinuous, infrequently canopied, turbid water, fractionalized, endmember eigenvectors 
in an eco-epidemiological capture point where the walker stepped, the integrand value at that 
point was counted towards the integral. The walker then made a number of tentative steps 
around the decomposed dataset looking for a place with reasonably high contribution to the 
integral. Random walk methods can be considered to be a form of the Monte Carlo method 
[35].  

      In Jacob et al. [77], multiple geo-classified, moderate resolution (i.e Landsat ETM + 15m 
data) random geolocations for a eco-georeferenced datasets of trailing vegetation LULCs of 
S. damnosum s.l. turbid water, eco-georefernceable, immature habitats were geosampled from 
two pre-established, eco-epidemiological, riverine agro-village, narrow tributary study sites 
in Togo. These data were identified and recorded from July 2009 to June 2010 and were 
aggregated into PROC GEN MOD. An agglomerative, hierarchical, intra-cluster-based, eco-
geographical, ecohydrological, geo-predictive and eco-epidemiological vulnerability 
assessment was then performed. The geo-spectrotemporally geosampled, clustered, time 
series data were then analyzed for statistical correlations employing Monthly Biting Rates 
(MBR), Euclidean distance measurements, and geomorphological, terrain-related, catchment-
scale, fluvial processed, intuitively parameterized, risk models using multiple water-shed, 
observational, bioptical and illustrative regressors.  These regressors were then eco-
cartographically and parsimoniously displayed in ArcGIS. A digital overlay was 
subsequently performed in Geospatial AnalystTM, employing the interpretive ground 
coordinates of high and low density, proxy LULC biosignature, clustering data variables 
stratified by Annual Biting Rates (ABR). This data was overlaid onto multitemporal, sub-
meter, mixel (“endmember mixed pixel”) resolution satellite data [i.e., QuickBird 0.61m 
visble and near-infra-red (NIR) wavebands].  

          Orthogonal, spatial filter, fractionalized, synthetic eigenvector endmembers were then 
generated in SAS/GIS. Linear and non-linear, probability models (i.e., Poisson, negative 
binomial, and Morans’s i) were also constructed in the cyberenvironment to quantitate non-
normality (e.g., kurtosis) in the log-transformed, categorical and continuous, fractionalized, 
5m, endmember eigenvector frequency distributions as rendered by the unmixed, geo-
classifed, trailing vegetation, proxy LULC biosignatures.. The authors were able to identify 
statistically significant, decomposable, sub-meter, wavelength emissivity, unmixable, 
seasonal, non-Gaussianistic, and regressive explanators as rendered from the decomposed 
endmember in a sparsely shaded, immature, hyperproductive habitat. Durbin-Watson 
statistics in Spatial AnalystTM were employed to test the null hypothesis, which stated that the 
unmixed regression model, forecasting the endmember eigenvectors as probabilistic, 
reflectance residuals, which were not autocorrelated, against the alternative hypothesis that 
the unmixed, immature, capture point, habitat residuals followed an autoregressive process in 
AUTOREG.  

        Thereafter, the radiance fractionalized, sub-mixel, interpolative data was exported into 
PROC MCMC.  This revealed normalized priors for each of the geo-spectrotemporally 
geosampled, interactive, trailing vegetation and turbid water, S. damnosum s.l. immature 
habitats in covariate endmember, moderate resolution, sub-mixel, explanatorial, LULC, 
uncoalesced, reflectance estimators within an uncertainty-oriented, hierachical, Bayesianized, 
but generalizable, estimation, and ArcGIS gridded matrix. The residuals disclosed both 
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spatially structured and unstructured, erroneous, propagational effects in the high and low 
ABR-stratified, explanatorial, georeferenced and stratified geospatial clusters.  

      The eco-epidemiological, risk model forecast residuals revealed that amongst the trailing 
vegetation and turbid water, sub-mixel, uncoalesced, proxy LULC biosignature wavelength 
covariate regressors, Levels of turbidity were statistically significant in the high-ABR-
stratified clusters, while the Eucidean distance-based, reflectance covariate estimator, the 
Distance between the georeferenced, eco-epidemiological capture point, and intervention, 
narrow tributary agro- village centroids were important for the low-ABR-stratified cluster. 
The findings suggested that varying and constant, unmixed, intra-cluster, endmember, 
wavelength transmittance emissivity covariate coefficients, rendered from a sparsely shaded, 
hyperproductive, remote sensing, S. damnosum s.l. immature habitat regression model in SAS 
GIS/can be tested for latent, inconspicuous non-normality (e.g., heteroskedastic residuals in 
space and time).  

      Thus, an ABR-stratified, medium resolution, trailing vegetation, proxy, LULC 
biosignature in a geospatialized cluster and eco-epidemiological model forecast can be 
iteratively interpolated by employing an intra-cluster, invasive diagnostic test in ArcGIS, 
along with histograms, eigendecompositions, spatial filters, orthoganizable algorithms, and 
Bayesian probabilitic paradigms to delineate erroneously propagated, autocorrelated, 
reflectance emissivity estimates. The authors in Jacob et al. [45] surmised that precise 
regressive quantitation of latent, misspecified, and orthogonal synthetic effects in an 
iteratively interpolated, proxy LULC biosignature of a S. damnosum s.l., capture point, 
immature habitats in intra-cluster, sub-mixel, autocovariate, eco-epidemiological, eigenvector 
endmember risk analyses is vital for attaining asymptotic distributions of the resulting 
residually adjusted, wavelength emittance, which can be established in ArcGIS. Estimates of 
the asymptotic variance can lead to the construction of approximate confidence intervals for 
remotely targeting S. damnosum s.l. habitats based on fractionalized, endmember 
eigenvectors of emissivity transmittance, wavelength data and field-geosampled, immature 
count data.  However, it may be more vital to quantitate endemic onchocerciasis transmission 
zones based on decomposed, fractionalized, immature, discontinuous, canopy habitat, 
moderate resolution, wavelength frequency constituents. 

Generalized additive models (GAM) are powerful for modeling, medium resolution 
RapidEyeTM, S. damnosum s.l., immature habitat data in nonlinear LULC effects of 
continuous, wavelength emissivity transmittance and reflectance covariate coefficients in 
regression models with non-Gaussian responses. Structured Additive Regression (STAR) 
models are extensions of GAM models that allow for incorporation of sub-mixel 
decomposed, descriptive uncoalesced, proxy LULC biosignature predictors when modeling 
immature Simulium habitats in ArcGIS.  This may allow for the quantification of spatial 
effects of risk factors, while simutaneoulsy determining linear, or fixed effects, in a joint 
landscape model. Applying a STAR modeling approach in ArcGIS may optimally develop a 
multivariate, robust, geopredictive risk map, which employs an unmixed, iteratively 
interpolated, sub-mixel, endmember discontinuous, canopied, wavelength, emissivity, 
transmittance radiance an illustrative data feature attribute to target seasonally 
hyperproductive habitats. 

 
Traditionally, the autoregressive integrated moving average (ARIMA) model (see 

Appendix 3) has been one of the most widely employed linear models in time series 
dependent, forecasting of moderate resolution, parameterizable, unmixed, wavelength 
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endmember, vector arthropod habitat constituents. An ARIMA model predicts a value in a 
response time series as a linear combination of its own past values, past errors (also called 
shocks or innovations), and current and past values of other time series [24]. Jacob et al. [45] 
constructed multiple, Euclidean distance–based, geo-spectrotemporal, unmixed, iteratively 
interpolated, wavelength emissivity, transmission, autoregressive, endmember eigenvector 
models in ArcGIS for predicting endemic geolocations of onchocerciasis transmission risk 
zones in Chutes Dienkoa, Burkina Faso based on stratifiable, remotely sensed, 
ecogeoreferenced clusters of hyperproductive LULCs of S. damnosum s.l. immature habitats. 
The authors employed multiple, capture point, immature habitats, geosampled in multivariate, 
decomposed, moderate resolution, wavelength transmittance emissivities, from the eco-
epidemiological, covariate fractionalized, endmember,eigenvector,uncoalesced,  data feature 
attribute datasets. The estimators, as rendered from the within surrounding village centroids 
from a hyperproductive Simulium capture point, was measured by employing an ArcGIS 
portioned buffer with 5 kilometer (km) intervals.  

 
Thereafter, the fractionalized endmember eigenvector, estimators were regressed by 

employing the modified sum of squares in ArcGIS. Semi-parametric spatial filtering, 
orthogonal matrix eigenvectors, and stochastically interpolated, unmixed biosignatures within 
an eco-epidemiological, risk model, gridded framework in PROC ARIMA rendered robust, 
transmittance emissivities.  The algorithm also residualized eco-epidemiological forecasts by 
reducing latent, autocovariate, probabilistic, uncertainty covariate coefficients in the non-
Gaussian regressed, S. damnosum s.l., immature habitat productivity, count data for optimally 
risk mapping seasonal, eco-georeferenceable, onchocerciasis transmission zones. The SAS 
procedure analyzed and forecasted the equally spaced 5 km, univariate, time series transfer 
functions by employing ARIMA specifications. By default, all descriptive parameters in the 
created model object had unknown values, and the innovation distribution was Gaussian with 
constant variance. The output revealed that the created object model had prolific, canopied, 
sparsely shaded, immature, S. damnosum s.l. habitat count values for all the geoclassified 
model parameters: the constant term, the AR and MA coefficients, and the variance. The 
authors modified the created model using dot notation in order to estimate the prolific 
habitats. The property P had value 2 (p + D). This was the number of presample observations 
needed to initialize the demonstrative, vulnerability, geo-spectrotemporal, geospatial eco-
epidemiological model. The final illuminative, geo-spectrotemporal, ARIMA model was 

 where the innovation distribution was 
Student's t with 10 degrees of freedom (df) and a constant variance of 0.15. The model 
revealed that 5 to 10km was mesoendemic, 10 to 15km was hypoendemic and after 15km, 
there was no endemic transmission.  

             In Jacob et al. [45] a canopied, prolific, trailing vegetation and turbid water, S. 
damnosum s.l., narrow riverine tributary, immature habitat (i.e, eco-epidemiological, 
georeferenced capture point) geoclassified in Chutes Dienkoa, agro village-complex in 
Burkina Faso, was overlaid onto sub-meter resolution, QuickBird (0.61m) satellite data 
within an object-based classifier prior to entry into ArcGIS. Initially, the Band Math function 
of ENVI 4.8TM was employed to calculate and color balance the scene. Before applying the 
spectral index to the imagery, raw mixel values and digital numbers (DN) were converted 
into physically meaningful units to remotely differentiate and justify quantitated sub-mixel, 
sub-resolution, fractionalized, trailing vegetation and turbid water, proxy LULC, unmixed, 
biosignture, eco-geophysiological, biophysical, decomposed variables of reflectance forecast, 
fractionalized endmember derivative spectra. The data was then quantitated and associated to 
the residual forecasts from the ENVI model employing seasonal, immature, Simulium 
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productivity based on habitat size in ArcGIS. Linear regression was then employed to equate 
band data to DN and the quantized, unmixed,fractionalized,  endmember eigenvector of 
discontinuous,canopied, habitat fractionalized, radiance wavelength, transmittance 
emissivities, which in the QuickBird model was equivalent to removing the solar irradiance 
and the atmospheric path radiance in the object-based classifier. A radiometric calibration 
tool then calibrated the spaceborne sensor data to radiance and top-of-atmosphere (ToA) 
reflectance. Top-of-atmosphere reflectance can be defined as the reflectance measured by a 
space-based sensor, which is flying higher than the earth's atmosphere and includes 
contributions from clouds and atmospheric aerosols and gases [23]. 

          Additionally, in Jacob et al. [45], Fast Line-of-sight, Atmospheric Analysis of Spectral 
Hypercubes (FLAASH®) removed the effects of scattering in the scene. The authors 
calculated the internal relative, time series dependent, emissivity, wavelength, fractionalized 
radiance rendered from geoclassified, trailing vegetation and turbid water, proxy LULC 
biosignature variables and their unmixed ecohydrologic, specified descriptive, covariate 
estimators, which were normalized using the 0.61m resolution image to a scene average 
spectrum. ENVI’s Log Residuals Correction Tool removed the instrument gain, topographic 
effects, and albedo effects from the endmember emissivities. The authors then employed a 
successive progressive algorithm, a two stream radiative atmospheric transfer analysis, a 
geometric-optical model, and a bidirectional reflectance distribution function (BDRF) to 
regress the unmixed, sub-mixel, sub-meter resolution S. damnosum s.l. immature 
habitat,radiance fractions in Geospatial Analyst™. 

The bidirectional reflectance distribution function (BRDF;  ) employed a 
function of four real S. damnosum s.l., sparsely shaded, trailing vegetation, turbid water and 
discontinuously canopied, eco-geophysiological, biophysical variables, which were used for 
defining how light was reflected from the opaque canopied habitat surface. The model 
employed both optics of real-world light in computer graphics algorithms, and in computer 
vision algorithms. The function took an incoming light direction, , and outgoing direction, 

 (taken in a coordinate system where the canopy habitat surface normal  lay along the z-
axis), and returned the ratio of reflected radiance exiting along  to the irradiance incident 
on the surface from direction . Each direction  was itself parameterized by azimuth angle 

, and zenith angle .  Therefore the BRDF, as a whole for the trailing vegetation-related, 
turbid water immature, capture point habitat, was a function of multiple variables. The BRDF 
had units sr−1, with steradians (sr) being a unit of solid angle. The definition was 

 , where L was power per unit solid-angle-in-the-
direction-of-a-ray per unit projected-area-perpendicular-to-the-ray, E was irradiance, or 
power per unit habitat surface area (e.g., unmixed, decomposed, explanatorial, S. damnosum 
s.l. immature habitats with fractionalized descriptive, canopied endmembers), and  was the 
angle between  and the surface normal, n  

 The index i indicated incident light, and the index  indicated reflected light. The 
reason the function was defined as a quotient of two differentials, and not directly as a 
quotient between the undifferentiated, unmixed habitat quantities, was because irradiating 
light other than , which was of no interest for , but might have illuminated 
the surface, which would unintentionally affect , whereas  was only affected 
by . 
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 In Jacob et al [45], the non-parametric, decomposed, Euclidean distance-related, 
quantifiable, sub-mixel, wavelength covariate emissivity, descriptive estimators (e.g., 
georeferenced, geoclassified, sparsely shaded, canopied, trailing vegetation LULC centroids 
to georeferenced agro-village centroids) derived from the unmixed habitat data were then 
employed to construct a robust Boolean model. 

The Boolean model that is utilized for a random subset of the plane or higher 
dimensions is analogously one of the simplest and most tractable models in stochastic 
geometry [94]. The Boolean model of information retrieval (BIR) is a classical information 
retrieval (IR) model. The BIR is based on Boolean logic and classical set theory in that both 
the documents to be searched and the users query are conceived as sets of terms. 
Parsimonious retrieval is based on whether or not the documents contain the query terms 
[94].  

     Further, in Jacob et al. [45], the seasonally imaged, immature Simulium habitats and their 
associated within-canopy, sub-mixel, eigenvector endmembers of fractionalized, trailing 
vegetation and turbid water, geoclassifed irradiance values were validated and a geo-
spectrotemporal iteratively interpolatable biosignature was decomposed in ENVI. An 
autocorrelation weighted matrix was deconvolved in Geostatistical AnalystTM into 
linearizable combinations of the sparsely shaded, canopied, unmixed, fractionalized, 
wavelength, transmittance, endmember emissivities. Subsequently, the biosignature, with its 
multiple ToA, noise-adjusted coefficients was kriged in Geostatistical Analyst™ to identify 
unknown, un-geosampled, hyperproductive, canopied, sparsely shaded and seasonal S. 
damnosum s.l. immature habitats along a northern Ugandan riverine ecosystem.  

 A total of 25 potential, georeferenced, S. damnosum s.l. immature habitat sites were 
predicted. Of the 25 sites ecogeographically predicted to be suitable habitats by the model, 23 
(92%; 95% CI 81–100%) were found to contain larvae. In contrast, just 2/10 (20%; 95% CI 
0–45%) sites examined, which were not predicted to ecohydrologically represent 
hyperproductive, canopied, sparsely shaded,  immature, georeferenced, geoclassified, trailing 
vegetation and/or turbid water, LULC specified habitats by the eco-epidemiological, 
forecastable vulnerability model were found to contain larvae. The model, thus, exhibited a 
sensitivity of 80% and a specificity of 92% when applied in the Ugandan riverine, agro-
village study site, a performance that was statistically significant (p < 0.0001; Fisher's Exact 
test). The two immature habitat sites that were not predicted by the model were nonetheless 
found to contain larvae consisting of low streamside, trailing vegetation immersed in fast 
flowing water. Crosskey [93] revealed that immaturely canopied S. damnosum s.l. riverine 
habitats can be affected by non-temporally and temporally explanatorily, and seasonally 
dependent, biotic and abiotic attributes (e.g., floating vegetation, turbidity). The mean 
number of larvae found at the sites predicted by the QuickBird model (21.91) was 
significantly greater than the mean number of larvae at the sites consisting of geoclassified 
immersed, overhanging vegetation LULCs (4.0; p<0.001, Mann Whitney U test). 

 Currently, very few onchocerciasis control programs have collected a valid outcome 
using LULC metrics that enable public health officials and funding agencies to remotely, 
regressively, quantitatively and optimally determine the degree and magnitude of their impact 
on time series, field or remote geosampled, immature riverine 5m medium resolution 
RapidEyeTM, Simulium habitats  georeferenced as endemic, transmission-oriented, unmixed, 
wavelength parameterized and non-parameterizable, covariate estimators. A principle reason 
for this deficiency is the absence of sufficient management systems to capture, manage and 
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analyze large amounts of diverse, decomposable, fractionalized endmember, radiance data 
being generated by various black fly control activities. Existing management information is 
neither accurate nor comprehensive, a vital necessity for efficient, effective and economic 
black fly management [77]. Ecogeographic and ecohydrologic geolocations of eco-
georeferenceable, sparsely shaded, discontinuously canopied, trailing vegetation and turbid 
water S. damnosum s.l. hyperproductive, immature habitats, combined with knowledge of 
remotely geoclassifiable and explanatorily interpolated, unmixed, proxy LULC biosignature, 
reflectance data attribute features of multiple, geo-spatiotemporally and geo-
spectrotemporally geosampled sites may be a potential key element for implementing 
efficient and cost effective larval control measures in African riverine communities.  

 
A remote evaluation of onchocerciasis treatment data offers a systematic way of 

comparing the costs and consequences of interventions in order to improve the allocation of 
resources by prioritizing georeferenceable, sparsely shaded, canopied, geoclassifiable and 
trailing vegetation S. damnosum s.l. immature habitats based on seasonal larval/pupal 
productivity [59]. Treatments or habitat perturbations should be based on surveillance of 
larvae in the most productive areas of an ecosystem [51, 80]. Additionally, a robustifiable, 
remotely explanatorial, surveillance system of decomposable biosignature employing cost 
effective, 5m RapidEyeTM satellite data systems may be employed to improve the uptake of 
existing effective black fly control measures and ensure the maximum impact from the 
introduction of new technologies in georeferenceable, African riverine agro-village and eco-
epidemiological study sites 

         The ability to measure electromagnetic energy at varying geo-spatiotemporally and geo-
spectrotemporally geosampled, sparsely shaded, eco-georeferenceable, trailing vegatation or 
turbid water, S. damnosum s.l immature, discontinuous, canopied habitat in explicatively 
geoclassified, decomposed, 5m, medium resolution,  RapidEyeTM proxy, LULC biosignture 
wavelengths as it interacts with canopy material, forms some of the foundation behind remote 
sensing and spectral science for remotely, regressively and quantitatively identifying 
unknown and un-geosampled, iteratively interpolated, prolific habitats in African riverine, 
agro-village, complex, ecosystem communities. The imaged characteristics of the eco-
georeferenceable, geosampled, immature, geo-classifiable, uncoalesced, proxy, LULC 
biosignature, immature, habitat endmember, eigenvector causes the electromagnetic energy to 
be reflected, refracted, or absorbed in a way that is unique to each discontinuous, sparsely 
shaded, canopied material. These interactions may be measured across discrete sections of a 
seasonally imaged, S. damnosum s.l. immature habitat of medium resolution and cost 
effective, 5m, RapidEye TM unmixed, canopied discontinuous spectrums, which when plotted 
in ArcGIS may form a unique shape that may be the habitats reference, explanatorial, 
interpolatable and interpretive biosignature. 

  In African agro-village, narrow tributary, riverine environments, sparsely shaded, 
trailing vegetation S. damnosum s.l. turbid water habitats differ in their immature production 
capacity [77] and, as a result, intervention efforts to remotely and regressively target 
hyperproductive immature, capture point, habitats employing moderate resolution, cost 
effective, 5m RapidEyeTM satellite data in ArcGIS may be more relevant. To date, 
entomological research has not focused extensively on remotely sensed detection of 
seasonally prolific, S. damnosum s.l., geo-spectrotemporally geosampled, vegetated, riverine, 
immature habitats employing cost effective, medium resolution data. Thus, optimal cost-
effective, geospatial and geospectral resolution has not been described employing varying 
proxy graphical indicators such as Normalized Difference Vegetation Indices (NDVI) for 
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remotely and regressively quantitating and targeting eco-georeferencable  and geoclassifiable 
hyperproductive, S. damnosum s.l. immature habitats that have been geo-spatiotemporally 
and geo-spectrotemporally geosampled in African riverine environments. 

   Normalized Difference Vegetation Indices monitor terrestrial landscapes by satellite 
sensors [23]. These indices have been highly successful in assessing geoclassifiable 
vegetation LULC conditions for foliage, cover, phenology and other processes such as 
evapotranspiration (ET) and primary productivity related to the fraction of photosynthetically 
active radiation (fPAR) absorbed by a canopy of a eco-georeferenceable, sparsely shaded, 
hyperproductive S. damnosum s.l. riverine immature habitat [59]. Evaporation accounts for 
the movement of water to the air from sources such as the soil, canopy interception, and 
waterbodies [81]. fPAR generates ecophysiological, biophysical, time series dependent 
explanators that may quantitatively, remotely and regressively describe eco-georeferenceable, 
sparsely shaded, canopied, unmixed, fractionalized endmember eigenvectors of LULC 
irradiance associated with seasonally geosampled, geo-classifiable S. damnosum s.l. 
immature habitats. This relationship may be parsimoniously, remotely and regressively 
analyzed in an ArcGIS cyberenvironment for quantitating functional process rates of energy 
and mass unit exchange in a trailing vegetation, turbid water, hyperproductive, 5m, imaged 
RapidEyeTM , S. damnosum s.l. immature, discontinuous, canopied riverine habitat [22]. IC 
irradiance is the radiant flux received by an interpretively explicative, surface per LULC unit 
area.  Spectral irradiance can be defined as the irradiance of a surface per 
unit frequency or wavelength, depending on whether the emissivity unmixed, spectrum is 
taken as a function of frequency or of wavelength [82]. 

 
 Jacob et al. [51] found that the instantaneous fraction of direct beam radiation 

intercepted (IPAR) by a seasonal trailing vegetation or turbid water, S. damnosum s.l. narrow, 
tributary, agro-village, complex, riverine immature habitat canopy in ArcGIS can be 
described mathematically as IPAR = 1 - exp -k Leaf Area Index (LAI)/cos 0s). Leaf Area 
Index (LAI) is defined in ArcGIS as a simple ratio between the total one side leaf surface of a 
plant and the capture point, habitat, surface area of geoclassfied, canopied LULC on which 
the plant grows (www.esri.com).  

LAI is a dimensionless value, typically ranging from 0 for bare ground to 8 for dense 
canopy vegetation [83]. LAI is one of the most important explanatorial, LULC time series 
dependent, proxy, predictor variables governing the canopy processes [99], which is related 
to leaf and canopy Chl endmember contents, photosynthesis rates, carbon and nutrient cycles, 
dry and fresh biomass, and growing stages [85]. Hence, LAI has been generously applied in 
plant and environmental studies of evaporation, transpiration, light absorption, yield 
estimation, growth stages of crops and chemical element cycling [86 - 87]. A common non-
destructive surrogate for LAI, which is based on reflectance of red and NIR bands, is using 
the NDVI [88]. Effective LAI is routinely remotely quantitated with optical instruments that 
measure georeferenceable, canopied gap fractions through the probability of beam 
penetration of sunlight through vegetation, geoclassified LULC reflectance in ArcGIS. 

 Fortunately, there are a variety of techniques that use the close coupling between 
canopy structure and radiation interception to provide an indirect means of measuring 
discontinuous canopy in an eco-georeferenceable, African agro-village, narrow tributary, 
riverine environments, sparsely shaded, trailing vegetation S. damnosum s.l. turbid water, S. 
damnosum s.l. immature, capture point, hyperproductive, habitat. The basic strategy in 
ArcGIS is to create a model which describes how radiation is affected as it passes through the 
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immature habitat canopy based on some well-defined, geometrical canopy attributes, and 
then make appropriate radiation measurements and invert the model to estimate the value of 
these attributes. Typically, a geospatialized, vector arthropod larval habitat vulnerability 
model is based on two attributes of the canopy:  foliage amount, and foliage orientation.  
There is also an assumption of randomness in the spatial distribution of the foliage. The 
degree to which an indirect method succeeds is determined in large part by a 
hyperproductive, immature, riverine S. damnosum s.l. capture point and how closely the 
habitat canopy conforms to the idealized one in the radiation model.  However, there have 
been few efforts to obtain theoretically consistent and effective leaf area indices from those 
measurements. For example, in order to apply the Beer–Lambert law [see Appendix 4], 
multiple gap fraction measurements may be averaged in two ways: 1) by taking the mean of 
the logarithms of the individual gap fraction values, or 2) by taking the logarithm of the mean 
gap fraction. The Beer–Lambert law, or the Beer–Lambert–Bouguer law relates the 
attenuation of light to the properties of the canopy material through which the light is 
traveling [23].  
 

Interestingly, studies have established relationships between VIs and LAI and 
biomass yield using moderate resolution data in ArcGIS [e.g. 89 - 91]. Overall, these VIs 
have revealed wavelength emissivity transmittance, canopied predictor variable sensitivity to 
different levels of moderate resolution derived LAI and biomass. NDVI is sensitive to low 
LAI (i.e. LAI < 2–3), but saturates at medium to high LAI [84]. A similar canopied, 
explanatorial, geo-classifiable LULC in a topographic pattern may be observed when 
qualitatively, remotely and regressively quantitating the relationship between 5m RapidEyeTM 

derived NDVI and biomass, with NDVI saturating at medium to high (fresh) biomass (around 
2 kg/m2), for example, for a discontinuously canopied, vegetated, sparsely shaded, trailing 
vegetation, turbid water, seasonal,  S. damnosum s.l, immature, capture point,  
hyperproductive, habitat geospectrotemporally geosampled,  in an African riverine, agro-
village ecosystem.  

In Jacob et al. [51], the authors optimally determined that remotely and regressively 
quantitated Intercepted Photosynthetically Active Radiation (IPAR) is an important 
ecohydrological, seasonal explanatorial and observational predictor in empirically geo-
classifiable, vegetation-related, eco-georeferenceable, canopied, descriptive LULCs for 
biogeochemical, explicative processes such as water and energy exchange. Measurement of 
this canopied, reflective quantity and ecophysiologically-related, fractional, interception 
efficiency (fPAR) may be thus strategically employed for regressively quantitating 
probabilistic temporal variability in a canopied, sparsely shaded, eco-georeferenced, geo-
classifiable, trailing vegetation, ecohydrologic and eco-cartographic LULC of an S. 
damnosum s.l. habitat. A method may be thus presented for estimation of IPAR and fPAR 
employing a commercially available hemispherical radiation sensor within cost-effective, 
medium resolution, (i.e., RapidEye TM 5m resolution data) imaged, dependent data in ArcGIS. 
These models may provide sufficient information on the structure of the immature habitat 
canopy constituents (e.g., diurnal interconversion of cyclic xanthophyll pigments, chorphyll 
(Chl) concentrations, levels of caretenoids, etc.) and the angular dependence of light 
interception for single measurements to be interpreted for all solar zenith angles for a S. 
damnosum s.l. prolific habitat.  

 Here, we develop the basic elements for implementing a control-oriented, remote 
surveillance program  (e.g, “Slash and Clear”) in an ArcGIS cyberenvironment for reducing 
emergence of immature Simulium using adult catching rates, cost-effective, moderate 
resolution-derived, 5m RapidEyeTM data [$500.00/for 128x128m2 georeferenced polygon] for 
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unmixed, elucidatory NDVIs in interpolatively unmixed, trailing vegetation LULCs, 
biosignature, predictor variables. We then employed the eco-cartographic cyberenvironment 
to correlate seasonl, field-geosampled, georeferenceable empirical data (e.g, adult catch rates) 
within a non-linear dependent, unmixed, regression-related, S. damnosum s.l. habitat in a 
wavelength emissivity transmittance, endemember frequency, eco-epidemiological risk 
model. Unfortunately, one of the major barriers to developing an accurate onchocerciasis 
surveillance program in African,narrow r tributary, agro-village complex riverine 
environments is the optimal design and implementation of a sampling system that will 
adequately monitor varying characteristics of riverine village–level, vulnerable sub-
populations employing interpolated, seasonal, unmixed, Euclideanized, trailing vegetation, 
turbid water, LULC wavelength emissivities in 5m RapidEyeTM parameterizable, covariate 
distance estimators [e.g., georeferenced measurements from a village centroid to habitat 
geolocation]. The ‘Slash and Clear’ model is based on physical removal of precisely and 
remotely targeted, sparsely shaded, seasonally prolific, georeferenced, geo-classifiable, 
trailing vegetation LULCs of S. damnsoum s.l. immature, canopied habitats within a 1km 
gridded buffer in ArcGIS.  

   The basis of the ‘Slash and Clear’ control strategy is an unmixed, remotely sensed, 
endmember that is explanatorily, geo-spatiotemporally and geo-spectrotemporally 
interpolated as a chorophyll (Chl) a-related, emissivity transmittance, endemic, forecasting 
5m RapidEyeTM  eco-epidemiological, frequency wavelength, sub-mixel explanative risk 
model. Chlorophyll a is a green pigment found in plants which absorbs sunlight and converts 
it to sugar during photosynthesis. Chlorophyll a is usually collected from water samples of a 
known volume that are filtered through fine mesh filter paper (0.45 micron), which is then 
analyzed for Chl-a concentrations. There are three standard methods for quantitating Chl-a 
concentrations: spectrophotometry, fluorometry, and high performance liquid 
chromatography (HPLC) [23]. Spectrophotometry is the most commonly employed technique 
in seasonal, eco-epidemiological, vector arthropod habitat, risk mapping. Though HPLC is 
slower and more demanding, it is able to differentiate between Chl types and other accessory 
canopy pigments with less bias than spectrophotometry [1].  

            Hyperproductive, sparsely shaded, canopied, trailing vegetation and turbid water, 
LULC, endmember, riverine habitat, fractionalized, emissivity waveband, RapidEye TM 5m, 
frequency data variables may transmit a reflectance excitation beam of light in the blue range 
and detect the light fluoresced by Chl in a sample in the red wavelength of the moderate 
resolution sensor. This fluorescence may be directly proportional to the concentration of Chl 
in the canopy of the hyperproductive habitat. Since fluorescence is an indirect method for 
measuring Chl-a in canopied, hyperproductive, sparsely shaded, trailing vegetation turbid 
water, LULC-reflectance, S. damnsoum s.l., riverine, immature habitat, non-linear, trees, in 
PDAs loaded with gridded moderate resolution, cost effective data in ArcGIS may reveal 
statistically significant eco-epidemiological, seasonal forecastors. Moderate resolution sensor 
systems allow immature Simulium habitat measurements to be made in situ for implementing 
a seasonal control program (e.g., “Slash and Clear”) based on geo-spatiotemporally, geo-
spectrotemporally, iteratively interpolated unmixed endmembers. Remotely targeting these 
hyperproductive habitats in an ArcGIS cyberenvironment may help in reducing larval counts. 

Bio-optical, unmixing, descriptive algorithms for autoregressive, remote estimation 
and quantitation of Chl-a concentrations may render robustifiable, canopied, seasonally 
hyperproductive S. damnsoum s.l., habitats, in an ArcGIS cyberenvironment by exploiting the 
upwelling radiation in the blue and green, spectral regions of decomposed, RapidEyeTM 
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sensor data. By doing so, bio-optical algorithms may be optimally devised in ArcGIS to relate 
the electromagnetic energy reflected in the upward direction to the decomposed 
concentrations of canopy habitat blue and green,  LULC constituents dissolved and 
suspended in the water column for identifying unknown, interpolated, geoclassifiable, 
endmember, decomposed sub-mixel habitat data  geo-spatiotemporally, geo-
spectrotemporally geosampled in an African, narrow tributary, riverine, agro-village 
ecosystem. In riverine, sparsely shaded, turbid, productive African riverine waters other 
canopy pigment constituents defined in an ArcGIS cyberenvironment that vary independently 
of Chl-a may be also remotely regressively seasonally deduced in a PDA employing cost-
effective moderate resolution RapidEyeTM 5m spatial resolution data, which may also 
subsequently auto-probablistically quantitatively, eco-cartographically determine absorption-
related and scatter light in canopied, habitat regions.  

 
Doerffer and Fischer [72] replaced the singleband-ratio technique with a full spectral-

fit method for retrieval of Chl-a in case-2 waters in an ArcGIS cyberenvironment. This 
algorithm minimized the χ2 difference between the observed radiance and models radiances. 
Garver and Siegel (1997) developed a model to derive a spectral paradigm fit employing a set 
of three semi-analytical descriptions of the inherent, canopied, optical, decomposable 
properties, including Chl-a absorption in ArcGIS. The primary objectives for the algorithm 
were:  1) to develop a computationally fast and flexible algorithm for retrieval of Chl-a in 
continental shelf waters that was reliable over a large range in concentrations (e.g., 1 to 20 
mg m−3); 2) to remotely, regressively capture disturbances by large fluctuations in sediment 
load (e.g., 0.5 to over 30 gm−3); and 3) quantitating CDOM absorption [e.g., (440 nm) 0.1 to 
1 m−1]. The authors accomplished their objectives and developed standard error products for 
quantitating the Chl-a concentration per mixel that reflected the uncertainty in the Landsat 
remote sensing measurement while determining optical, unmixed, illuminative, model data 
feature attributes underpinning the retrieval. 

The Coastal Zone Colour Scanner (CZCS) aboard the Nimbus-7 satellite has greatly 
increased knowledge of the distribution of Chl-a in ecohydrological, ecogeographical 
networks and thereby of global primary production [73, 74, 75]. Successors of CZCS are the 
SeaWiFS in orbit since September 1997, and the Medium Resolution Imaging Spectrometer 
(MERIS) of the European environmental remote sensing satellite ENVISAT-1.  The MERIS 
instrument employs a medium spectral resolution in 15 programmable bands in the range 390 
nm to 1040 nm (https://earth.esa.int/web/guest/missions/esa-operational-eo 
missions/envisat/instruments/meris). 

 The 10-year archive of MERIS data has been employed as an invaluable resource for 
studies on geo-classifiable, ecohyrological, LULC, network system dynamics in ArcGIS at 
regional and global scales. MERIS data is collected from aboard the European Space 
Agency's (ESA) [23]. The mission of MERIS includes interpolation and quantification of 
distributions of phytoplankton in the open oceans and coastal waters, and of moderate 
resolution, vegetation-related, canopied, sparsely shaded, unmixed LULCs [62]. Whereas 
CZCS incorporated five channels for the visible and NIR ranges, for MERIS up to 15 
wavebands can be selected (https://earth.esa.intemissions/envisat/instruments/meris). 
Compared to SeaWiFS, which lacks a channel for the red/NIR edge, MERIS appears to offer 
a better cost-effective band suite for retrieval of Chl-a in turbid canopied waters. Three of the 
MERIS bands are similar to those employed in algorithms for shipboard optical teledetection 
of Chl-a [63]. The spatial resolution of up to 30m at nadir allows the mapping of numerous 
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lakes and reservoirs in ArcGIS, a feature not foreseen in the original mission objectives as 
well as coastal seas [62].  

The MERIS algorithm was calibrated employing data collected on the IJssel Lagoon 
(The Netherlands) in 1993–1996 in an ArcView TM cyberenvironment. Validation was 
performed using data on the IJssel Lagoon in 1997 and 1999, as well as other Dutch inland 
waters, the Scheldt Estuary (Belgium/The Netherlands), the Hudson/Raritan Estuary (New 
York/New Jersey), and the North Sea off the Belgian coast. Except for the IJssel Lagoon 
validation data, the fractionialized, reflectance, endmember, wavelength, transmittance, 
decomposable, emissivity, forecastable, derivative spectra and physical and chemical 
conditions were presented in Gons [76] and Gons [77]. All concentrations of Chl a were 
determined after extraction in ethanol and correction for phaeopigment by acidification [78]. 
The sensitivity was based on results in the different moderate resolution sensor bandwidth. 
Slight shifts in wavelength emissivities of the other wavebands were tested by simulating the 
unmixed, decomposed, canopy products at a lower resolution. The fit was found to be equally 
consistent when applying the averaged values of R(0,λ) and aw(λ) for the PR-650 bands 
centred at 664 and 668 nm, 704 and 708 nm, and 772 and 776 nm. For both Chl a and Chl a-
u, the value of p did not change. The values of a* were 0.0162 and 0.0140 m2 (mg of Chl a)−1, 
respectively, and therefore between those for the 664 and 672 nm bands. The potential of the 
MERIS instrument for Chl a detection in mesotrophic and eutrophic Case 2 waters for p = 
1.06 and a*(664) = 0.0146 m2 (mg of chl a)−1 was tested for later observations on the IJssel 
Lagoon, other freshwater bodies, and estuarine and coastal waters. The data were collected in 
widely different weather, and except for cases of floating layers of cyanobacteria and visible, 
benthic, geoclassified, vegetation-related LULC, no observations were excluded. The plots 
for validation and calibration of the MERIS algorithm compared very well. Neither this plot 
nor the standard of the estimate for these groups of water bodies indicated a need for the 
development of regional algorithms. 

 Pulliainen [79] employed a semi-operative approach to retrieve Chl-a concentration 
in an ArcGIS cyberenvironment from airborne/spaceborne spectrometer observations and 
tested them using the airborne imaging spectrometer (AISA) data from 11 lakes in southern 
Finland. The retrieval algorithmic, landscape approach was empirical and required 
simultaneous in situ training data on water quality for quantiation and determination of 
multiple coefficients in ArcGIS. However, the training data did not have to be collected from 
every lake under investigation. Instead, the results obtained indicated that reliable, 
interpolated, auto-probabilistic estimates on the level of Chl-a for an individual lake could be 
achieved without employing data representing the specific lake. The unmixed, reflectance, 
endmember wavelength, transmittance, frequency, emissivity, radiance fractionalized, 
biosignature data from one lake body was then interpreted within an algorithm in ArcGIS 
(Geospatial Analyst TM) based on the image data representing the limnological network. This 
model enabled the accurate geospectral, geospatial estimation of water quality from the 
moderate resolution, remotely sensed, time series dependent scenes for numerous lakes with 
the aid of reference data only for a few selected lakes representing the region under 
investigation. In addition, it was shown that the AISA spectrum shape characteristics were 
highly affected by the trophic and humic state of the lake water in ArcGIS. 

 
Floricioiu [80] investigated the capabilities of MERIS for monitoring canopied, water 

quality parameters in ArcGIS of oligo- to mesotrophic lakes in Austria and in Lake Garda in 
Italy which were investigated as part of the project AO-164, “Environmental Research in the 
Eastern Alps”. From May to September 2003, routine field measurements from limnological 
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stations were made available parallel to MERIS acquisitions. The surface reflectance was 
derived from Level 1b MERIS data in the cyberenvironment by means of radiative transfer 
calculations. Radiative transfer is the physical phenomenon of energy transfer in the form of 
electromagnetic radiation [23] developed in ArcGIS Spatial AnalystTM for eco-
cartographically representing the concentration of Chl-a based on the ratio between 
reflectance in MERIS bands 7 (665 nm) and 5 (560 nm).  

 
Several numerical models exist that solve the radiative transfer equation in a 

bidirectional ArcGIS cyberenvironment for quantitating within natural water body moderate 
resolution, wavelength, emissivity, endmember eigenvector, covariate estimators with 
properties defined by the profiles of inherent optical properties, sea-air boundary state, and 
downwelling sky radiance distributions [81, 82, 83]. These radiative transfer models provide 
accurate forecasted values for the endmember, decomposable, LULC optical properties, 
including moderate resolution, remote sensing reflectance, and downwelling diffuse 
attenuation for a range of conditions and for all realistic observation angles.  This makes them 
very useful for sensitivity analysis and/or auto-probabilistic, non-normality, diagnostic and 
assessment studies in moderate resolution, remote sensing decomposition of Chl-a in S. 
damnosum s.l. habitats in ArcGIS. Thus, these hyperproductive, immature canopied habitats 
may be robustly regressively remotely quantitated employing various cluster tools (e.g., 
Moran’s i coefficient).  

  
 Newer approaches involving the inversion of unmixed, S. damnosum s.l. habitat, 

moderate resolution, derivative, endmember spectra in radiative transfer models and other 
unmixing algorithms in ArcGIS may yield improvements over traditional index approaches 
for correlating canopy photosynthetic pigments (e.g., Chl-a) with seasonal immature 
productivity.  This way, the researcher may carefully consider the ecophysiological and 
structural geophysical, eigenvector, LULC reflectance, endmember component contributions 
of each extracted trailing vegetation and /or turbid water, sub-mixel, habitat data feature 
attribute. 

 
Dall’Olo [84] evaluated the extent to which NIR to red reflectance ratios could be 

applied to the Sea Wide Field-of-View Sensor (SeaWiFS) and the Moderate Imaging 
Spectrometer (MODIS) to estimate and remotely quantitate canopied Chl in productive, 
sparsely shaded, canopied, turbid waters. The SeaWiFS and MODIS satellites have collected 
ocean color data since September 1997 and January 2000, respectively, providing an 
extensive database of images to the scientific community (www.nasa.com).  To achieve this 
objective, unmixed moderate resolution, covariate, reflectance, fractionalized, endmember, 
derivative spectra and relevant water constituents were collected in 251 stations over 
reservoirs with a wide variability in optical parameters (e.g.,4 < Chl 240 mg m < 3; 18 < 
Secchi disk depth < 308 cm). SeaWiFS and MODIS NIR and red reflectances were simulated 
by employing the in-situ hyperspectral data. The proposed algorithms predicted canopy Chl 
with a relative, random, auto-probabilistic uncertainty of approximately 28% (average bias 
between -1% and -4%). The effects of unmixed, wavelength, emissivity reflectance, 
transmittance, uncertainties on the predicted canopy Chl components were geospectrally and 
geospatially analyzed. It was found that for realistic ranges of root mean square calculations 
as rendered from the auto-probablistically, empirically regressable radiance uncertainties, the 
canopied Chl could be estimated with a precision better than 40% and an accuracy better than 
35%.  
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Previous work has also demonstrated that the concentration of Chl-a can be estimated 
from the reflectance ratio R for λ = 704 and 672 nm, for remotely quantitating moderate 
resolution NIR reflectance peak in eutrophic water and the red absorption peak of Chl a, 
respectively.  In Buiteveld et al. [85] the absorption coefficients of water aw(λ) for these 
wavelength unmixed emissivities and the backscattering coefficient bb was assumed to be 
independently derived from the reflectance transmittance data which was subsequently 

quantitated employing λ = 776 nm:  
(Eqn 1.1), where the values of aw(672) and aw(704) were optimally tabulated as 0.415 and 
0.630 m−1, respectively. In the model a*(672) was a mean Chl a-specific absorption 
coefficient at λ = 672 nm and p was an empirical constant close to unity. The retrieval of Chl-
a was tested on R(0,λ) and then deduced from above-water measurements by employing a 
model PR-650 SpectraColorimeter from Photo Research (Chatsworth, CA, USA) over the 
380–780 nm range at 4 nm increments with 8nm FWHM bandwidth. The moderate resolution 
reflectance values for 664, 704 and 776 nm were then calculated from the shipboard 
spectroradiometry, and thereafter employed to emulate R(0,λ) for the relevant MERIS bands.  

In Buiteveld et al. [85] the MERIS algorithm was optimally obtained following 
replacement in the original equation (1.1) of R(0,λ) and aw(λ) for λ = 672 nm by the values 
for 664 nm which were then quantitated by 

employing  (Eqn 1.2), where RM was 
the reflectance ratio for λ = 704 and 664 nm, and aw(664) = 0.402 m−1. The observations that 
had served the calibration of equation (1.1) were successively employed to calibrate equation 
(1.2) for the MERIS application. The model fit rendered p = 1.063 ± 0.005 and a*(664) = 
0.0146 ± 0.0002 m2 (mg of Chl a) −1 where n = 114; r2 = 0.96). Whereas the value of p 
remained the same, the coefficient a*(664) was significantly lower than a*(672) which was 
then equivalent to 0.0176 ± 0.0002 in the original calibration. The departure from the 
pigment’s red absorption maximum near 675 nm explained this lowered a* value. Also, for 
uncorrected Chl-a (i.e., Chl a-u = Chl a + phaeopigment/1.7), the exponent p was equivalent 
to 1.056 which remained the same, whilst a*(664) was 0.0127 ± 0.0001 which was deemed 
significantly lower than a*(672) = 0.0152 ± 0.0002 m2(mg of Chl a-u)−1 in the original 
calibration. 

Compatible MERIS data, were automated and made available as part of the Basic 
ERS & ENVISAT (A) ASTER MERIS (BEAM) toolbox [86]. These include artificial neural 
network approaches trained to varying parameter concentration and optical property ranges 
[e.g., the Case 2 Regional (C2R) [87], the FUB/WeW [88], the Eutrophic Lake (EUL) and 
Boreal Lake (BL) [89] processors, and the band ratio, height-above-baseline Maximum 
Chlorophyll Index (MCI) and Fluorescence Line Height (FLH) algorithms [90, 91]. Many of 
these algorithms are adaptable to the OLCI sensor on Sentinel-3. However, these algorithms 
have not been widely validated across the continuum of optical African riverine water types 
found in sparsely shaded, discontinuous canopied, ecosystems, particularly those that have 
highly turbid phytoplankton- or sediment-dominated waters.  

Prior to their operational use in research, monitoring, and management activities, 
rigorous validation analyses are required to understand the associated performance and 
probablistic regressable uncertainties rendered from unmixed, moderate resolution, 
RapidEyeTM 5m wavelength, fractionalized, endmember eigenvectors.   Validation is vital to 
the selection of a retrieval algorithm or combination of retrieval algorithms that are applied to 
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a given ecohydrological network body to achieve the most robust retrieval of the 
ecogeographical parameter(s) of interest. It has not been demonstrated in literature that an 
Chl-a retrevial algorithm in ArcGIS using moderate resolution RapidEye TM 5m satellite data 
that performs well in one highly turbid network system may necessarily be transferrable to 
another remote network system nor has there been geo-classifiable LULC, site-specific and 
regional validation of any unmixed, endmember, biosignature-related, canopied pigments. 

Several of the Chl-a retrieval algorithms have been evaluated in ArcGIS individually 
and in various combinations in terms of their retrieval performance for a number of 
parameters and for diverse lake conditions. Binding [92] applied the C2R, FLH, and MCI 
algorithms with and without the “smile effect” caused by slight variation in center 
wavelengths for a given band across the MERIS field-of-view. Meanwhile Bourg, D'Alba, 
and Colagrande [95] improved remotely sensed contrast between Ocean and Land (ICOL) 
processors applied, to evaluate Chl-a retrieval from MERIS imagery of Lake of the Woods 
(Canada/USA) during an intense algal bloom, and compared these with the standard MERIS 
algal_2 product. A validation of the C2R, EUL and BL processors' atmospheric correction, 
IOPs and water quality constituents (Chl-a, gelbstoff absorbance, and total suspended matter) 
was carried out over several European lakes by Koponen et al. [96] and Ruiz-Verdú et al. 
[97]. Alikas and Reinart [98] evaluated Chl-a retrieval from Lakes Peipus (Estonia/Russia), 
Vattern and Vanern (Sweden) employing the MERIS standard Case 1 (algal_1) and Case 2 
(algal_2) Chl-a products, in addition to related total suspended matter and yellow substance 
retrievals. C2R and ICOL were evaluated in application to perialpine lakes by Odermatt, 
Giardino, and Heege, [99] and to Lake Trasimeno Italy by Giardino, et al. [100]. 

 Odermatt, Pomati, et al. [101] report validation results of C2R, EUL and FUB WeW 
with ICOL applied for multiple lake bodies in Greifensee, Switzerland. The authors take into 
consideration in situ measurements at various depths and locally-tuned coefficients relating 
neural network retrieved pigment absorption to Chl-a concentration. Gege and Plattner [102] 
investigated the performance of MERIS standard L2 products over Lake Constance 
(Germany), and Matthews et al. [103] applied C2R and EUL processors, in addition to a suite 
of empirical algorithms, to Lake Zeekoevlei (South Africa). From such studies, a range of 
results may be found to arise, whereby a given algorithm or processor having performed well 
in some instances and/or geolocations, failed in others due to the ecogeographically, non-
specified, local geoclassified, LULC conditions. Therefore, a validation of algorithms 
intended for optically-complex waters and available within the BEAM image processing 
toolbox was undertaken.  The concentrations of Chl-a, and total suspended matter (TSM) 
were investigated by Song et al. [104] for optimally determining major water quality 
parameters that could be retrieved from moderate resolution remotely sensed data. Water 
sampling works were conducted on 15 July 2007 and 13 September 2008 concurrent with the 
Indian Remote-Sensing Satellite (IRS-P6) overpass of the Shitoukoumen Reservoir. Both 
empirical regression and back-propagation artificial neural network (ANN) models were 
quantitatively established to estimate Chl-a, and TSM concentration with both in situ and 
satellite-received radiances signals.  In machine learning and cognitive science, artificial 
neural networks (ANNs) are a family of statistical learning models inspired by biological 
neural networks [105]. It was found that empirical explanative models performed well on the 
TSM concentration estimation with better accuracy (R2 = 0.94, 0.91) than their performance 
on Chl-a, concentration (R 2= 0.62, 0.75) with IRS-P6 imagery data, and the model’s 
accuracy marginally improved with in situ interpolated, decomposed, endmember, forecast, 
derivative, spectral data. The results indicated that the ANN model performed better for both 
Chl-a (R2 = 0.91, 0.82) and TSM (R2 = 0.98, 0.94) concentration estimation through in situ 
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collected, fractionalized, explanative, derivatve endmember spectra; the same trend followed 
for IRS-P6 imagery data (R2= 0.75 and 0.90 for Chl-a; R2= 0.97 and 0.95 for TSM). The 
relative root mean square errors (RMSEs) from the empirical model for TSM (Chl-a) were 
less than 15% (respectively 27.2%) with both in situ and IRS-P6 imagery data, while the 
RMSEs were less than 7.5% (respectively 18.4%) from the ANN model. The authors, 
however, suggest that the algorithms developed needed to be tested and refined with more 
imagery data acquisitions combined with in situ spectra data. 

In Song [104], measurements of Chl-a from the monitoring programmes spanned 
multiple seasons and covered the full spatial extent of Balaton to quantitate differences in 
MERIS algorithm performance across space and time in ArcGIS cyberenvironment. The 
ultimate aim was to evaluate and compare the performance of multiple retrieval algorithms 
under the range of optical conditions presented by Lake Balaton so as to identify the most 
appropriate algorithm(s) for MERIS processing and to inform future Sentinel-3 OLCI work. 

Siswanto [106] found that modification of standard NASA ocean color algorithms 
was necessary to improve the retrieval of in-water bio-optical constituents in the Yellow and 
East China Seas using coarse to moderate resolution satellite remote sensing data. Other 
studies [e.g., 107] suggest regionally tuned algorithms are needed for better retrieval of in-
water, bio-optical interpretive, constituents. Unfortunately there is limited literature on 
validating and/or calibrating the NASA standard ocean color algorithm in ArcGIS to improve 
accuracy of algorithmic Chl-a estimation.  A preliminary exercise was carried out to evaluate 
the performance of MODIS OC3M algorithm which locally tuned a decomposable algorithm, 
yielding high accuracy Chl-a  retrieval in the MS water in the Malacca Straits. The updated 
locally-tuned OC3M algorithm has shown some improvement for Chl-a estimation in case-2 
water. However, the statistical robustness of this algorithm was deemed trivial, as the points 
were not sparsely distributed over the MS. This finding revealed that the improved MODIS 
2013 with iterative fitting method is only reliable for certain and limited part of MS. 
Therefore, there is still need for alternative methods to improve the area coverage aspect of 
the algorithm for Chl-a retrevial especially in canopy, sparsely shaded, hyperproductive, 
African, riverine, turbid water objects (e.g., flooded, trailing vegetation LULC, S. damnosum 
s.l. canopied, immature habitat). 

 
 As a solution, there is a new version of standard OC3M (OCv6) which has been 

updated employing comprehensive in situ data of NOMAD version 2.  The version 2 data 
may have applicability for remotely targeting S. damnosum s.l. habitats by applying the 
different coefficient in the OC3M algorithm. This version may render different results or 
improvement to the sub-mixel applicability of OC3M in geoclassifed Chl-a LULC retrieval 
in ArcGIS. Moreover, in algorithm development, it may be more helpful if in-situ remote 
data were included (www.nasa.gov). This could give another option of optimum canopy 
algorithmic residualizable forecastable inputs for improving the regionally tuned algorithm in 
sparsely shaded, productive, turbid, RapidEyeTM 5m image, African riverine waters.  

 
 Further, updating the algorithm validation in a PDA enabled ArcGIS 

cyberenvironment may contribute to the development of a regionally-tuned algorithm for 
more reliable Chl-a canopy S. damnosum s.l. immature habitat retrieval. Despite the fact that 
the revised OC3M for the MS has been devised, NASA recently announced the reprocessed 
MODIS Aqua (MODISA) data (www.nasa.gov), and as a result was able to successfully 
validate this endmember decomposed new data to update the existing OC3M algorithm so as 
to have regionally tuned and improved quality of the current moderate resolution satellite 
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sensor retrieved Chl-a. However, the default coefficients for OC3M (i.e., 0.215, -2.3798, 
1.5823, -0.6372, -0.5692) may also be 0.2424, -2.7423, 1.8017, 0.0015, -1.2280. Thus, the 
unmixed, wavelength, transmittance emissivity data [e.g., (443,488,547) and (443, 489, 555)] 
may not exactly be a subset of the six MODIS traditional bands in the visible spectrum (i.e., 
412, 443, 488, 531, 551 and 667) of the S. damnosum s.l. habitat capture point.  In this case, 
the OC3M algorithm may not describe Chl-a concentrations with precision remotely 
targeting a RapidEyeTM 5m-imaged hyperproductive S. damnosum s.l. habitat in a highly 
turbid African riverine village ecosystem.  

Dahanayaka [108] researched the suitability of a handheld spectrometer in a PDA and 
ASTER satellite data for monitoring water quality in coastal waters of Sri Lanka and inland 
waters of Japan, which were tested from November 2010 to March 2012, in ArcGIS.  Chl-a, 
turbidity, total suspended solid, secchi depth and reflectance data were measured at ASTER 
overpass times in Negombo estuary, Trincomalee bay, Puttalam and Chilaw lagoons, Sri 
Lanka, and in Lake Senba and Lake Kasumigaura, Japan. ASTER based Chl-a  retrieval 
algorithms were developed to support in-situ Chl-a concentrations in the PDA. The original 
Chl-a were analyzed in order to determine a Chl-a correction equation. Then, three ASTER 
VNIR band ratios were compared for correlation with the corrected MODIS Chl-a and in-situ 
Chl-a. Finally, the regression equation of the ASTER band ratio, B1/B2 with highest 
correlation was employed for generation of multiple unmixed endmember Chl-a, risk 
distribution maps. Significant correlation between the ratio of the reflectance peak at 705 nm 
and the Chl-a absorption at 678 nm and the in-situ Chl-a content was observed and these 
reflectance ratios were used to establish spectrometric, Chl-a, estimation algorithms. The 
proposed descriptive algorithms successfully quantitated geolocalized environmental effects 
in the eco-epidemiological study site areas. ASTER-based, high resolution, Chl-a distribution 
maps were derived in ArcGIS more precisely by further correction of the geodatabase’s 
algorithms.  This may prove useful in mitigating the impacts of environmental LULC change 
in S. damnosum s.l. habitats. Unfortunately, ASTER-based high resolution Chl-a maps have 
generated overestimates in turbid, tropical coastal waters. 

Palmer [109] presented the first comprehensive algorithm validation exercise over 
Lake Balaton, Hungary for conducting a geo-spatiotemporal, geo-spectrotemporal Chl-a 
retrieval. Six algorithms of differing canopy architecture for application to optically complex 
waters were assessed in ArcGIS: the C2R, BL, EUL, FUB/WeW, and MCI/FLH processors. 
The lake was considered by the authors to be well suited for satellite validation activities due 
its large size, and complex optical water types encompassing turbid waters with high and 
varying concentrations of Chl-a, total suspended matter (TSM) and CDOM. With few 
exceptions [e.g., 97, 98, 99], many previous moderate resolution, endmember eigenvector 
validation studies have focused on a specific event or a limited time period. Likewise, 
validation of Landsat Chl-a  retrievals were previously carried out for Lake Balaton [110]. 
 

In Palmer [109] cost effective, moderate resolution, Envisat satellite from March 2002 
until April 2012 provided observations at spectral (15 bands from 412.5 to 900 nm), 
radiometric (16-bit), spatial (300 m at full resolution) and temporal (three day revisit cycle at 
the equator) resolutions previously unprecedented by other satellite sensors which allowed 
for improved insights into the concentrations of optically active LULC substances in large 
lakes, and thereby into the dynamics of these lakes more generally. The authors employed in-
water algorithms in ArcGIS for the accurate retrieval of the biogeochemical, wavelength, 
covariate emittance of key importance based on MERIS and OLCI data for fully exploiting 
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the lake monitoring exercise. The study presented the first extensive validation of algorithms 
for Chl-a  retrieval by MERIS in the highly turbid and productive waters of Lake Balaton. 
Six algorithms for Chl-a retrieval from MERIS over optically complex Case 2 waters, 
including band-difference and neural network architectures, were compared using the MERIS 
archive for 2007–2012. The expository decomposition, algorithms were geolocally-tuned and 
validated using in situ Chl-a data (n = 289) spanning the five year, illuminative, elucidatory, 
image time series and from all four lake basins.  

In general, both band-difference algorithms tested (Fluorescence Line Height (FLH) 
and Maximum Chlorophyll Index (MCI)) performed well, whereas the neural network 
processors were generally found to be much less accurately retrievable for in situ Chl-a 
concentrations. The Level 1b FLH algorithm performed best overall in terms of Chl-a 
retrieval (R2 = 0.87; RMSE = 4.19 mg m− 3; relative RMSE = 30.75%) and particularly at 
Chl-a concentrations of ≥ 10 mg m− 3 (R2 = 0.85; RMSE = 4.81 mg m− 3; relative 
RMSE = 20.77%). However, under mesotrophic conditions (i.e., Chl-a < 10 mg m− 3) FLH 
was outperformed by the geolocally-tuned FUB/WeW processor (relative FLH 
RMSE < 10 mg m− 3 = 57.57% versus relative FUB/WeW RMSE < 10 mg m− 3 = 46.96%). 
An endmember ensemble selection of in-water algorithms was demonstrated to improve Chl-
a retrievals. 

     Chlorophyll a is the predominant pigment contributing to red fluorescence in leaves while 
chlorophyll b constitutes an accessory pigment accounting for about one-third (or less) of 
total leaf chlorophyll content [23]. Excess energy from light harvested by chlorophylls or 
transferred to chlorophylls by other accessory trailing vegetation or canopy pigments (e.g., 
carotenoids and anthocyanins) may not be utilized in the photosynthetic transport chain 
which may be thus dissipated as heat or expended into lifting chlorophyll chromophores from 
ground-state to high-energy states during specifiic sampled frames (e.g., flooding). De-
excitation via emission of canopy habitat photons at a longer RapidEyeTM 5m, wavelength 
may lead to red fluorescence. Plant stresses that impair photosynthesis lead to greater 
accumulation of excess light energy dissipated as chlorophyll fluorescence.  

In fluorescence sensing, excitation of green leaves with UV-A (Ex 400 nm) or blue 
light (Ex 470 nm), can give rise to red and far red chlorophyll a fluorescence emissions 
around 690 nm and 740 nm Fluorescence intensity ratios in these red and far red wavebands 
(F690/F740) have been used as indicators of ecophysiological strain but because many 
natural and stress factors impact on chlorophyll fluorescence, identification of specific 
stressors is not possible [111]. For example, F690/F730 have been shown to increase under 
N, Ph, and potassium (K) deficiency in sunflower [112], and water deficit in poplars and 
conifers. Simultaneous thermal and fluorescence imaging constitutes a multispectral approach 
for characterization of canopied plant stresses. 

 These findings imply that, provided that an atmospheric correction scheme specific 
for the red-NIR spectral, canopied, LULC region is available, the extensive database of 
moderate resolution senor data could be employed in ArcGIS to quantitatively remotely 
regress and monitor Chl-a endmembers in an hyperproductive habitat vulnerability model in 
canopied, turbid African rivers.  In medium-to-coarse geospatial resolution satellite images, 
single decomposed mixels often contain a mixture of different types of LULC [23]. Use of 
very high resolution imagery can mitigate this mixel problem in ArcGIS to some degree, but 
the relatively higher cost and lower frequency at which high resolution imagery is typically 
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acquired is rather prohibitive when implementing vector control strategies such as remotely 
targeting and removing S. damnosum s.l. habitats in African riverine environments.  

RapidEye’s traditional broadband and Red-Edge indices have been evaluated for 
grassland N and biomass Estimating grass nutrients and biomass as an indicator of rangeland 
(forage) quality and quantity using remote sensing in savanna ecosystems for crop canopy 
chlorophyll content [International Conference of the African Association of Remote Sensing 
and the Environment (AARSE).]. Since the RapidEye TM constellation’s Red Edge band is 
sensitive to Chl status and leaf and canopy structure, it is expected that this band would 
contribute to the characterization of different LULC plant cover types.  Schuster, Förster and 
Kleinschmidt [113] tested the Red Edge band in an LULC classification project in ArcGIS. 
Sixteen classes including two forest classes (deciduous and coniferous) were assessed. They 
found that the Red Edge band provided an overall classification accuracy that was 
consistently higher than without it. In terms of individual LULC classes, the most significant 
improvements were obtained with geoclassified classes comprised of open landscape 
vegetation. Recio et al. [114], found that higher accuracy could be achieved by involving 
decomposable endmember, geocalssified unmixed, LULC reflectance variables derived from 
the Red Edge band. Conrad et al. [115] employed multiple indices in ArcGIS combining the 
Red Edge, Red and NIR bands in a multi-temporal approach to separate several crop types. 
The authors concluded that employing three bands could characterize this sensitive portion of 
the sub-mixel dicontinuous reflectance spectrum, so that an accurate separation of the 
geoclassified LULC types under investigation would be remotely permittable. 

 
Recent studies support the hypothesis that a broad Red Edge band, as employed in the 

RapidEye TM sensors, is also suitable for obtaining information about the Chl and N content 
of plants in ArcGIS. Pinar and Curran [116], and Filella and Peñuelas [117] found that the 
Red Edge region in moderate resolution, RapidEyeTM data is sensitive to Chl content and N-
status in canopied geoclassified vegetation LULCs. Nitrogen fixing shrub Dichrostachys 
cinerea in a mesic savanna in Zambia was recently unmixed and remotely quantitated for 
eco-cartographically delineating georeferenced pools in ArcGIS employing soil N, 
phosphrous (P) and carbon (C) availabilities.  The authors evaluated whether these regression 
effects induced feedbacks upon the growth of understory vegetation LULC and encroaching 
shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin-absorbed 
N and soil extractable P, which were geolocated within the top 10-cm of soil. Shrubs and 
understory grasses differed in their foliar N and Ph concentrations along gradients of 
increasing encroachment, suggesting that these grasses obtained nutrients in different ways. 
Thus, the authors assumed that the LULC grasses probably were obtained from the surface 
upper soil LULC layers, whereas the shrubs may have acquired N through symbiotic fixation 
to obtain P from deeper soil layers. The storage of soil C increased significantly under 
D. cinerea and was apparently not limited by shortages of either N or Ph. The authors 
concluded that the shrub D. cinerea did not create a negative feedback loop by inducing P-
limiting conditions, probably because they obtained P from deeper soil layers. Further, C 
sequestration was found not to be limited by a shortage of N, so that geoclassified mesic 
savanna LULCs encroached by the species could represent a C sink for several decades. As 
such, an endmember spectroscopic, NDVI biosignature, with unmixable woody 
encroachment endmember LULC wavelength, reflectance estimators may be regressively 
quantitated in ArcGIS for delineating remotely quantifiable seasonal associations between 
photosynsthetic and non-photosynthetic (NPV) trailing vegetation, LULC, canopied, leaf 
optical response regressors (e.g., Euclean distance between canopy twigs) and immature 
Simulium seasonal productivity .  
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Leaf optical responses to a wide range of biotic and abiotic stresses have been widely 
researched in literature [23]. These include responses to increased CO2, and other gaseous 
pollutants, heat stress, heavy metal toxicity, exposure to ultraviolet radiation, water status, 
insect pest attack, herbicide treatment, salinity effects, and extremes in nutrient availability. 
In many studies, the spectral wavebands investigated as predictors of plant health status 
across moderate resolution imaged species range from 400 – 2500 nm. The logic behind these 
correlations is that unfavorable growing conditions result in morphological, physiological, 
and/or biochemical changes that have an impact on plant interaction with light on specific, 
canopied LULCs. Reflectance characteristics in the 400 – 700 nm range are primarily 
influenced by the cellular level of colored pigments such as chlorophyll, anthocyanins and 
carotenoids, in the 700 – 1400 nm range by cell structure, and in the 1400 – 2000 nm range 
by the water content in the tissues [23]. Leaf reflectance patterns have been employed to 
measure leaf chlorophyll content, N status xanthophylls, and carotenoid pigment levels for 
multiple unmixed geospectral objects. 

Perturbations to the processes of transpiration and photosynthesis can be exploited as 
cues for hyperproductive, sparely shaded, discontinuous canopied, S.damnosum s.l. plant 
stresses. Control of transpirational water loss through stomatal openings on plant leaves 
constitutes an important mechanism for maintaining leaf surface temperature. In the event of 
water stress, decreased transpirational cooling from stomatal closure leads to an increase in 
leaf temperature that could be monitored by thermography. Thermal imaging, combined with 
extraction of additional information from visible imaging, has been described as an improved 
technique for correlating plant surface temperature variation to stomatal conductance and 
diagnosis of water deficit stress at canopy level. Biotic stresses are also detectable by 
thermography since pathogen-mediated increase in a central plant defense compound, 
salicylic acid, results in stomatal closure and a concomitant increase in temperature. This 
series of events has been utilized for early detection of viral infection tobacco plants by 
thermography. The thermal effect resulting from plant-pathogen interaction has allowed 
tracking of disease progression even at the early presymptomatic stage under controlled 
environmental conditions  

The application of endmember algorithms at broad spatial extents in ArcGIS may 
enable the production of foliar, 5m, RapidEyeTM geo-spatiotemporally,geo-spectrotemporally 
geosampled, hyperproductive, sparsely shaded, canopied, geoclassifed trailing vegetation, S. 
damnosum s.l, immature, habitat, ArcGIS derived Chl maps, may be powerful tools for 
promoting a better understanding of riverine Chl-a, canopy, LULC dynamics over space and 
time. These geospatially discontinuous maps may be vital for monitoring canopy vegetation-
related, seasonal LULC stress and for enhancing understanding of hyperproductive, 
Simulium, immature habitat, canopy plant-environment interactions and the controlling 
mechanisms on Chl-a content. The ability of this technique to remotely regressively 
characterize variations in endmember Chl-a content across different geoclassified, canopy 
vegetation LULCs may help identify elucidatory georeferenceable, interpolatable data feature 
attributes geospectrally, geospatially associated to riverine,narrow tributary,  high density 
black-fly habitat foci, species and structures which would be important for making the 
method operational across seasonal extents, and for its inclusion in photosynthesis and C 
cycles of, other hyperproductive, RapidEye TM imaged, S. damnosum s.l, immature, habitat, 
forecasting, endmember, unmixed, wavelength, transmittance, emissivity models. 

 
Various single and combined indices have been computed from in-situ 

spectroradiometer explanatorial, eco-georferenced, geo-spectrotemrpoal, data and simulated 
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RapidEye™ 5m data.  
For example, Huang et al. [118] found a combination of the RedEdge NDVI was able to 
predict Chl concentration in wheat with a coefficient of determination of R²=0.77. This 
transition zone may be the basis for accurately interpolating a decomposed, Red Edge, 
unmixed Chl-a biosignature, as remotel quantitated from a decomposed wavelength, 
transmittance emisivity dataset of S. damnosum s.l. habitat, sub-mixel endmembers. These 
Chl-a covariate, estimator coefficients may be synthesized in ArcGIS employing the 
normalized difference between 5m, reflectance in the red visible (0.6µm) and the NIR 
(0.8µm) reflectance spectrum. 

 
Thus, a seasonal descriptive, geospectral endmember eigenvector analysis of 

seasonally hyperproductive, riverine, narrow tributary, eco-georeferenceable, S. damnosum 
s.l. larval habitats employing RapidEye™ data may reveal Chl-a concentration increases by 
regressively quantitating the typical slope shifts in the Red Edge spectral region towards the 
NIR for a positively autocorrelated, georeferenceable cluster. The Red Edge inflection point 
wavelength (λi) may be employed as an indicator for this shift. Accordingly, several 5m 
spectral indices employing narrow bands, both from ground-based RapidEyeTM 
measurements, have been successfully applied to also determine green biomass, water 
content, Chl content and N status. The Red Edge position and shape act as indicators of plant 
Chl content, biomass and hydric status. Knowledge about N status may represent an 
important factor for accurately interpolating a Red Edge, NDVI, endmember, sub-mixel 
biosignature to identify unknown S. damnosum s.l. immature habitats in African turbid 
riverine environments based on interpolated unmixed Chl-a canopy, trailing vegetation, 
geoclassified LULC concentrations. 

 
Also the Red Edge position (REP) may be employed to estimate Chl-a and other light 

sensitive trailing vegetation, pigments and content of leaves in a decomposable, Red Edge, 
NDVI 5m, biosignature in ArcGIS.  An object-based classification in ENVI may remotely 
assess canopy health of a canopied, sparsely shaded, hyperproductive, narrow tributary, eco-
georeferenceable,S. damnosum s.l. habitat. Red Edge NDVIs may reveal higher correlations 
with 5m field measurements of seasonal canopy plant health 
(http://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/rapideye/). A 
bioptical dataset of canopy endmember, Red Edge, NDVI, biosignature-related, 
photosynthetic and NPV, sub-mixel, wavelength, reflectance emissivity transmittance, 
estimator coefficients may measure and monitor plant growth (vigor), vegetation LULC 
cover, and biomass production of seasonally productive S. damnosum s.l. habitats. 
 

These studies suggest that if Chl-a concentration increases, the typical slope in the 
Red Edge spectral region may shift towards the NIR in a decomposed, Red Edge, unmixed, 
Chl-a biosignature, as a remotely quantitated 5m, wavelength, transmittance emmisivity 
dataset of geoclassified LULC, S. damnosum s.l., habitat sub-mixels. Very often the Red 
Edge inflection point wavelength (λi) is employed as an indicator for this shift. However, 
both the detection of this inflection point and the assessment of the shift are only possible 
with very narrow spectral bands [119]. Accordingly, several spectral indices using narrow 
bands, both from ground-based spectroradiometers or airborne sensors, have been 
successfully applied to determine green biomass, canopy water content, Chl content and N-
status [120]. 
 

This raises the question of whether a broader band sensor like RapidEye’s MSI can 
detect changes in the Red Edge domain for remotely targeting hyperporductive, seasonal, 
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trailing vegetation, turbid water, capture point, narrow, African tributary, agro-village 
complex, discontinuous, infrequently canopied, S. damnsoum s.l. habitats based on an 
interatively interpolated Chl-a endmember, wavelength, transmittance, emssivity value, and 
thus combining this capability with the possibility of seasonally monitoring extensive LULC 
areas associated with these habitats at a high temporal frequency. Recent studies support the 
hypothesis that a broad Red Edge band, as used in the RapidEye sensors, is suitable for 
obtaining information about Chl and N content of plants [121]. For example, a combination 
of the widely used NDVI and the Normalized Difference Red Edge Index (NDRE) was able 
to predict Chl concentration in wheat with a coefficient of determination of R²=0.77 [122]. 

 
 An empirical dataset of RapidEye’s Relative Chl-a-oriented, S. damnosum s.l. habitat, 
5m resolution, endmember eigenvector coefficients can be interpolated to identify unknown, 
seasonally hyperproductive immature habitats in ArcGIS. This data product may depict the 
geospatial variation of the relative Chl-a content within the habitat’s discontinuous canopy 
field. Further, interpolated, eco-epidemiological maps produced in ArcGIS may show 
different Chl-a contents in prolific, RapidEyeTM 5m medium resolution S. damnosum s.l 
habitats, which, if this occurs in a single field, could indicate pigmental differences in the 
nutritional status of the canopy. Given how rapidly these Chl-a, risk maps can be generated in 
ArcGIS after image acquisition and the relative simplicity and straightforwardness of the 
results, these maps may be valuable tool for improving field management of seasonally 
hyperproductive, S. damnosum s.l., capture point, trailing vegetation, turbid water, capture 
point, narrow, African tributary, agro-village complex, discontinuous, infrequently canopied,  
immature habitats. 

Although RapidEyeTM Chl-a algorithms could exploit the upwelling radiation in the 
blue and green canopy spectral region in a hyperproductive habitat, the accuracy of the 
explicatively retrieved canopy concentrations may break down in turbid, productive, waters 
because of the presence of other constituents (e.g. chromophoric dissolved organic matter,) 
that do not co-vary with canopied, Chl-a, seasonal concentrations, especially during African 
riverine flooding. Most importantly, because of the high values of the total canopy absorption 
coefficient(a) in seasonally prolific, S. damnosum s.l. habitats, the signal upwelling in the 
blue spectral region flooded, riverine ecosystem, wavelength, transmittance emissivitives 
may be too low (comparable to, or lower than the signal in the NIR), which would reduce the 
sensitivity of these retrieval algorithms. As a consequence, canopy Chl-a estimation for 
generating an S. damnosum s.l., interpolatable, eco-epidemiological risk model in ArcGIS 
may be affected by large, auto-probabilistic, unmixed, endmember, biosignature-oriented, 
LULC reflectance uncertainties. For instance, Darecki and Stramski [123] applied moderate 
resolution remotely sensed data employing case-2 water Chl-a algorithm [124] to estimate 
shoreline canopied Chl in the Baltic Sea and obtained a large bias (30%) and a large random 
uncertainty (>100%), even after a regionalization of the algorithm. 

  Altered Chl concentrations in geoclassified senescent leaves in a RapidEye TM 5m, 
image of an S. damnosum s.l. larval habitat may be able to capture 5m, LULC, geo-predictive 
reflectance variables associated with seasonal immature productivity count. Descriptive, leaf 
optical responses to a broad range in leaf chlorophyll concentration were examined also for 
leaves that were at various stages of senescence in five species [125]. Leaves of sweetgum 
(Liquidambar styraciflua L.), red maple (Acer rubrum L.), wild grape (Vitis rotundifolia 
Michx.), switchcane (Arundinaria gigantea (Walter) Muhl.), and longleaf pine (Pinus 
palustris Miller) that ranged in color from green to yellow were collected from the woodlands 
of Stennis Space Center during December 1998 through February 1999.  For N = 42 leaves 
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per broadleaved species, leaf reflectance and transmittance were measured throughout the 
400–850 nm spectrum using a spectroradiometer (model 1500, Geophysical Environmental 
Research Corp., Millbrook, New York, USA) attached via fiber optic to an integrating sphere 
(model LI1800-12S, LI-COR, Lincoln, Nebraska, USA) and methods described earlier [126]. 
A leaf was clamped into position over the sample port on the sphere wall and a 1.65-cm2 leaf 
area was irradiated by the beam from a tungsten halogen lamp. Light reflected from the leaf 
was transmitted from the sphere interior through the fiber optic to the spectroradiometer for 
measurement of reflected spectral radiance. The spectroradiometer recorded data at moderate 
resolution wavelength intervals of ∼1.6 nm.  

Similar descriptive, eco-epidemiological, measurements were made for stray light 
caused by imperfect collimation of the lamp beam and light reflected from a white reference 
while the adaxial leaf surface faced the sphere interior (Spectralon SRT-05-99, Labsphere, 
North Sutton, New Hampshire, USA). Reflectance was computed by subtracting stray light 
radiance from the radiances reflected by the leaf and reference, then dividing leaf reflected 
radiance by reference reflected radiance. This quantity was multiplied by 100 to yield units of 
percentages. Leaf transmittance was measured by illuminating the adaxial leaf surface such 
that light passed through the leaf into the integrating sphere. Radiance reflected from the 
white reference was measured while the abaxial surface faced the sphere interior. Transmitted 
radiance was multiplied by 100 and divided by reference radiance to yield percentage of total 
transmittance. For longleaf pine reflectance endmember transmittance were measured for 42 
samples. Each sample was composed of 5–6 needles spaced ∼1 mm apart and arranged in 
parallel across the sample port of the integrating sphere. Reflected and transmitted radiances 
were recorded as above. An additional transmittance scan was taken without needles in the 
sample holder to enable the correction of radiance values for light that passed between. In 
contrast to the earlier method, a high-resolution digital camera and image processing software 
(ENVI v. 3.1, Research Systems, Boulder, Colorado, USA) were used to determine the 
percentage of irradiance that was not intercepted by the needles. In all species, percentage 
leaf absorptance was computed as 100 − (reflectance + transmittance).  

After leaf optical properties were measured, Chl concentrations of the same leaves 
were determined. Six circular disks, each 6.25 mm in diameter, were punched from the leaf 
portion for which optical properties were measured. The disks were placed immediately into 
8 mL of 100% methanol, and pigments were allowed to extract in the dark at 30°C for 24 h. 
Absorbances of the clear extract at 652.0, 665.2, and 750 nm were recorded and 
concentrations of chls a, b, and a + b were computed chlorophyll concentration of the extract 
and the total disk surface area of 1.84 cm2 were used to compute leaf Chl concentrations per 
unit projected area. Total projected leaf areas for computing illuminative, chlorophyll 
concentration in pine needles were determined by the digital camera and image analysis. 
Further, significant effects (P = 0.05) of N fertilization on reflectance at each 1 nm 
wavelength interval were determined by analysis of variance (ANOVA) (SAS 6.0, SAS 
Institute, Cary, North Carolina, USA). For the senescent leaves of five species, coefficients of 
determination (R2) were used to evaluate simple linear relationships of reflectance, 
transmittance, or absorptance with leaf total chlorophyll concentration at 1.6-nm frequency, 
wavelength intervals throughout the 400–850 nm moderate resolution spectrum. The reported 
R2values were adjusted downward slightly to account for the number of model, elucidatory, 
parameters and sample size.  

      Evidence-based targeting of interventions is a crucial component in the fight against 
seasonal hyperporductivetrailing vegetation, turbid water, capture point, narrow, African 
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tributary, agro-village complex, discontinuous, infrequently canopied,  S. damnosum s.l. 
larval habitat productivity as optimally targeted interventions are more efficient and more 
cost-effective than untargeted interventions [22]. Environmental onchocerciasis management 
programs have typically been implemented as "all-out" campaigns, treating all potential 
breeding habitats. In contrast, targeted environmental management (“Slash and Clear”) can 
be based on a sound understanding of the heterogeneity in immature Simulium productivity 
based on interpolated unmixed, canopy Chl-a endemembers.  

        Further, current deficiencies in cost-effective sampling methodologies in African 
riverine environments hamper our progress in understanding important wavelength 
transmittance data, unmixed feature attributes (e.g., seasonal geolocations of 
hyperproductive, sparsely shaded, trailing vegetation S. damnosum s.l. habitat canopy 
pigments). Thus, implementing village-level, control interventions has been problematic. 
Three factors that make the implementation of village-level, cost-effective onchocerciasis 
surveillance programs in an African, narrow tributary,  agro-village complex a logistical 
challenge are: 1) magnitude of geoclassified trailing vegetation S. damnosum s.l. black fly 
populations based on biting rates within a single village; 2) the short seasonal duration for 
endemic transmission; and, 3) limited historical databases of georeferenced, village-level data 
[22]. This underscores the need to develop new strategies for implementing village-level, 
forecastable, cost effective, risk mapping of onchocerciasis-endemic distributions in African, 
narrow riverine,  tributary environments. 

        A note on the terminology that is used here is worthwhile. We distinguish between three 
grades of detector optimality: optimal RapidEye 5m spatial resolution, detectors maximize, 
without constraint, a direct measure of detector effectiveness (e.g., detection probability 
corresponding to prescribed false probability); suboptimal detectors also maximize some 
objective function, but either they only achieve a constrained maximization, or the objective 
function is only an indirect and imperfect measure of true detector effectiveness; and non-
optimal detectors do not maximize any objective function whatsoever. The transformation 
filters proposed here are suboptimal in two respects: they are constrained to be linear, and 
they maximize SNR functions that have a strong, but nevertheless only indirect, influence on 
the RapidEyeTM detector effectiveness. The detectors proposed here are optimal in the sense 
that they were constrained to be univariate rather than free to be multivariate. The 
classification scheme used here distinguishing between optimal and non-optimal categorized 
seasonal geolocations of hyperproductive, sparsely shaded, geoclassified, explanatorily 
interpolative, optimally decomposable, eigenvector endmember, trailing vegetation, S. 
damnosum s.l., riverine, immature, turbid water, habitats in two agro-village, riverine 
complexes in northern Uganda. 
 
  Although truly heuritically optimizable, decomposable, riverine, hyperproductive, 
sparsely shaded, S. damnosum s.l., .discontinuously, discontinuous, infrequently canopied, 
target detectors for realistic image statistics and manageable image ensemble sizes are 
theoretically unknown, evaluation of these 5m optimal detectors was not associated with any 
intractable problems. There have been no studies in literature that have linked remote 
responses in leaf spectral reflectance, transmittance, or absorbance to ecophysiological, 
biogeophysical  stress factors for identifying and targeting seasonally, hyperproductive, 
geoclassifiable, trailing vegetation, S. damnosum s.l. habitats employing cost-effective, 
moderate resolution RapidEyeTM 5m, data.  
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 The practical translation of spectral cues for application under field conditions at 
canopy and African regional riverine levels for identying hyperproductive, geo-
spatiotemporally, geo-spectrotemporally imaged S. damnosum s.l. immature habitats by cost 
effective remote aerial sensing remains a challenge. To address these issues, we develop a 
framework of habitat-based intervention (“Slash and Clear”) by adoption of a RapidEyeTM, 
remote sensing, eco-epidemiological, wavelength, fractionalized, endmember, emissivity 
algorithmic approach to elucidate mechanisms underlying canopy Chl-a concentration 
retrievals for quantitating sparsely shaded, vegetated LULC, and riverine turbid water 
components that affect immature Simulium productivity. The importance of vigorous, 
quantitative estimation of this productivity is highlighted in a geospectral, geospatial 
stochastic interpolator. Since in African riverine ecosystems, sparsely shaded canopied, geo-
spatiotemporally, geospectrotemrpoally geosampled S. damnosum s.l. georeferenced habitats 
differ in their capacity of immature production [1,3,4], remotely targeting productive habitats 
using a proxy, medium resolution, cost-effective, RapidEye TM 5m, unmixing, Chl-a–
oriented, algorithmic, interpolated, endmember, NDVI biosignature may be more efficient 
than mobilizing field-sampling epidemiological teams. Our research objectives were to: 1) 
create multiple geomorphological, terrain-related, eco-epidemiological maps; 2) generate a 
RapidEye, NDVI Red Edge, Chl-a, wavelength, transmittance, emissivity, frequency risk 
maps from a georeferenced S. damnosum s.l. immature habitat biosignature; 3) digitally 
segment Chl-a, sub-mixel endmember radiance values from the 5m biosignature within an 
object-based framework; 4) explanatorily interpolate the decomposed Chl-a components of 
the biosignature ; and 5) verify in-field descriptive estimates derived from the interpolator for 
remotely regressively targeting unknown, un-geosampled, trailing vegetation 
hyperproductive, canopied, sparsely shaded, S. damnosum s.l., habitats within two eco-
epidemiological, riverine agro-village intervention study sites in northern Uganda based on 
field and remotely geosampled immature count data to implement a Slash and Clear control 
strategy. 
 
2.  Materials and Methods 

 

2.1 Study site description 

Uganda officially the Republic of Uganda, is a landlocked country in East Africa. It is 
bordered to the east by Kenya, to the north by South Sudan, to the west by the Democratic 
Republic of the Congo, to the south-west by Rwanda, and to the south by Tanzania. The 
southern part of the country includes a substantial portion of Lake Victoria, shared with 
Kenya and Tanzania. Uganda is in the African Great Lakes region. Uganda also lies within 
the Nile basin, and has a varied but generally a modified equatorial climate. he country is 
located on the East African Plateau, lying mostly between latitudes 4°N and 2°S (a small area 
is north of 4°), and longitudes 29° and 35°E. It averages about 1,100 metres (3,609 ft) above 
sea level, sloping very steadily downwards to the Sudanese Plain to the north. 

The Apago River is a river of Uganda where each agro-village study site is geolocated 
I kilometer (km) (Figure 40) from the shoreline. The Apago river forms most of the border 
between the provinces of Atiak and Gitgum before crossing into Sudan east of the border 
town of Nimule and joining the White Nile about 10 kilomerers northwest of Nimule. That 
particular section  of the White Nile is known as Bahr el Jebel, the "River of the Mountain", 
or Mountain Nile. Like most rivers in the region the flow of the Apago is strongly influenced 
by the season and weather, and is prone to flooding. 
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This hot, dry, wooded savannah at the study sites is composed mainly of Combretum 
and Terminalia shrub and tree species, and tall elephant grass, which has been adversely 
affected by agricultural activities, fire, clearance for wood and charcoal. Presently however, 
large blocks of relatively intact habitat remain outside protected 

Figure 40. The Apago river study site 

 

 
2.2 Remote sensing data 
 

RapidEyeTM is a constellation of 5m, medium resolution satellites, each offering five 
spectral bands of information at a cost-effective price of 1.28 USD / kilometre (km), which 
can provide imagery over relatively large areas (swath of 77 km) and a temporal resolution of 
1 day. Each sensor is capable of collecting image data in five distinct bands of the 
electromagnetic spectrum:  Blue (440-510 nm), Green (520-590 nm), Red (630-690 nm), and 
NIR (760-880 nm) (http://www.satimagingcorp.com/satellite-sensors/other-satellite-
sensors/rapideye/).  RapidEye also adds a fifth band, the Red-Edge (690-730 nm), to the 
traditional, multispectral, set of blue, green, red and NIR. The Red Edge is a region in the 
red-NIR transition zone of reflectance spectrum; it marks the boundary between absorption 
by Chl in the red visible region, and scattering due to the internal leaf structure in the NIR 
region [23]. This way, geo-classifiable, LULC, cellular vegetation structure in an empirical, 
geosampled dataset of S. damnosum s.l. habitat, phosotosynthetic and non-photosynthetic 
variable (NPV), 5m, transmittance, regressor coefficient values may be regressively 
quantitated in ArcGIS as each eco-georferenceable, gridded, discontinuous canopy, plant cell 
could act as an elementary corner, LULC, topographic reflector. Remotely quantitating geo-
spectrotemporally unmixed irradiance effects of seasonal, LULC, elucidatively decomposed, 
fractionalized  endmember, topographic, discontinuous, canopy changes in a riverine, trailing 
vegetation, turbid water, sparsely shaded, seasonally hyperproductive, eco-georeferenced, S. 
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damnosum s.l., immature, capture point, eco-epidemiological,  habitat may reveal 40 to 50% 
reflectance during flooding, which may be captured between 680 nm to 730 nm RapidEyeTM 

wavelength emissivities [1]. 

A RapidEye polygon 128m × 128m was acquired for the agro-village complex study 
sites. The RapidEye Basic (1B) products are geometrically corrected to an idealized sensor 
and satellite model, and band aligned(www.sateliite imaging.com) They are delivered as 
National Imagery Transmission Format (NITF) files together with Rapid Positioning 
Capability (RPC) described by rational functions. The horizontal accuracy of Level 1B 
products is determined by satellite attitude, which is adjusted by pre-marking Ground Control 
Points during image cataloging, and ephemeris, as well as terrain displacement, since no 
terrain model is used in the processing of the 1B products 
(http://www2.flyby.it/images/brochure/rapideye/eng/RE_Product_Specifications_ENG.pdf.) 
The worldwide RapidEye Ground Control Point database has been mainly populated with 
GCPs derived from the GeoCover 2000 Landsat mosaic, along with other reference data of 
higher accuracy to create the available GCPs used during cataloging and processing. Moving 
into the future, the GCPs created from the GeoCover 2000 mosaic will be replaced with 
points derived from the GLS 2000 Landsat mosaic. The replacement process with start in 
areas with the largest deviation between the two datasets. The default accuracy of the Basic 
product, using GCPs derived from the Landsat mosaic, is 45m CE90 (RMSE 1-D = 21m) or 
better. In the case where GCPs of better accuracy are available, this accuracy will not exceed 
23m CE90 (RMSE 1-D = 11.00m). These geo-location accuracies are valid for imagery 
collected at Nadir over flat (< 10 slope) terrain. 

Over 70% of RapidEye's imagery has a view angle of less than 10°, as the view angle 
of RapidEye imagery is always less than 20°. The system also has the capability for daily 
revisits to any point on earth. RapidEye products are collected by a 12-bit imager. During on-
ground processing, radiometric corrections are applied and all image data are scaled up to 16 
bit dynamic range. The scaling is done with a constant factor that converts the (relative) pixel 
digital numbers (DNs) from the sensor into values directly related to absolute radiances. The 
scaling factor was determined pre-launch. However, absolute radiometric calibration for each 
sensor element of each band is now continually monitored and adjusted, so that the resultant 
single DN values correspond to 1/100th of a Watt/m2sr-1μm. 

The focal plane of the RapidEye sensors is comprised of five separate CCD arrays, 
one for each band. This means that the bands have imaging time differences of up to three 
seconds for the same point on the ground, with the blue and red bands being the furthest apart 
in time. During processing, every 1B and L3A product is band co-registered using a DEM to 
roughly correlate the bands to the reference band (red-edge).  A final alignment is then done 
using an auto-correlation approach between the bands. For areas where the slope is below 
10°, the band co-registration should be within 0.2 pixels or less (1-sigma).  
 

The Red Edge band is spectrally located between the Red band and the NIR band 
without overlap (www.satimagingcorp.com). In a typical spectral response of green 
vegetation, the Red Edge band covers the portion of the spectrum where LULC reflectance 
drastically increases from the red portion towards the NIR plateau (http:www// 
blackbridge.com/rapideye/). The red portion is one of the areas where Chl strongly absorbs 
light and the NIR is where the leaf cell structure produces a strong reflection [27]. Therefore, 
we assumed that variations in both the Chl content and the leaf structure from a 
hyperproductive, eco-georferenceable, trailing vegetation, turbid water, sparsely shaded, ec-
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epidemiological, capture point, S. damnosum s.l., immature habitat would be reflected in the 
Red Edge band. We also assumed that the band was able to provide additional information in 
order to identify canopy health status, and characterize plant cover and abundance, among 
other features in a riverine environment. 

The Order Polygon contained 5 vertices consisting of longitude / latitude (decimal 
degrees) geographic coordinates using a WGS-84 ellipsoid. The RapidEye data contained 128 
km2 of the land cover in the study sites. The RapidEye imagery was classified using the 
Iterative Self-Organizing Data Analysis Technique (ISODATA) unsupervised routine in 
ERDAS Imagine v.8.7™ (ERDAS, Inc., Atlanta, Georgia). Unsupervised classifications are 
commonly employed for the identification of sub-meter, resolution-derived, geoclassified 
LULC classes associated with prolific vector insect habitats based on geo-
spatiotemporal/geo-spectrotemporal, field-geosampled count data [23]. The clearest, cloud-
free images available of the contiguous sub-areas of the intervention agro-village riverine 
tributary, study sites were used to identify land cover and other spatial features associated 
with the eco-georeferenced S. damnosum s.l. habitats. 

2.3 Grid-based algorithm  

      A 1 km2 digitized matrix was constructed by applying a mathematical algorithm in order 
to fit the continuous and bounded, narrow tributary, agro-village complex, riverine, immature, 
habitat surfaces from a field and canopy-geosampled attribute in ArcGIS. Each 
operationizable, digitized grid cell within the matrix contained an attribute value (i.e., unique 
identifier), as well as the S. damnosum s.l. larval habitat geocoordinates. As such, the 
descriptive geolocation of each cell was implicitly contained within the ordering of the 
matrix. GIS grid-based data files consist of columns and rows of uniform cells coded 
according to eco-georeferenced data values [23]. Multiple data layers were then created using 
different coded values for the various field and remote geo-spatiotemporally/geo-
spectrotemporally geosampled, explanatorial trailing vegetation, eco-georeferenced, turbid 
water, sparsely shaded, discontinuously canopied,   data, feature attributes which were related 
to the same grid cell. The grid defines geographic space as an array of equally sized square 
grid points arranged in rows and columns. Each grid point stores a numeric value that 
represents a geographic attribute (such as elevation or surface slope) for that unit of space. 
Each grid cell is referenced by its x,y coordinate location(www.esri.com) High-resolution 
remote sensing data can be used to generate a digitized grid for the random sampling of 
breeding sites. Integration of the results into a GIS makes it possible to study the relationship 
between mosquito breeding site availability, vector abundance and land use-land cover 
change (Ceneter for Disease Control 2010) 

        Bézier curves were used to represent natural trailing vegetation, turbid water, 
discontinuous, canopied, sparsely shaded features, Bézier curves are smooth linear transitions 
between two vertices (www.esr.com). The shape of the curve was defined by th egeo 
locations of the vertices and additional control points  of the narrow tributary, African agro-
village complex , capture point, immature habitats. 

          Given a set of control points , , ..., , the corresponding Bézier curve (or 

Bernstein-Bézier curve) is given by where is a Bernstein polynomial 
and . Bézier splines are implemented in the Wolfram Language as BezierCurve[pts]. 
The Bernstein polynomials of degree form a basis for the power polynomials of degree 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

303 
Copyright © acascipub.com, all rights reserved.  

.The Bernstein polynomials have a number of useful properties They satisfy symmetry 

positivity for , normalization and with 

has a single unique local maximum of occurring at . The curve 
is tangent to and at the endpointsThe Bézier curve always passes through the 
first and last control points and lies within the convex hull of the control points.  

                The convex hull of a set of points in dimensions is the intersection of all convex 
sets containing . For points , ..., , the convex hull is then given by the expression 

 Computing the convex hull is a problem in 
computational geometry. The indices of the points specifying the convex hull of a set of 
points in two dimensions is given by the command ConvexHull[pts] in the Wolfram 
Language package ComputationalGeometry` . Future versions of the Wolfram Language will 
support three-dimensional convex hulls. A makeshift package for computing three-
dimensional convex hulls in the Wolfram Language 

The simplest method for scan converting (rasterizing) a Bézier curve is to evaluate it at 
many closely spaced points and scan convert the approximating sequence of line segment 
(www.esri.com). The rasterized output looked sufficiently smooth, even though the  the 
points ( i.e., discontinuous canopied, trailing vegation, turbid water geo-spectrotemrpoally 
geosampled capture points) were   spaced t far apart. A common adaptive method is recursive 
subdivision, in which a curve's control points are checked to see if the curve approximates a 
line segment to within a small tolerance ( www.esri.com) . The capture point curve  was 
subdivided parametrically into two segments, 0 ≤ t ≤ 0.5 and 0.5 ≤ t ≤ 1, and the same 
procedure  was applied recursively to each half.  

The polygons were used to define the sampling frame, which was extended to include 
a 5 km buffer from the external boundary of the eco-epidemiological, agro-village ,centroids 
( Tale 4). This allowed for multiple interactions enabling retrieval and transformation of the 
geosampled, S. damnosum s.l. immature, habitat, discontinuous canopied parameters 
efficiently, regardless of spatial dimensionality of the immature habitat canopy. 

Table 4. Centroid points in selected riverine communities in selected  for the Slash and 
Clear intervention. 
 
SUB-COUNTY PARISH COMMUNITY COORDINATES UTM 
KOCH GOMA LII ADIBUK N02023’03.6’’ 

E032006’34.5’’ 
407513 
263570 

 AGONGA LAMINLATOO N02031’58.1’’ 
E032000’54.0’’ 

390495 
279994 

 KAL B GONYCOGO N02025’55.0’’ 
E032000’25.6’’ 

389607 
268849 

 KAL B AYAGO –NILE 
CONFLUENCE  

N02022’23.9’’ 
E031055’33.5’’ 

338754 
245457 
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Out of the four villages selected, two villages, (Gonycoyo and Adibuk) were set out as 
intervention areas (Slash and Clear), and the other two villages (Laminlatoo and Ayago-Nile) 
were set out as control areas. The first Gonycogo intervention village has 257 households 
with a population of 1,250 people. Subsistence farming is the major economy activity. The 
settlement pattern extends up to 500 m closer to the river shores. The second intervention 
village selected was Adibuk with 269 households and a population of 1,388 people. 
Economic activity is primarily subsistence farming and fishing. The settlement pattern 
extends up to 280 meters closer to the river shores. 

 
Laminlatoo (control village) has 287 households with a population of 1,385 people. 

The economic activities are primarily subsistence farming and fishing. The settlement pattern 
extends up to 850 meters closer to the river shores. The Ayago /Nile (control village) has 251 
households with a population of 1,315 people. The economic activities are subsistence 
farming and fishing, as well. The settlement pattern extends up to 150 meters closer to the 
river shores (Figures 41-43). 

Figure 41.  ArcGIS Euclidean distance measurements between intervention and control 
villages  

 

 
 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

305 
Copyright © acascipub.com, all rights reserved.  

Figure 42.  Gongcoyo iuntervention village study site 
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Figure 43. Residents at the Laminlatoo control village study site 
 

 
 
 
2.4 Baseline and monitoring 
 

Seven days were set out for baseline to establish the average biting rates near S. 
damnosum, immature habitats in all four villages using human landing catches. Intervention 
was conducted in Gongcoyo and Adibuk Villages, while control monitoring was done in 
Ayago-Nile and Laminlatoo village study sites. Two cycles of intervention were conducted 
with the first cycle conducted over two days, after the baseline period. The second cycle of 
intervention was conducted over two days after ten days from the first cycle. Monitoring of 
human landing catches continued throughout this period  
 

We established data of Adult Simulium Fly Population using human landing catches. 
Adult Simulium fly catching was done by trained volunteers called vector collectors from 
7:00am to 6:00pm. During collection, one vector collector would catch flies for one hour 
while the other stayed away. Collection duty was alternated until the end of the day, and the 
number of flies captured per hour was recorded in a catching form. The total number was 
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summarized at the end of each day. Prior to the trials all village resdients were informed of 
the research. (see Figure 44).Informative meetings were held within each control and 
intervention village to inform residents of the ongoing trials(Figure 45). 
 
Figure 44. Vector collector capturing adult Simulium fly populations using human 
landing catches at the Goncgoyo village study site 
 

 
 
 
 
 
 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

308 
Copyright © acascipub.com, all rights reserved.  

Figure 45. Residents at Adibuk village study site being told of intervention trial 
activities 
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2.5 Habitat mapping 

Initially, digital base maps were generated using the 5m, RapidEyeTM data as well as 
differentially corrected global positioning systems (DGPS) ground coordinates of a 
infrequently canopied, discontinuous, partially vegetated, canopy, sparsely shaded, 
hyperproductive, capture point, S. damnosum s.l., narrow tributary agro-village complex, 
ecosystem riverine, habitat eco-georferenced, geosampled, at the Gonycogo study site village. 
The DGPS ground coordinates were acquired from a CSI max receiver, which has a 
positional accuracy of +/- .178 [99]. The purpose of differential GPS (DGPS) is to remove 
the effects of, atmospheric errors, timing errors, and satellite orbit errors, while enhancing 
system integrity (http://www.omnistar.com/) Within the DGPS MAX, CSI Wireless has 
integratedthe CSI Wireless SLX receiver, a tri-purpose GPS / WAAS / L-band receiver, and 
the CSI Wireless SBX, a high performance DGPS beacon receiverUsing a local DGPS 
broadcaster can compensate for ionospheric and ephemeris effects which can significantly 
improve horizontal accuracy and bring altitude error down in a predictive, S. damnosum s.l. 
immature habitat distribution model [127].  

 

Capture point, hyperproductive, S. damnosum s.l.,. immature habitat remote attributes 
were entered into the VCMS™ relational database software product (Clarke Mosquito 
Control Products, Roselle, IL). The VCMS™ database supports a mobile field data 
acquisition component module, called Mobile VCMS™,that synchronizes field- geo-
spatiotemporally/geo-spectrotemporally geosampled data from industry standard Microsoft 
Windows Mobile™ devices, and can support add-on DGPS data collection for 
entomological-related collections [128, 129]. Mobile VCMS™ and its corresponding 
FieldBridge® middleware software component were used to support both wired and wireless 
synchronizing of the seasonal, geosampled data collected from the eco-georeferenced trailing 
vegetation, turbid water,  S.damnosum s.l. habitat, discontinuous canopy. The data collected 
with the Mobile VCMS™ was then synchronized directly into a centralized VCMS™ 
relational repository database.  

Thereafter, geocoded spatialized display of the narrow riverine tributary habitat data 
and geoclassifiable, LULC, feature attributes were mapped employing the embedded 
VCMS™ GIS Interface Kit™, which was developed utilizing ESRI’s MapObjects™ 2 
technology. ESRI released MapObjects 2.1, a mapping software. MapObjects’ new features 
include support for AutoCAD 2000 DWG files, ActiveX Data Objects, image catalogs, 
ArcSDE 8.1 support, data included in ArcView StreetMap for geocoding, custom symbols for 
chart rendering, and a run-time deployment utility for easier application distribution. (ESRI, 
Redlands  Calif.)VCMS™ included connectivity with hand held computers and field data 
collection devices including DGPS receivers. PalmOS and Windows PocketPC handhelds 
have been used for malaria [130], and eastern equine encephalitis virus (EEEV) larval 
mosquito habitat monitoring [131]. The VCMS™ database supported the export of all the 
geo-spatiotemporally/geo-spctrotemporally, geosampled parameterized, 5m, wavelength, 
emissivity, transmittance covariates using any combination of the estimators in order to 
further process and display specific geocalssified, LULC data, feature attributes in a stand-
alone desktop GIS software package (i.e., ArcGIS 10.3®). A polygon layer outlining the 
georeferenced, hyperproductive, trailing vegetation, turbid water, trailing vegation, 
hypeporductive, eco-epidemiological, capture point,  S. damnosum s.l. habitat was then 
created by digitizing the RapidEye visible and NIR imagery. 
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2.6 Environmental parameters 

Multiple photosynthetic, discontinuous canopy, LULC, wavelength, emissivity, 
transmittance covariates were examined employing longitude, latitude, and altitude data. The 
data was also comprised of individual geo-spatiotemporal/geo-spectrotemporal, geosampled, 
empirical, observations of the eco-georeferenced, hyperproductive, trailing vegetation, 
narrow, African,riverine tributary, S. damnosum s.l. immature, habitat oviposition site   
together with a battery of categorical canopy attributes (See Table 5). These attributes were 
generated from fractional vegetation cover, leaf area index, roughness lengths for turbulent 
transfer, emissivity albedo.  

Table 5. Environmental predictor variables geosampled of the S.damnosum s.l. habitat 

Variable Description  Units 

GCP Ground control points Decimal-degrees 

FlOW flowing water Presence or absence 

TURB Turbidity of water Formazin Turbidity 
Unit  

AQVEG Aquatic vegetation Percentage 

HGVEG Hanging vegetation Percentage 

DDVEG Dead vegetation Percentage 

MMB Man-made barriers Type (e.g.,dams, 
bridges) 

 

   We then constructed a Poisson model in SAS GEN MOD. The Poisson process in our 
interpretive, analyses was provided by the limit of a binomial distribution of the geosampled 
district-level predictor, explanatorial, covariate coefficient estimates employing  

 (2.1).  The distribution was viewed as a function of 
the expected number of immature, S. damnosum s.l. habitat, productivity, count variables 
using the sample size N for quantifying the fixed p in equation (2.1), which was then 

transformed into the linear equation: Based on the S. 
damnosum s.l., riverine larval habitat sample size N, the distribution 
approached was

 
    The GENMOD procedure then fit a GLM to the geosampled data by ML estimation of 
the parameter vector β. The GENMOD procedure estimated the seasonal, geo-
sepctrotemrpoally geosampled, explanatively parameterized, Rapid Eye TM ,5m.LULC 
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covariates numerically through an iterative fitting algirthmic process. The dispersion 
parameter was estimated by the residual deviance and by Pearson’s chi-square divided by 
the df. Covariances, standard errors, and p-values were then computed for the geo-
spectrotemporally geosampled coefficients based on the asymptotic normality derived 
from the ML estimation.  
 

Note that the sample size N completely dropped out of the probability function, which 
had the same functional form for all the geosampled, parameterized, covariate estimator, 
indicator values (i.e., ). As expected, the Poisson distribution was normalized so that the 
sum of probabilities equaled 1. The ratio of probabilities was then determined by 

which was then subsequently expressed as 

 
The Poisson distribution revealed that the explanatory covariate coefficients reached a 

maximum when where was the Euler-Mascheroni 

constant and was a harmonic number, leading to the transcendental equation 
.  

 

     The regression model also revealed that the Euler-Mascheroni constant arose in the 
integrals as 

.The Euler-
Mascheroni constant , sometimes also called 'Euler's constant' or 'the Euler constant' (but not 
to be confused with the constant ) is defined as the limit of the sequence 

= = where  is a harmonic number [132]. It was first defined 
by Euler (1735), who used the letter , and stated that it was "worthy of serious 
consideration" [133]. The symbol was first used by Mascheroni (1790) [134], where  has 
the numerical value  

2.7 Vegetation Indices 
 

Different modules in ENVI were employed to perform the Red Edge NDVI 
calculations. The difference between the RapidEye visible and NIR bands was divided by 
their sum, which formed the functionally equivalent NDVI, over the discontinuous canopy 
and terrestrial surfaces of the hyperproductive, S. damnosum s.l., larval habitat geosampled, 
at the Gonycoyo interventional study site 

 The RedEdge NDVI was computed directly without any bias or assumptions 
regarding plant physiognomy, discontinuous, fractionalized, canopy cover, LULC, class, soil 
type, or climatic conditions, within a range from -1.0 to 1.0, employing the 5m visible and 

NIR reflectances, (p), in ENVI using the expression : .  This index is a 
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modification of the traditional, broadband NDVI.  Red edge NDVI differs from other NDVIs 
by employing bands along the Red Edge, instead of the main absorption and reflectance 
peaks (http://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/rapideye/). 
The red edge is a region in the red-NIR transition zone of vegetation reflectance spectrum 
and marks the boundary between absorption by chlorophyll in the red visible region, and 
scattering due to leaf internal structure in the NIR region. This transition zone is in the basis 
of several vegetation indices like NDVI which is the normalized difference between the 
reflectance in the red visible (0.6µm) and the NIR (0.8µm) reflectance. Also the red edge 
position (REP) is used to estimate the chlorophyll content of leaves or over a 
canopy(www.esri.com). Our assumption was that capitalizing on the sensitivity of the 
vegetation Red Edge to small LULC changes in discontinuous canopy foliage content, gap 
fraction, and senescence could geolocate unknown , un-geosampled, trailing vegetation, 
turbid water, discontinuously canopied, S. damnosum s.l. capture points in eco-
georeferenceable,  narrow riverine tributary,agro-village complexes.. The value of this index 
ranged from -1.0 to 1.0 (see Figure 46).  The common range for the sparsely shaded, 
hyperproductive, capture point, S. damnosum s.l. habitat canopy green vegetation was 
between 0.2 and 0.9 [22]. 

Figure 46.  RapidEye TM NDVI for the for study villages for Goma district in northern 
Uganda 

  

 
 
 

The image was then segmented with a multi-resolution segmentation algorithm 
employing a fine scale parameter and 4 different weights (from 0 to 100) in ENVI, which 
were assigned to the Red Edge spectral band to evaluate its influence in the segmentation and 
LULC classification process. Each reflectance weight generated a segmented 5m image. Eco-
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georeferenceable Rapid Eye TM 5m, wavelength, transmittance, emissivity, frequencies 
related to geospectral LULC information, geometry and texture were then calculated for each 
image segment employing the ENVI, which was performed along with field data to select 
multiple LULC classes (e.g., Dense vegetation,) (Figure 47). 

Figure 47. Red Edge NDVI for a hyperproductive S.damnosum s.l. larval habitat 
geosampled at the Gongcoyo study site 

  

 
 

Each weight in the, S. damnosum s.l. hyperproductive, eco-epidemiological model 
generated a segmented 5m image. Data feature attributes related to spectral information, 
geometry and texture were then calculated for each image segment employing the ENVI 
which was performed along with field data as to select multiple geoclassified broad LULC 
classes (e.g.,Grassland) (Figure 48). A decision tree approach was applied to the samples to 
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select the georefernced attributes that provided the best separation among the classes within 
the scenes  

Figure 48 A LULC accuracy assessment for comparing different weights assigned to the 
Red Edge spectral band.  

 

 

 

2.8 Spatial Hydrological Model 

ArcGIS 10.3 was used to generate a RapidEyeTM 3-D,-Digital Elevation Model 
(DEM) in ArcGIS ecohydrologically representing each geoclassified LULC. A DEM is a 
raster representation of a continuous surface, usually referencing the surface of the earth [23]. 
Characteristics of drainage networks and drainage basin, physiographic, parameters have 
been used in eco-hydrologic calculation and modeling flood and swamp water mosquito 
abundance in real time, using moderate resolution data [135, 136]. Automated generation of 
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eco-georferenceable, drainage networks has become increasingly popular with the use of GIS 
and availability of digital elevation models (DEMs). These models account for topographic 
variability and their control over soil moisture heterogeneity and runoff within a shed. Patz et 
al. [137] used a water balance ArcGIS model to hindcast weekly soil moisture levels in the 
Lake Victoria basin. These soil moisture levels were then associated with local human biting 
rates and entomologic inoculation rates. Jacob et al. [26] evaluated environmental factors 
such as elevation range to determine human onchocerciasis risk in a riverine community in 
Togo. The study site village model yielded several eco-georeferenceable, catchment, 
biogeophysical, eco-physiologicall variables including percent surface saturation, and total 
surface runoff for identification of potential productive S. damnosum s.l., African. narrow, 
riverine, tributary,  ecogeoreferenced, seasonal hypeproductive,immature habitat, 2-D (Figure 
49) and at 3-D, slope coefficients ( Figure 50) at the intervention agro-village ecosystem 
study sites. 

 
Figure 49. A RapidEye 5m 2-dimensional Digital elevation model for the study site 
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Figure 50. A RapidEye 5m 3-dimensional Digital elevation model for the study site 

 

 
2.9 Object-oriented classification 
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A 5m mixel-based classification of the S. damnosum s.l. habitat was undertaken 
employing ENVI technology. A standard unsupervised classification was performed using an 
ISODATA classification system and a maximum likelihood (ML) algorithm respectively. 
The ISODATA unsupervised classification calculated the class means in the larval habitat, 
Red Edge, NDVI, 5m biosignature variables evenly distributed in immature habitat, data 
space, which were then subsequently iteratively clustered. The remaining canopied 
endmembers were regressively remotely quantitated employing minimum distance 
techniques. Each iteration recalculated the means and reclassified the 5m sub-mixel data with 
respect to the new calculated mean values. This process continued until the number of 
endmembers in each designated immature habitat, endmember class changed by less than the 
selected mixel change threshold in the object-based classifier. 
 
2.10 The Successive Projection Algorithm (SPA) 

 
The SPA was then employed in ArcGIS to generate a discontinuous, canopy-based, 

sparsely shaded, trailing vegation, turbid water, Red Edge, trailing vegetation, S. damnosum 
s.l. immature habitat, 5m, NDVI endmember signature. P(i, j) denoted the spectrum for the 
spectrally extracted 5m mixels using the image coordinates (i, j), as the foundation of the 
unmixing decomposition algorithm, which was defined by using , 
and  , where m was the number of the fractionalized,canopy 
endmembers,  was the kth endmember,  was the approximation error term (i.e., 
residual), and f (i j) k, was the fractional abundance for the kth endmember of 5m mixel (i, j). 

 
The error term in  computed the possible linear mixtures from 

 and , which formed a simplex Cm 
defined by m vertices.  These vertices corresponded to the Red Edge, NDVI, decomposed, 
biosignature endmembers, .  According to Jacob et al. [127] the volume of the 
simplex Cm can be calculated from the equation , where 

 is the volume of the simplex defined by m endmembers, and 
where det(⋅) denotes the determinant of a matrix representing the operation of an absolute 
value. Once the S. damnosum s.l., larval habitat, Red Edge NDVI endmembers 

were quantitated, their fractional abundance was estimated through the least 
squares method which was equivalent to a projection on the simplex. 
 
2.11 Radiative transfer model 
 

We then focused on the radiation field of the atmosphere and discontinuous canopy as 
a single coupled medium, and the radiative transfer models of atmosphere and canopy which 
were separately described because of their different attenuating properties in ArcGIS (see 
Appendix 5). The coupled mediums illustrated the Red Edge, NDVI, S. damnosum s.l. 
immature eco-georefernced, habitat, decomposed, sub-mixel, endmember biosignature on 
various equations in which optical depth replaced the geometric altitude values. The top of 
atmosphere was set to -r = 0 while the bottom was set to Ta, and the total optical depth to Tt. 
Therefore, the optical depth of the larval habitat canopy was calculated using Tt—Ta, which 
was interpreted using LAI. This index was calculated employing , 
where Pmax  designated the maximum primary production and  designated a 
growth coefficient.  This inverse exponential function then generated a primary production 
function. 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

318 
Copyright © acascipub.com, all rights reserved.  

 
 
The bidirectional reflectance function (BRDF) of a RapidEye TM, trailing vegetation, 

S. damnosum s.l. hyperproductive, turbid water, immature habitat, mixel was modeled as the 
limit of its directional reflectance factor using  viR , : 

 
     

vi

viA

A

dssIsIsvsisR
viR

cos

,,
,  

(2.1) where ds  was a small Lambertian (Appendix 6) 

surface element over area A  of the 5m, mixel;  sR  was the reflectance of ds ; i , v , and s  
represented the directions of illumination and viewing based on the LULC, reflectance 
surface and ripple water, endmember reflectance components, respectively. In  the model 
.,. was the cosine of the phase angle between two directions;   was the zenith angle of a 

direction;  sI i  and  sIv  were indicator functions, equal to one when ds  was illuminated 
 iI  or viewed  vI  or zero otherwise. If a surface exhibits Lambertian reflectance, light 
falling on it is scattered such that the apparent brightness of the habitat surface to an observer 
is the same regardless of the observer's angle of view, thus, the surface luminance is isotropic 
[23]. Solving our double integral equation revealed s that ds  was integrated over the 
decomposed RapidEye TM mixel [i.e., the footprint of the sensor’s (IFOV)] . There were two 
kinds of prominent canopied, sparsely shaded, LULC habitat surfaces in the sub-mixel, 
endmember derivative, fractionalized, derivative spectra.  A -background surface (i.e., 
sporadically canopied rock) and surface ripple water-which were represented by Lambertian 
reflectance G  and C , respectively. We then re-wrote equation (2.1) as 

  ds
svsi

A
CGKviR

cA
vi

g  
 cos

,
cos

,
,

, where AAK gg   was the proportion of background 
spectral data illuminated and viewed emitted by the RapidEyeTM imaged, S. damnosum s.l., 

riverine, immature habitat, elucidative, feature attributes. In this equation the union of gA  and 
cA  were the intersection of the dataset of the S. damnsoum s.l., habitat, surface elements, 

which were illuminated and viewed, only when v  and i  coincided. The directional 
reflectance of the habitat scene also depended upon the canopied rock and ripple water 
reflectance related to G  and C .  

We focused on the two terms of 
  ds

svsi
A
CGKviR

cA
vi

g  
 cos

,
cos

,
,

. The first term 
described how the sunlit background proportion proceeded to a maximum eco-georeferenced 
point as viewing and illumination positions in the hemisphere coincided. The second term 
described how the sunlit geo-spatiotemporally/geo-spectrotemporally, geosampled, eco-
epidemiological, ecogeorfernceable, capture point, S. damnosum s.l. immature, habitat  
discontinuous canopy surface, composed of the Lambertian facets, became maximally 
exposed to view at the hotspot, while those facets on tops became dominant at large viewing 
zenith angles. The hot spot correlation effect refers to observed brightening which can occur 
when viewing a scene from the same direction as the solar illumination [138] which for 
predictive autoregressive, vector, insect habitat, risk modelling is commonly noted in the 
visible and NIR spectral regions [139].  
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We analyzed how the first term GKg  varied with illumination and viewing geometry. 
As in Strahler and Jupp [140], we assumed that the spatial object of interest (i.e., S. 
damnosum s.l. capture point, seasonally hypeporductive, immature habitat) and its canopy-
dependent sub-mixel, predictor, covariate coefficient,fractionalized  estimates were spheroid 
in shape, with vertical half-axis equal to b , horizontal radius equal to R , and a height to the 
center of the spheroid h . To accommodate the spheroidal shape in the derivations of the 

sparsely shadowed habitat areas, we used the transformation 






   tantan 1

R
b

. We solved this 
equation by replacing   with the angle that would generate the same shadow area for a 
sphere. For simplicity, we assumed that the centers of the spheroids were randomly 

distributed in depth from 1h  to 2h  over A . We then assumed that G  and C  were constant as 

average signatures over gA  and cA  for properly modelling gK  and AAK cc  . 

    Next, the equation 
  ds

svsi
A
CGKviR

cA
vi

g  
 cos

,
cos

,
,

 was employed in ArcGIS where gK  

was expressed in a Boolean model [i.e., 
   ,,secsec2

vivi OR
g eK   ] where  ,,,  viO  

was the average of the time series overlap function [i.e.,  hO vi ,,,   ] between illumination 
and viewing shadows of the habitat and its associated, canopied ripple water features. The 
Boolean model for a random subset of the plane or higher dimensions, analogously is a 
common tractable model in stochastic geometry. Jacob et al. [128] used a Poisson point 
process of rate λ in the plane of a decomposed, aquatic, immature habitat of An. arabiensis, a 
major mosquito vector of malaria in the riceland agroecosystem in central Kenya, and then 
made each sampled point be the center of a random set.  The resulting union of overlapping 
sets was a realization of the Boolean model  . More precisely, the parameters were λ and a 
probability distribution on compact sets.  For each point ξ of the Poisson point process a set 
Cξ from the distribution was used, and then defined  as the union of the 
translated sets. To illustrate tractability with one simple formula, the mean density of  was 
defined by a sub-pixel endmember classification, which equalled , where Γ 
denoted the habitat area of Cξ.  

Next,   the difference in azimuth angle between viewing and illumination positions 
of the RapidEyeTM imaged objects associated to the hyperproductive S. damnsoum s.l. habitat 
was quantitated in ArcGIS . To simplify the equation, we approximated the overlap function 
by the overlap area and center positions of the ellipses. This approximation is justified when 
solar zenith and viewing zenith angles are not too large [140]. In the case of long ellipsoidal 
shadows, however, this approximation could have overestimated the width of the habitat 
hotspot in the azimuthal direction, and underestimated the width of the hotspot in the 
azimuthal direction. To improve the accuracy and preserve the proper hotspot width 
information, we developed another approximation as follows. We employed the equations 

0  or    . First, we considered the overlap function in the principal plane. We used W 
0  and   as the elliptical illumination estimates and then the viewing shadows were 

aligned in the same direction. The overlap area was approximated by an ellipse with one axis 
equal to the overlap length and the other equal to the habitat width encompassing the 
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decomposed, ripple water pixel spectral components which 

yielded
  



   costantansecsec

2
1,, vivivi b

hO
. 

 
A simulated dataset was also generated using the radiative transfer model, which has 

been described previously in Jacob et al. [22]. This dataset consisted of the endmember 
simulated endmeber derivative spectra of the concentration of each single endmember (i.e., 
NPSS, phytoplankton, CDOM, water), the model-construction dataset, and the model-
validation dataset. The latter two datasets include 2483 combinations of these endmembers, 
which were divided randomly into a construction dataset (204 combinations) and a validation 
dataset (41 combinations). The input parameters for the radiative transfer model were the 
inherent optical property (IOP) specification model estimators (e.g., CDOM Fluorescence 
and Raman Scattering). A solar zenith angle of 30° was employed in the model. Chlorophyll 
distribution in the canopy vegetation of the habitat, NDVI biosignature was scattered with the 
lower cover reflecting lesser spectral internsity. In the S. damnosum s.l. NDVI biosignature, 
eco-epidemiological, vulnerability, emissivity, LULC, risk model these changes were 
reflected in the green peak reflectance (~550 nm) and along the Red Edge (590 to 650 nm). 
Colored dissolved organic matter (CDOM) absorption was deduced at at a mean of 440 nm 
for the sites which was subsequently tabulated at 0.30 to 2.10 m−1. Secchi disk transparency 
ranged from 0.21 to 1.3m. The three-band model was tuned to select the RapidEyeTM spectral 
bands for optimal, Chl-a, canopy foliage estimation.  
 
     We considered the mixed reflectance spectra R(λ) as a linear combination; R(λ) = Cp × 
Rp(λ) + Cn× Rn(λ) + Cc × Rc(λ) + Cw × Rw(λ), where Cp, Cn, Cc, and Cw were the 
decomposition coefficients of CDOM and water, respectively, directly related to their relative 
masses (e.g., concentrations). Rp(λ), Rn(λ), Rc(λ), and Rw(λ) were the standard RapidEye TM 
derivative, reflectance spectra for each component. Four decomposition coefficients were 
calculated (i.e., Cp, Cn, Cc, and Cw) by selecting four RapidEye TM bands .R(λ1) = Cp × 
Rp(λ1) + Cn × Rn(λ1) + Cc × Rc(λ1) + Cw × Rw(λ1); R(λ2) = Cp × Rp(λ2) + Cn × Rn(λ2) 
+ Cc × Rc(λ2) + Cw × Rw(λ2) , R(λ3) = Cp × Rp(λ3) + Cn × Rn(λ3) + Cc × Rc(λ3) + Cw 
× Rw(λ3) R(λ4) = Cp × Rp(λ4) + Cn × Rn(λ4) + Cc × Rc(λ4) + Cw × Rw(λ), which were 
employed for the geospectral decomposition. Each decomposition coefficient Cp was then 
used as an independent variable in the Chl a retrieval model. The algorithm had two 
component parts based on information about the individual masses of the optically active 
components and information about spectral properties. Therefore, the estimation model of 
Chl-a was expressed by CChla = f(Cp) 
     

Our results also indicated that the cause of the azimuthal variation could be traced to 
solar flux illumination of the vertically-oriented, hanging floating and dead endmember, 
LULC vegetation components and the variation of reflectance moderated by azimuthally 
isotropic sources of flux from sky light and the habitat, endmember, canopy, reflectance 
values. Spectral unmixing yielded abundance estimates for each canopy endmember together 
summing-up to the 100% reflectance measured in the image. A scattergram representing the 
canopy endmember reference biosignature of the habitat and its associated trailing vegetation 
mixel spectral endmember reflectance values was generated. The spectral biosignature found 
to be characteristic of the Red Edge S. damnosum s.l larval habitat was shown with a 
composition of red 134.67, 145.24 blue, and 114.101 green. The images were then analyzed 
to predict potential S. damnosum s.l. larval habitats( see Figure 51). 
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Figure 51 A geospectrally interpolated Chl-a Red Edge canopy, S. damnsoum s.l. larval 
habitat unmixed proxy NDVI  endmember signature 

 

 
The link between reflectance and endmember concentration at each RapidEyeTM 

wavelength was based on the simulated, derivative, forecast spectra of each habitat, canopied 
endmember. The ratio of reflectance differentiation was used to maximum reflectance 
differentiation of each endmember determined the concentration and the standard reflectance 
Chl-a endmember spectrum Ratio= D(λ)/Dmax. 

 
We then calculated the Sechhi depth for the habitat geosampled at the Gonycogo 

study site for aiding in quantitating the Chl-a endmember concentrations in the canopy. The 
Secchi depth is reached when the reflectance equals the intensity of light backscattered from 
the water [23]. This depth was divided into 1.7m yields which we used as the attenuation 
coefficient (i.e, an extinction coefficient) for the available light averaged over the Secchi disk 
depth for the canopied habitat. The amount concentration c was then given by a mixture 
containing two canopy types sparsely shaded and shaded at amount concentrations c1 and c2. 
The attenuation coefficient at any Red Edge wavelength λ was then given by 

 Therefore, measurements at two wavelengths yielded two 
equations in two unknowns which was sufficient to remotely quantiate the amount 
concentrations c1 and c2 as long as the molar attenuation coefficient of the surface habitat 
reflectance, ε1 and ε2 were known at bothwavelengths wavelength, emissivity, sub-mixel 
components. We solved the equation employing linear least squares to determine the two 
amounts of canopy Chl-a concentrations from measurements made at more than two 
RapidEye TM wavelengths. Mixtures containing more than two LULC components can be 
analyzed in the same way, using a minimum of N wavelengths for a mixture containing N 
components [23]. The tabulated mixed reflectance and standard reflectance at the same 
wavelength emissivities was used to determine optimal, endmember, time series, 
decomposition equations. Four equations at four different wavelengths were employed to 
determine Cp, Cn, Cc, and Cw. The Red Edge bands considered most sensitive to Chl-a were 
tested with the simulated dataset from a spectral range of 490 nm to 730 nm. For Chl-a 
concentrations low reflectance at wavelengths less than 500 nm has been associated to 
absorption by both algal pigments (e.g., Chl-a) and dissolved organic matter [23]. Likewise, 
an increase in reflectance at wavelengths 510–620 nm has been associated to low absorption 
by phytoplankton pigments coupled with increased backscattering due to high particle 
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concentration [141]. The relationship between the decomposition coefficient and Chl-a was 
then determined by using various regression models (M1-M4)( see Table 3). 

 

Table 3. Accuracy evaluation of different spectral decomposition models using Red 
Edge band-combinations of the simulated model-construction dataset. 

 
Models RapidEye TM Bands  Function with Cp R2 RMSE (%)  

M1 B,GRR,NIR 
 
y = 8.72Ca2 − 3.22Cp + 15.3 0.6147 4.65  

M2 B,GR,NIR 
 
y = 0.13Cp2 − 11.5Cp 19.1 0.5750 11.29  

M3 BGRR 
 
 y = 0.02Cp2 + 0.88Cp + 26.8 0.5246 12.93  

M4 B,G,NIR y = 0.44Cp2 − 10.3Cp + 41.5 0.4813 13.15  
 

We then used an ordinary kriged-based algorithm in ArcGIS® for predicting S. 
damnosum s.l. riverine larval habitats using  the decomposed, Red Edge NDVI reference 
signature from the study site for geolocating hyperproductive, immature habitats at the study 
site.Our goal was to estimate a function z(x) based on N  S.damnosum s.l. immature habitat 
sampling points [x1 x2….xN]. On the geostatistics classical approach, we supposed 
that z(x) was a realization of a random function Z(x). This function was also supposed 
stationary of second order,( i.e. both expectation and covariance functions exist did not 
depend on x).The interpolation wasperformed, based on an estimate random function S. 
damnosum s.l. habitat sigantrue Z∗(x), defined as a linear combination of the Z(x) , 
endmeber, wavelength 5m values on the N sampling pointsZ∗(x)=∑i=1Nwi(x)Z(xi).In order 
to compute the estimate random function Z∗(x), it was necessary to evaluate the wavelength 
frequency  values of all geo-spectrotemporal weight functions wi(x). The random 
function Z∗(x) must be a good estimator of Z(x), so to evaluate wi(x), two conditions are 
imposed: 1) the expectation of the error between Z(x) and Z∗(x) must be zero; the error 
between Z(x) and Z∗(x) must be minimized. With the mean  supposed unknown for every x, 
the first condition allowws us to write∑i=1Nwi(x)=1 for determining unknown, unsampled 
black fly habitats at the  eco-epidemiological, study site African, riverine, tributary, agro-
village, study sites. The second condition is equivalent to the minimization of the variance 
of (Z(x)−Z∗(x)), for 
every xVar(Z∗(x)−Z(x))=∑i∑jwi(x)wj(x)cov(xi,xj)−2∑iwi(x)cov(xi,x)+cov(x,x).(3)The 
exponential model was fitted to the semivariogram employing a range of 71.9 m, a nugget of 
0.14 (variance), a lag size of 12.7 m with 12 lags, and a partial sill of 0.21 (variance) ( see 
Figure 49). The coordinates of the canopied breeding sites were recorded and the sites visited 
to ground truth the model predictions.  
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Figure 49. Kriged endmember Chl-a canopy geolocations in Adibuk village 
 

 
 

The link between reflectance and endmember concentration at each RapidEye TM 

wavelength was based on the simulated derivative, fractionalized spectra of each end-member 
(NPSS, phytoplankton, CDOM, and water). For each fractionalized, trailing vegetation, 
hyperproductive, immature, S. damnosum, s.l., riverine, explicatively decomposed, 
iterativlyinterpolated endmember, an increase in concentration brought the 5m reflectance 
spectra closer to saturation, and accordingly, the unmixed reflectance radiance emittance 
differentiation would decrease. We employed the ratio of radiance differentiation to 
maximum reflectance differentiation of each immature habitat unmixed, NDVI biosignature 
endmember to determine the concentration and the standard discontinously canopied 
reflectance spectrum Ratio = D(λ)/Dmax. 
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Results 

Initially, we constructed a Poisson probability regression models in GEN MOD 
employing the parameterized covariate coefficient measurement values. Our 
hyperproductive, seasonal, narrow tributuray, agro-village complex, trailing vegetation, 
turbid water, immature habitat S. damnosum s.l. eco-georeferenced, capture point models 
were generalized by introducing an unobserved heterogeneity term for each geosampled 
observation . The weights were assumed to differ randomly in a manner that was not fully 
accounted for by the other parameterized covariates. This process was formulated as 

where the unobserved heterogeneity term was 
independent of the vector of regressors . The distribution of was conditional on and 
had a Poisson specification with conditional mean and conditional variance 

. We then let be the probability density function 
(PDF) of . 

In the thecapture point Poission, eco-epidemiological regression models the directed 
Kullback-Leibler (K-L) divergence between Pois(λ) and Pois(λ0) was provided by 

. In probability theory and information theory, the K-L 
divergence along with information divergence, information gain, relative entropy are a 
non-symmetric measures of the difference between two probability distributions P and Q 
in a model [24]. For quantifying the probability distributions P and Q of a geosampled, 
discrete, random variable the K–L divergence was defined in the immature habitat, 

probability model by . The model forecasts revealed that the 
average of the logarithmic difference between the probabilities P and Q was the average 
regressively, quantitated, coefficient values employing the probabilities of P. The K-L 

divergence is only defined if P and Q both sum to 1 and if for any i such that 
[24]. 

 
In the immature, S. damnosum s.l. capture point, risk models, if the quantity 0 ln 0 

appeared in the formula in GEN MOD it was interpreted as zero. For distributions P and Q 
of the continuous random variable in the geosampled, time series dependent, trailing 
vegetation, turbid water datasets K-L divergence was defined to be the integral [i.e., 

where p and q were denoted by the densities of P and Q. More 
generally, since P and Q were probability measures over the paramterized, immature, 
habitat, covariate coefficient estimator, regressed dataset X, and Q, which was absolutely 
continuous with respect to P, when the K-L divergence from P to Q was defined as 

 and when was the Radon–Nikodym derivative of Q with respect 
to P, provided the expression on the right-hand side existed.  

 
In mathematics, the Radon–Nikodym theorem is a result in measure theory that states 

that given a measurable space (X, Σ), if a σ-finite is measured on (X, Σ), then the 
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expression is absolutely continuous with respect to a σ-finite measure µ on (X, Σ). A 

measurable function f was rendered on X (0, ∞), such that  for any forecast,  
explanatorial, measured value regressed which  revealed the statistical significance of the 
risk model, regressors. Likewise P was absolutely continuous with respect to Q in the 
regression model. The regressed, RapidEyeTM, covariate coefficients were then re-defined 

employing: , which was recognized as the entropy of P 
relative to Q. We found that if  was any measure on X in the model, then 

existed and the K-L divergence from P to Q, was given as 

. The bounds for the tail probabilities of the Poisson random variable 
were then optimally derived in the regression model robustly employing a Chernoff bound 

argument where , for and where  for 
.  

 
In probability theory, the Chernoff bound provides exponentially decreasing bounds 

on tail distributions of sums of independent randomizable variable [24]. It is a sharper 
bound than the known first or second moment based tail bounds such as Markov's 
inequality or Chebyshev inequality, which only yield power-law bounds on tail decay. 
However, accurately quantitating the Chernoff bound in the trailing vegation, 
discontinuously canopied, turbid water, eco-epidemiological, capture point, seasonal, 
hyperproductive, S. damnosum s.l. habitat, frequentist-oriented, elucidative,forecasting  
risk models required that the variates be quantitate independently.  

 
In probability theory, Markov's inequality renders an upper bound for the probability 

that a non-negative function of a random variable is greater than or equal to some positive 
constant [142]. We let X1, ..., Xn be independent Bernoulli random variables, each having 
probability p > 1/2. Then the probability of simultaneous occurrence of more than n/2 of 
the geo- sampling capture point events had an exact value S in the regression model 

when  The Chernoff bound revealed that S had the following lower 
bound:  We noticed that if X was any elucidatively geo-spectrotemporally 
geosampled, randomized explanative, variable in the immature, quantitative, capture point, 

RapidEye TM models and a > 0, then  In the language of measure 
theory, Markov's inequality states that if (X, Σ, μ) is a measure space, ƒ is a measurable 
,extended, real-valued function, and , then 

[http://mathworld.wolfram.com/CauchySequence.html]. 
We employed the Chebyshev's inequality to determine the variance bound to the 
probability that the habitat Poisson regression output variables deviated far from the mean 

in the vulnerability forecasts. Specifically, we employed  for any 
a>0. Var(X) was the variance of X, defined as:  Chebyshev's 
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inequality follows from Markov's inequality by considering the random variable 

 for which Markov's inequality also read .  
The density of a discontinuously canopied, trailing vegetation, turbid water, 

discontinuous, infrequently canopied, narrow tributary,  agro-village complex,  
explanative, S. damnosum s.l., oviposition, capture point, random variable was a function 
that describds the relative likelihood for a random variable  Thus, the probability of a 
habitat, risk model, random variable falling within a particular range of values was given 
by the integral of this variable’s density over that range.  That is, it was given by the area 
under the density function, but above the horizontal axis and between the lowest and 
greatest values of the range in GEN MOD. The distribution was no longer 
conditional on  in the model, but was instead obtained by integrating  with 

respect to   

    It was found that an analytical solution to this integral existed in the Poissonized, risk 
model, eco-epidemiological, residual, forecasts when was assumed to follow a gamma 
distribution. The model forecasts also revealed that , was the vector of the coefficients 

while , was independently Poisson distributed as  and the 
mean parameter.  The mean number of capture points, sampling intervals at each narrow 
tributary, riverine, agro-village complex, geoclassified LULC  site event per sampling 

period was given by where  was a parameter vector. The intercept 

in the models was then represented by , and the coefficients for the regressors were 

quantitated by  Taking the exponential of  ensured that the mean parameter 

was non-negative. Thereafter, the conditional mean was provided by 

.  
 
A dataset of metaheuristic, explanatorial, S. damnosum s.l., optimally 

parameterizable, covariate estimators were then evaluated using . 
Note, that the conditional variance of the count random variable was equal to the 
conditional mean (i.e., equi-dispersion) in the eco-epidemiological, risk model 
function . In a log-linear model the logarithm of the conditional mean 
is linear [24]. The marginal effect of any metaheursistically optimizable dataset of 
explanative, time series dependent, probabilistic regressors in the habitat models estimator 

was then provided by . It was noted that a one-unit change in 
the th regressor in the models led to a proportional change in the conditional mean 

.  
 
The standard, Poissonian, trailing vegetation, turbid water, narrow tributary, riverine 

agro-village, complex, ecosystem, vulnerability, immature habitat, interventional, 
frequentistic  models was the ML estimator. Since the geo-spectrotemporal, geosampled, 
eco-georferenceable, observations were independent, the log-likelihood function in the 
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eco-epidemiological, forecasting, risk model was  . Given 
the regressor dataset of time series dependent, optimally, metaheursitically parameterized, 
RapidEyeTM, covariate estimators (i.e., θ ) and an input vector x, the mean of the predicted 

Poisson distribution was then provided by . The Poisson distribution's mass 

function in GEN MOD was then rendered by  . 
 

We found that given the explanatorial, Poissonian process in our capture point, eco-
epidemiological vulnerability, forecast models, had a the limit of a count-variable, 

distribution that was regressively quantitated as (3.1). 

Viewing the distribution as a function of the expected number of successes [i.e., ] 
in the models, instead of the sample size N for fixed P, equation (3.1) then 

became . The vulnerability forecasts revealed that as the 
sample size N became larger, the distribution approached P when the following equations 

aligned

.  
Note that the sample size N had completely dropped out of the probability function, 

which had the same functional form for all values of in the RapidEye TM model. 
Thereafter, as expected, the Poisson regression distribution was normalized so that the sum 

of probabilities was equal to 1, since . The ratio of 

probabilities was then provided by the equation . The risk model 
outputs revealed that the Poisson distribution reached a maximum when 

, where g was the Euler-Mascheroni constant and  was a 

harmonic number, leading to the equation which could not be solved 
exactly for n.  
 

 Next, the moment-generating function of the Poissonized, S. damnosum s.l,. capture 

point, distributions was given by , when , so 
. The raw moments were also computed directly by summation, which yielded 
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an unexpected connection with the exponential polynomial  and Stirling numbers of 

the second kind [i.e. , which was the Dobiński's formula.  
 
In mathematics, Stirling numbers arise in a variety of analytic and combinatorics 

problems [143]. In combinatorial mathematics, Dobinski’s formula states that the number 
of partitions of a set of n members is 

[http://mathworld.wolfram.com/CauchySequence.html].The expression given by 
the Dobinski's formula in the paradigms was subsequently revealed as the nth moment of 
the Poisson distribution with expected value 1. Dobinski's formula in the capture point 
,eco-epidemological, eco-geoeferenceable, risk models was expressed as the number of 
partitions of a set of the moderate resolution, wavelength-oriented, transmittance,  
parameterizable, covariate, capture point, habitat estimator, feature attribute, frequency 
dataset size (i.e., n), which equalled the nth moment of that distribution. We employed the 

Pochhammer symbol (x)n to denote the falling factorial . If 
x and n are nonnegative integers, 0 ≤ n ≤ x, then (x)n is the number of one-to-one functions 
that map a size-n set into a size-x set [24]. 

 
At this junction, ƒ was any function from a size-n set A into a size-x set B in the 

trailing vegatation, turbid water, discontinuously canopied, S. damnosum s.l. riverine, 
tributary, ,vulnerability forecast model.  Thus, in the auto-probabilistic, explanative, 
regression estimates u ∈ B . Thereafter ƒ−1(u) = {v ∈ A : ƒ(v) = u}. Then {ƒ−1(u) : u ∈ B} 
was a partition of A. This equivalence relation was the "kernel" of the function ƒ. Any 
function from A into B factors into one function that maps a member of A to that part of the 
kernel to which it belongs, and another function, which is necessarily one-to-one, that 
maps the kernel into B [23,  24].  

The first of these two kernelized factors was completely determined by the partition π 
in the discontinuously canopied, elucidative, hyperproductive, explanatorial, eco-
epidemiological, capture point, S. damnosum s.l., riverine, tributary, capture point, 
forecast, risk model. The number of one-to-one functions from π into B was then (x)|π| in 
the model, when |π| was the number of parts in the partition π. Therefore, the total number 
of functions from a size-n set A into a size-x set B was optimally regressively quantitated 

as  in the model time series, forecasts, when the index π ran through the set of all 
partitions of A. On the other hand, the number of functions from A into B was clearly xn. 

Thus, we had . Since X was a Poisson-distributed, random variable with an 
expected value of 1, then the nth moment of this probability distribution 

was , but all of the factorial moments E((X)k) of this probability 
distribution were also equal to 1 in the model forecasts. Additionally the results 

revealed , which was the number of partitions of the set A in the forecasts. 
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Therefore, the optimizable forecastable, residuals revealed , and 

.  
 
Then, the central moments in the S. damnosum s.l. oviposition, eco-epidemiological,  

risk model were computed as , so that the mean, variance, skewness, and kurtosis 

were respectively. The 
characteristic function for the Poisson distribution in the habitat model was then revealed 

as , where the continuous density function (CDF) was 

, so   
The mean deviation of the Poisson distribution model was then rendered by 

. The CDFs of the Poisson and chi-squared distributions were then related in 

the risk model as  integer k and 

. The Poisson distribution was expressed in terms 

of , whereby the rate of changes were equal to the equation . The 
moment-generating function of the Poisson distribution generated from the trailing 
vegatation, turbid water, discontinuously canopied, S. damnosum s.l. riverine, tributary, 
elucidative, hyperproductive, explanatorial, eco-epidemiological, capture point, habitat 

model predictor variables was also rendered by . Given a random variable 

x and a PDF , if there exists an , such that , where  

denotes the expectation value of , then  is called the moment-generating function 
[24]. For a continuous distribution in a seasonal, S. damnosum s.l. immature habitat, time-

series dependent, regression model [e.g., ], the 

equation is employed in GEN MOD where the r the raw moment 
[22]. For quantitating independent X and Y, the moment-generating function in a robust, 
eco-epidemiological, risk model must satisfy the equation 

 and , if the independent variables 

 have Poisson distributions with explanatively parameterizable, geo-

predictive, covariate, estimators  and [22]. This was evident in the 
habitat, regression model, since the cumulant-generating function 

was .  
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The Euler product  was then considered in GEN MOD, where  was the 

Riemann zeta function and  was the k the prime . Thereafter, by taking the finite 
product up to k=n in the habitat, regression model and pre-multiplying by a factor , we 

were able to employ to render , which was equivalent to 1.781072 
and 1.836384 in the  Gonycogo and  Adibuk intervention, narrow tributary, agro-village, 
complex, study site models respectively. 

 This way, the Euler-Mascheroni constant also represented the limit of the sequence g 

=  in the regression residuals, where  was the 

harmonic number and had the form in the eco-epidemiological models. A 

harmonic number can be expressed analytically as , where is the 

Euler-Mascheroni constant and  is the digamma function [24].  Both models 
revealed that the Euler product attached to the Riemann zeta function represented the 
sum of the geometric series rendered from the predictor, covariate coefficients as 

. A closely related result was also obtained by 

noting that . The variation when the sign changed to a sign and when 
the  in the model appeared helped move the denominator to the numerator rendering 

 = .736538 and .653431 the in s 
Gonycogo and  Adibuk models,respectively. 

 

  The probability density function of a bivariate normal distribution was implemented 
as MultinormalDistribution[ mu1, mu2 , sigma11, sigma12 , sigma12, sigma22 ] in the 
Wolfram Language package MultivariateStatistics` .  The marginal probabilities of the 
moderate resolution, S. damnosum s.l. parameterizable geo-spectrotemporally geosampled, 
paramterizable, explanative, time series, covariates    were  then  expressed as  

= = and 

= = We let and be two independent normal S. 
damnosum s.l., geoclassified,  LULC  variates with means and for , 2. Then 
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the variables and were defined employing normal bivariates with unit variance and 

correlation coefficient  where = and =  

To derive the bivariate normalized moderate resolution capture point, hypeproductive, 
S. damnosum s.l.  probability function,we  let and be normally and independently 
distributed variates with mean 0 and variance 1.We  then defined = and 

=  The variates and  were then themselves normally distributed with 
means and , variances as = and = with  covariance 

 

The covariance matrix of the S. damnosum s.l. ovipoistion, probabilisc paradigm  was 

defined by where  The joint probability 

density function for   was from (◇) and (◇).The  

forecasts revealed as long as .The matrix was  
elucidatively nverted which optimally 

rendered = = Therefore, 

=  [3.1] Expanding the 
numerator of Equation 3.1. rendered     the 

 
and

=

 

Now, the denominator  in the trailing vegetation, eco-georeferenced, forecast, 
vulnerability,  narrow riverine tributary, agro-village, partially canpiedS. damnosum s.l. 
capture point,  model of (◇) 
was

so = = =

 which was written as and 

 Solving for and and defining 
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 rendered  = while = t the Jacobian was 

= =  

so .The predictive equation was  

 where the forecasts were  

 The characteristic function of the bivariate, S. 
damnosum, s.l., oviposition, paramterizable, covariate, normalized distribution was given by 

= = wh

ere and We let 

= and =  Then  

where = and =  Completing  the square in 
the inner integral 

Rearranging to bring the exponential 

depending on outside the inner integral, letting  and solving he predictive 
probaistic  model equations lead to   which subsequently lead to 

 

Expanding the terms gave 

But i odd, so the integral over 
the sine term vanishes, and we are left with  
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We then evaluated the Gaussian integral = =  

to obtain the explicit form of the characteristic function of the S. damnosum s.l.,immature,  
habitat eco-epidemiological, regression model was then quantitated as 

 

when  

The      distribution with probability density function and distribution 

function =  and =  was optimally defineable over the interval . In an   
eco-georeferenceable, narrow ,African, riverine tributray, agro-village complex , endmember, 
hyperproductive, trailing vegetation, discontinuously canopied, seasonal, capture p[oint, S. 
damnosum s.l., ovipoisition, moderate resolution  It was implemented in the Wolfram 

Language as ParetoDistribution[k, alpha]. The th raw moment  was for , 

giving the first few as - , = , =  and = The th centralmoment was 

= = for 
 and where  was a gamma function,  was a regularized hypergeometric 

function, and  is a beta function, giving the first few 

as = , =  and =  

The beta function  is the name used by Legendre and Whittaker and Watson (1990) for 
the beta integral(also called the Eulerian integral of the first kind). It is defined 

by  

The beta function  was implemented in the Wolfram Language as Beta[a, b].To 
derive the integral representation of the beta function in the S. damnosum s.l., write the 

product of two factorials as  

Given a hypergeometric or generalized hypergeometric function , 
the corresponding regularized hypergeometric function in a S. damsnoum s.l. moderate 
resolution, endmember signature , probabilsic, iterative, interpolative, probabilsic paradigm 

may be optimally  defined by  
where  is a gamma function. Regularized hypergeometric functions are implemented in 
the Wolfram Languageas the 
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functions Hypergeometric0F1Regularized[b, z], Hypergeometric1F1Regularized[a, b, z],Hyp
ergeometric2F1Regularized[a, b, c, z]. In general, HypergeometricPFQRegularizedare 
quantitatble by [ a1, ...ap , b1, ..., bq , z]. The mean, variance, skewness, and kurtosis  in the 
eco-georferenceable.hyeprpoductive, seasaonl, trailing vegegtaion, narrow, riverine, agro-
village , tributary,  S. damnosum s.l., geo-spectrtotemrpoal, forecast, vulnerability, 
probabilistic,  paradigm was the  optimally quantized by 

= , = , = and =  

The trailing vegatation, turbid water, discontinuously canopied, S. damnosum s.l. 
riverine, tributary, elucidative, hyperproductive, explanatorial, eco-epidemiological, 
capture point, regression models were tested for overdispersion with a likelihood ratio test. 
This test quantified the equality of the mean and the variance imposed by the Poisson 
distribution against the alternative that the variance exceeded the mean. For the negative 
binomial distribution, the variance = mean + k mean2 (k ≥ 0, the negative binomial 
distribution reduces to Poisson when k = 0) [24]. The null hypothesis was H0: k=0 and the 
alternative hypothesis was Ha : k > 0 . To carry out the test, we employed the following 
steps initially, and then ran the model using a negative binomial distribution in GEN MOD 
and a record log-likelihood (LL) value. We then recorded LL for the Gonycogo and 
Adibuk models. The likelihood ratio (LR) test, computed LR statistic [e.g., -2(LL 
(Poisson) – LL (negative binomial)] for quantitating statistical significance in the 
paramterized, covariate estimators geosampled at the eco-epidemiological ,intervention, 
agro- village study sites. The asymptotic distribution of the LR statistic had probability 
mass of one half at zero and one half – chi-sq distribution with 1 df. To test the null 
hypothesis further at the significance level, we employed the critical value of chi-sq 
distribution corresponding to significance level 2.  That is, we rejected H0 if LR statistic >2 

(1-2 , 1 df).  
 

Next, the risk modesl, coefficient estimates were based on the log of the mean, which 
was a linear function of independent variables, log() = intercept + b1*X1 +b2*X2 + ....+ 
b3*Xm. This log-transformation implied that was the exponential function of independent 
variables, equalled exp(intercept + b1*X1 +b2*X2 + ....+ b3*Xm). Instead of assuming as 
before in the probabilistic Poissonian framework that the distribution of the covariate 
coefficient estimates (i.e., Y), geo-spectrotemrpoally geosampled in the Gonycogo and 
Adibuk agro-village complexes were  Poisson, a negative binomial distribution was 
assumed. That is, the generalized Poisson regression specification assumption about the 
equality of the mean and variance was relaxed, since in the immature habitat, eco-
epidemiological, vulnerability, forecasting models found that the variance of negative 
binomial was equal to + k2 , where k>= 0 was a dispersion parameter. The ML method 
was then employed to estimate k as well as the covariate estimators of the model for log.  

 
Fortunately, the SAS syntax for running negative binomial regression was almost the 

same as for Poisson regression. The only change was the dist option in the MODEL 
statement was employed instead of dist = poisson,dist = nb. The PMF+ of the negative 
binomial distribution with a gamma distributed, non-homogenous mean in the risk model 
was then expressed using the explanatively parameterized, covariate estimator, coefficients 

estimates within for the independent variables 
. The quantity in parentheses was the binomial coefficient, which was equal to 
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 This quantity was alternatively 

written as in GEN MOD for explaining 
“negative binomialness” in the hyperproductive habitat, regression models, Results from 
both a Poisson and a negative binomial model residually forecasted dataset of explanators 
revealed that the some model residual estimates were highly significant (e.g., Presence of 
eco-georeferenceable, sparsely shaded, trailing vegetation-relatedgeo-predictors) in  the 
Gonycogo and  Adibuk  narrow tributary, agro-village complex study sites. All the data 
was then exported into PROC MCMC. 

  

In PROC MCMC, a Bayesian estimation paradigm  revealed a symmetric 
distribution employing the the eco-epidemiological, eco-georefernceable,  forecasting, 
Gonycogo and  Adibuk vulnearbility risk models. It was noted that the proposal distribution 
was an easy distribution from which to sample.   Subsequently,the variables were optimally, 

regressively qualitatively, remotely quantitated by .  In doing so, the 
likelihood of jumping to θnew  from θ’  was the same as the likelihood of jumping back to 

from .  

  The most common choice of the proposal distribution is the normal distribution 
 with a fixed  [142]. The Metropolis algorithm in the explanative, geospatial, 

Bayesianistic, residual model outpust was summarized for optimally quantitating a 
parameterizable, captyre point, S. damnosum s.l. habitat, parameterizable, covariate, 
estimator, metaheursitically optimizable, radiance dataset by solving . Choose a starting 
arbitrary habitat, geosampled point (e.g., ) was easy since . A new sample,  
was generated, by employing the proposal distribution . The following quantity:  

 was calculated.  from the uniform distribution [ ] was 
calculated We set , if ; otherwise we set . Thereafter, . It was 
noted that when , the number of iterations kept increasing regardless of whether a 
proposed sample was accepted in the S. damnosum s.l. model. This non-frequentist algorithm 
defined a chain of random variates whose distribution converged to the desired distribution 
(i.e., ). The chain of samples is a sample from the distribution of insterest [24]. In 
Markov chain terminology, this distribution is called the stationary distribution of the chain, 
and in Bayesian statistics, it is the posterior distribution of the model, parameterized, 
residually regressed, time series, covariate estimators [24]. The reason that the Metropolis 
algorithm works is beyond the scope of this documentation, but proofs occur in many 
standard textbooks, [144, 145] In. Bayesian inference, the beta distribution is the conjugate 
prior probability distribution for the Bernoulli, binomial, negative binomial and geometric 
distributions[2]. We employed the beta distribution in the Bayesian analysis to describe initial 
knowledge concerning probability of success such as the probability that a space will 
successfully be  a specified  hyperproductive seasonal trailing vegation, discontinuoulsy 
canopied, turbid water, S. damnsoum s.l. immature capture point, eco-georferenceable 
habitat. The beta distribution is a suitable model for the random behavior of percentages and 
proportion[24]s. 
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Bayesian inference is a method of statistical inference in which Bayes' theorem is 
used to update the probability for a hypothesis as more evidence or information becomes 
available[25] . The prior distribution  in the S. damnsoum s.l. habitat model  was easily 
determined.  As such we employed the Jeffreys prior to obtain the posterior distribution 
before updating them with newer habitat observations. In Bayesian probability, the Jeffreys 
prior, is a non-informative (objective) prior distribution for a parameter space; it is 
proportional to the square root of the determinant of the Fisher information[24]. In 
mathematical statistics, the Fisher information (sometimes simply called informationis a way 
of measuring the amount of information that an observable random variable X carries about 
an unknown parameter θ of a distribution that models X. [ 
http://mathworld.wolfram.com]Formally, it is the variance of the score, or the expected value 
of the observed information. In The S. damnsoum s.l. model statistics, the asymptotic 
distribution of the posterior mode was dependsent on the Fisher information and not on the 
prior . 

The PDF of the beta distribution, for 0 ≤ x ≤ 1, and shape parameters α, β > 0, was a 
power function of the eco-epidemiological, eco-georeferenceable, immature habitat, capture 
point variabled x and of its 5m Rapid Eye TM  reflection (1−x) were quantiated in Calculus 
Methode/Map Server TM as  follows: 

 

where Γ(z) eas the gamma function. The beta function, , was a normalization constant to 
ensure that the total probability integrated to 1. In the above equations x was a realization—
an observed value that actually occurred—of a random process X. The cumulative 

distribution function (CDF) was  where  was  
the incomplete beta function and  

is the regularized incomplete beta functions ( see Figure 50). 
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Figure 50. The CDF for a symeteric Beta Distribution of the geosampled S. damnsoum 
s.l. capture point, autoregressive variables at the Adibuk intervention village 

   

   
 
We employed  Calculus Methode/Map Server TM for quantiating the beta 
distribution of the eco-georeferenecable, explanative,  trailing vegation, discontinuoulsy 
canopied, turbid water, explicative  capture points, expected value integral which  was 
computed as : 
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where ψ was the digamma function. In  mathematics, the digamma function is defined as the 

 logarithmic derivative of the gamma function: It is the first of 
the polygamma functions in the Gonycogo and  Adibuk  models( see Figure 51). Because of 
this ambiguity, two different notations are sometimes (but not always) used, with 

defined as the logarithmic derivative of the gamma function , and 

defined as the logarithmic derivative of the factorial function[25]. The two 
were connected in the S. damnosum s.l. habitat model by the relationship The 
th derivative of is called the polygamma function, denoted . The notation 

is therefore frequently used for the digamma function itself, and Erdélyi et al. 
(1981) use the notation for . The digamma function is returned by the function 
PolyGamma[z] or PolyGamma[0, z] in the Wolfram Language, and typeset using the notation 

 (http://mathworld.wolfram.com/). 

51  Graph of the S. damnosum s.l. habitat capture point polygamma functions ψ, ψ₁, ψ₂ 
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Figure 52 The logarithm of the gamma function and the a capture point, S. damnosum 

s.l. habitat  polygamma functions where  was the rainy season,  was the 

dry season, and  was the pre-flooded sample frame for the  Gonycogo agro-
village study site 
 

   

 

  

   

  

   The geometric mean of the S. damnsoum s.l. habitat epidemiological,  dataset 

was given by:  By using logarithmic 
identities to transform the formula in  Calculus Methode/Map Server TM the multiplications 

was n expressed as a sum and the power as:  ( see Figure 52). 
This is sometimes called the log-average (not to be confused with the logarithmic average). It 
is simply computing the arithmetic mean of the logarithm-transformed values of (i.e., the 
arithmetic mean on the log scale) and then using the exponentiation to return the computation 
to the original scale, (i.e., it is the generalised f-mean with  )as all members of 
the dataset are equal, in which case the geometric and arithmetic means are equal In 
mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM 
inequality, states that the arithmetic mean of a list of non-negative real numbers is greater 
than or equal to the geometric mean of the same list; and further, that the two means are equal 
if and only if every number in the list is the same. There are several ways to prove the AM–
GM inequality; for example, it can be inferred from Jensen's inequality, using the concave 
function ln(x). In mathematics, Jensen's inequalityrelates the value of a convex function of an 
integral to the integral of the convex function[26]. 
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 Figure 52  Geometric means for S. damnsoum s.l.capture poiunt geospectral  Beta 
distribution where  Purple = G(x), Yellow = G(1−x), smaller values alpha and beta in 
front for the  Adibuk agro-village complex 

 
 

The logarithm of the geometric variance, ln(varGX), of  the geo-spectrotemrpoal uncoalesced  
distribution with a S. damsnoum s.l. random variable X was tabulated in Calculus 
Methode/Map Server TM using  the second moment of the logarithm of X centered on the 
geometric mean of X, (ln(GX) as 

 
and therefore, the geometric variance was .the Fisher information 

 matrix, and the curvature of the log likelihood function, the logarithm of the geometric 
variance of the reflected variable (1-X) and the logarithm of the geometric covariance 
between X and (1-X) appeared as in Figure 53: 
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Figure 53 Log geometeric variances of trailing vegetation, discontinuously 
canopied, hyperproductive, S. damnsoum s.l. tyurbid water, eco-
georeferenceable, capture point Gonycogo narrow tributary study site forecast 
vulnerability covariance model 

 

We then focused on the localized DIC measure for optimal model selection and 
goodness-of-fit evaluation in the Gonycogo and  Adibuk  risk model outputs. The estimators 
employed a partitioning of the DIC into the local DIC, leverage and deviance residuals, to 
assess the local model fit and influence the stochastic/deterministic, habitat observations in 
the probabilistic, Bayesian, estimation, covariance, regression matrices. The PROC MCMC 
procedure computed three kinds of residuals. Residuals are available for all generalized linear 
models except multinomial models for ordinal response data, for which residuals are not 
available in SAS (http://support.sas.com). The raw residualized eco-epidemiological, eco-
georeferenceable, geo-spectrotemporally, geospatially probabilistic, eco-epidemiological, 
metaheuristically optimizable,  forecasts rendered from the risk models were then 
regressively defined where the nth response was the corresponding predicted mean in PROC 
MCMC. Raw residuals in an explanatorial, output dataset employing an OUTPUT statement 
were requested. By doing so, the Pearson residual was the square root of the nth contribution 
to the Pearson’s chi-square. We then requested the operationalizable, time-series dependent, 
endemic, transmission-oriented, RapidEye TM, Pearson residuals in an explantive,output dataset.  

 

Values for Markov chains were generated. Markov chain (discrete-time Markov chain or 
DTMC) is a random process that undergoes transitions from one state to another on a state 
space which possess a property that is usually characterized as "memorylessness":  the 
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probability distribution of the next state depends only on the current state and not on the 
sequence of events that preceded it [24]. For probabilistically autoregressively quantitating 
the forecasting, Gonycogo and Adibuk  risk modesl, covariate estimators, multiple MCMC 
chains were estimated for the intercept, which appeared to converge within the first 1,000 
samples. The first 1,000 samples were discarded to allow the model to stabilize (i.e., “burn 
in”), and the next 10,000 samples were optimally employed to derive unbiased elucidative 
estimators based on statistical significance. The MCMC was able to optimally numerically 
calculate multi-dimensional explanative integrals. The multiple integral was a generalization 
of the definite integral to functions of more than one hyperproductive, endmember 
explanatorial,sparsely shaded, discontinuously canopied, trailing vegetation or turbid water S. 
damnosum s.l., immature habitat, for instance,  yxf , or  zyxf ,,   in both models. 

Just as the definite integral of a positive function of one variable represents the area of the 
region between the graph of the function and the x-axis, l, a positive function of two variables 
may also represent the volume of the region or between the surface defined by the function 
on the three-dimensional Cartesian plane where z = f(x, y), and the plane contains a domain 
[24]. As such, we assumed that the same volume could be obtained via the integral of a 
function in the explanively optimally, parameterized, covariate estimator, Gonycogo and  
Adibuk  model  datasets employing the constant function f(x, y, z) = 1 over a region between 
the surface and the plane rendered from the risk model, forecasted derivatives. Multiple 
integration of a function in n variables:  nxxxf ,,, 21   over a domain D was then robustly 
constructed in PROC MCMC which was iteratively represented by nested integral signs in 
the reverse order of execution (i.e., the leftmost integral sign was computed last), followed by 
the function and integrand arguments in proper order. Finally, the integral with respect to the 
right most argument in the Markovian, immature habitat, eco-epidemiological, risk models was 
computed. 

     An improper integral was also formulated in MathLab by creating  the function 
 where fun = @(x) exp(-x.^2).*log(x).^2. We evaluated the integral from 

x=0 to x=Inf when q = integral(fun,0,Inf). Then q was   1.9475. We subsequently 
parameterized the function by creating the function with one 
parameter,  using fun = @(x,c) 1./(x.^3-2*x-c). The integral from x=0 to x=2 at c=5  was 
calculated which revaled that q = integral(@(x)fun(x,5),0,2). It was noted then that q =  -
0.4605 
 
      Singularity at Lower Limit was  rendered by create the function  whenfun = 
@(x)log(x We evaluated the integral from x=0 to x=1 with the default error tolerances in the 
S. damnosum s.l. risk model employing Evaluate the integral again, specifying 12 decimal 
places of accuracy. Using the format long q1 = integral (fun,0,1).Then q1 =-
1.000000010959678. We specified q2 = integral(fun,0,1,'RelTol',0,'AbsTol',1e-12).Then q2  
was -1.000000000000010. 
 

 For computating waypoints an ec-epidemiological, capture point, eco-
georferenceable, S. damnosum s.l. habitat, capture point, eco-epidemiological, trailing 
vegetation, hypeproductive, discontinuously canopied, turbid water, vulnerability model, 
vector-valued function  in the Gonycogo and  
Adibuk study sites an integrate was generated  from x=0 to x=1. We specified 
'ArrayValued',true to evaluate the integral of an array-valued or vector-valued function in the 
model..using fun = @(x)sin((1:5)*x). We noted that q integral(fun,0,1,'ArrayValued',true) q 
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was then equivalent to 0.4597,  0.7081,  0.6633,  0.4134 and    0.1433. 

Integrand, specified as a function handle ehich  optimally defined the function to be 
integrated from xmin to xmax. For scalar-valued problems, the function y = fun(x) must 
accept a vector argument, x, and return a vector result, y[24]. This meant that fun had to  use 
array operators instead of matrix operators in the trailing vegetation, sparsely shaded, S. 
damnosum s.l. habitat hypeproductive, capture point, Rapid EyeTM 5m discontinuously 
canopied, turbid water,vulnerability forecasting model. (e.g., uses .* (times) rather than * 
(mtimes)]. If you set the 'ArrayValued' option to true, then fun must accept a scalar and return 
an array of fixed size in a . discontinuously canopied, turbid water,vulnerability S. damnosum 
s.l. habitat hypeproductive, eco-epidemioloigical, eco-georfernceable, time series, forecast 
model[22]. 

 The MCMC procedure performed posterior sampling and statistical inference for 
constructing robustifiable, multilevel, eco-epidemiological, geospatialized Bayesian, 
parametric models. The procedure fit the 5m spatial resolution models. These models took 
various forms employing standard distributions. For example, specifying prior distributions in 
MCMC for the elucidatively orthogonally decomposable, RapidEye TM transmittance, 
wavelength, frequency imaged, eco-epidemiological, immature habitat, capture point, 
paramterizable covariates and and a conditional distribution allowed a response variable (e.g., 
total seasonal immature Simulium count) procedure to fit models by employing a standard 
form (i.e.,gamma) to specify a general distribution. 
 

The Bayes estimates of two-parameter gamma distribution was considered. It was 
assumed that the scale parameter had a gamma prior and the shape parameter had a log-
concave prior, and they were independently distributed. Log-concavity is an important 
property in the context of optimization, Laplace approximation, and sampling [24]. It  was 
assumed that the scale parameter 
had a gamma prior and the shape parameter has a log-concave prior, and they were  
independently distributed. Under the tabulated priors, we uses Gibbs sampling technique 
togenerate samples from the posterior density function. In statistics and in statistical physics, 
Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm for 
obtaining a sequence of observations which are approximated from a specified multivariate 
probability distribution (i.e. from the joint probability distribution of two or more random 
variables), when direct sampling is difficult [24].Based on the generated samples, we 
computed the Bayes estimates of the unknown parameters and also optimally 
metaheusristically  quantitated the highest posterior density credible intervals. We also 
computed the approximate Bayes estimates using Lindley's approximation under the 
assumption of gamma priors of the shape parameter. Monte Carlo simulations awere 
performed to compare the performancesof the Bayes estimators with the classical estimators.  

One data analysis was performed for illustrative purposes. Bayesian methods based on 
Gaussianprocess in PROC MCMC were then geoclassified as regression, density estimation, 
and quantitated eco-georferenceable, elucidative, point process intensity estimation values  in  
the moderate resolution, unmixed,  S. damnosum s.l., hyperproductive,  immature habitat, 
eco-georferenceable,  vulnerability, forecast maps( see Figure 54). PROC MCMC uses a 
random walk Metropolis algorithm to obtain posterior samples. For details on the Metropolis 
algorithm, see the section Metropolis and Metropolis-Hastings Algorithms. For the actual 
implementation details of the Metropolis algorithm in PROC MCMC, such as the blocking of 
the parameters and tuning of the covariance matrices, see the section Tuning the Proposal 
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Distribution. By default, PROC MCMC assumes that all observations in the data set are 
independent, and the logarithm of the posterior density is calculated as follows: 

where is a parameter or a vector of parameters. The 
term is the sum of the log of the prior densities specified in the PRIOR and 
HYPERPRIOR statements. The term is the log likelihood specified in the 
MODEL statement. The MODEL statement specifies the log likelihood for a single 
observation in the data set.  

PROC MCMC is a flexible simulation-based procedure that is suitable for fitting a 
wide range of Bayesian models[5]. To use the procedure, for spatiall;y adjusting the 
geosampled, S. damnosumn s.l., immature habitat, capture point paramterizable 5m covariates  
we needed to specify a likelihood function for the data and a prior distribution for the 
parameters. We also needed to specify hyperprior distributions for fitting the  hierarchical 
model. PROC MCMC obtained the black fly samples from the corresponding posterior 
distributions, produces summary and diagnostic statistics, and saves the posterior samples in 
an output dataset so that it could be used for further analysis. We analyzed the LULC 
ovispoition  data to determine is a likelihood, prior, or hyperprior with PROC MCMC were  
programmable using the SAS DATA step functions. The geosampled capture point  
parameters were entered into the model in a nonlinear functional form. The default algorithm 
that PROC MCMC used was an adaptive blocked random walk Metropolis algorithm that 
employed a normal proposal distribution 

 In statistics and in statistical physics, the Metropolis–Hastings algorithm is a Markov 
chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a 
probability distribution for which direct sampling is difficult. This sequence can be used to 
approximate the distribution (e.g., to generate a histogram), or to compute an integral (such as 
an expected value from a S. damnsoum s.l., eco-epidemiological, ovispoition model). 
Metropolis–Hastings and other MCMC algorithms are generally used for sampling from 
multi-dimensional distributions, especially when the number of dimensions is high [5].  

 To use PROC MCMC for quanatizing the geosampled, geospectrotemporal, S. 
damnosum s.l. dataset  we specified the model parameters (using the PARMS statements), the 
prior distributions (usingthe PRIOR statements), and the conditional distribution of the 
response variable given the parameters and covariates inthe data set (using the MODEL 
statements). The prior distributions and the likelihood function jointly define a 
posteriordistribution, which becomes the objective function that PROC MCMC uses in the 
Metropolis algorithm (www.sas.edu). 
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Figure 54 Spatially adjusting logarithmically log-concave Bayesian  predictive densities 
from the corresponding capture point RapidEyeTM 5m, wavelength, frequency 
transmittance emissivities of observed discontinuously canopied, trailing vegetation,  
covariate estimators in geospace in the. Gonycogo  study site agro-village model  

 
Further, the likelihood was log-concavity  in the explanatively eco-georeferenceable 

elucidative hyperparameters controlling the mean function of the Gaussian prior in the 
density and point process intensity estimation where the mean, covariance, and observation 
noise parameters in the geo-classified paradigm. The field-operationizable, eco-
epidemiological, seasonally hyperproductive, endmember explanatorial,sparsely shaded, 
discontinuously canopied, trailing vegetation or turbid water, S. damnosum s.l., immature 
habitat, eco-epidemiological, capture point, eco-georefernceable forecasts in the Gonycogo 
and  Adibuk  paradigms revealed useful parameterization of these hyperparameters, 
indicating a suitably large class of priors for which the corresponding maximum a posteriori 
problem is log-concave.  In doing so, a Bayes estimate was also optimally quantitated of the 
unknown parameters and and the highest posterior density credible intervals. The 
approximate Bayes estimates used Lindley's approximation under the assumption of gamma 
priors of the shape parameter was tabulated for the model covariance stuctures. In probability 
theory, the Lindley equation, Lindley recursion or Lindley processes[1] is a discrete-time 
stochastic process An where n takes integer values andAn + 1 = max(0, An + Bn)[24]. 
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The MCMC procedure also employed a random walk Metropolis algorithm to 
simulate the hyperproductive Simulium samples in the geo-spectrotemrpoally geosampled at 
the  Gonycogo and  Adibuk  study sites from employing autoregressive, auto-probabilistic 
elucidative, expository model auto-specifications( see Figure 55). We fit the same Bayesian 
linear regression model, use standardized  trailing vegation, discontinuoulsy canopied, 
sparsely shaded,capture point, eco-georefernceable,  S. damnsoum s.l.,immature ,capture 
point, habitat geosampled paramterizable covariate coefficients. We re-wrote the mean 
function as = where  was the design matrix constructed from a column of 1s and 
standardized covariates. The regression parameters on the standardized scale were 

represented by . The standardized covariates were computed as follows: =  for 
 predictide hypeproductive seasonal habitat  and covariates, and where 

and are the mean and standard deviation of the th covariate, respectively. 
 

Figure 55 The resulting plot  of Monte Carlo simulations performed to compare the 
performances of the trailing vegetation, discontinuously canopied, eco-georefernceable, 
capture point, S. damnosum  s.l. habitat decomposed  Bayes estimators with the classical 
estimators for the eco-epidemiological geosampled, Adibuk agro-village, discontinuous 
model 

 

A standard linear regression problem, in which for  was considered to 
quanite the ecogeorferenecable, trailing vegetation, turbid water, discontinuously canopied, S. 
damnsoum s.l. capture points  geosmapled at the Gonycogo and  Adibuk  study sites by 
specifying  the conditional distribution of given a predictor vector 
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: where  was a vector, and the were  independent and identical 
normally distributed uncoalesced 5m  randomized endmember  variables: 

This corresponded to the following likelihood function: 

The ordinary least squares solution 
was then used  to estimate the coefficient vector using the Moore-Penrose pseudoinverse: 

 where  was the  design matrix in PROC MCMC where, each row 
was a predictor vector ; and  was the column -vector . This was a 
frequentist approach, and it assumes that there are enough submixel Rapid Eye TM 5m  
measurements  to say something meaningful about . In the Bayesian approach, the iterated 
Gonycogo and  Adibuk  data  were supplemented with additional information in the form of a 
prior probability distribution. The prior belief about the parameters  was  combined with the 
data's likelihood function according to Bayes theorem to yield the posterior belief about the 
parameters and . The prior  took different functional forms which in the S. damnsoum s.l. 
capture point, model was dependnet  on the domain and the information that was  available 
from  a priori. 

In probability theory and statistics, the inverse gamma distribution is a two-parameter 
family of continuous probability distributions on the positive real line, which is the 
distribution of the reciprocal of a variable distributed according to the gamma 
distribution[24]. The gamma distribution is a two-parameter family of continuous probability 
distributions[23].. The exponential distribution and chi-squared distribution(i.e.,  special 
cases of the gamma distribution) were then constructed.. 

Figure 56 a Poisson S. damnosum s.l. habitat  distribution with rate of change , the 
distribution of waiting times between successive seasonal changes (with ) was 

= = = and the probability distribution function was 
 

                               

 The inverse gamma distribution's PDF was defined over the support 

with shape parameter and scale parameter  
in the S. damnosum s.l. eco-epidemiological, trailing vegetaion, capture point, habitat model 
where re denoted the gamma function. The Gamma distribution, contained a somewhat 
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similar exponential term,   whose  scale parameter was the distribution function  which 

satisfiesd . We considered an alternative parametrization of the 
normal distribution in terms of the precision, defined as the reciprocal of the variance, which 
allows the gamma distribution to be used directly as a conjugate prior( see Figure 56)..  

Figure 56 An inverse gamma distribution of the capture point S. damnsoum s.l. habitat 
decorrelated variables, where the distribution arose as the marginal posterior 
distribution for the unknown variance of a normal distribution using an uninformative 
prior and as an analytically tractable conjugate prior for the Adibuk  agro-village 
complex study site 

 

In Bayesian statistics, the posterior probability of a random event or an uncertain 
proposition is the conditional probability that is assigned after the relevant evidence or 
background is taken into account. Similarly, the posterior probability distribution is the 
probability distribution of an unknown quantity, treated as a random variable, conditional on 
the evidence obtained from an experiment or survey[24]. The posterior probability in the 
trailing vegation, discontinuoulsy canopied, turbid water, eco-epidemiological, eco-
georferenceable, hypeproductive, capture point, S. damnsoum s.l. immature geosampled 
capture points in each narrow tributary, agro-village, complex study site  was the probability 
of the parameters given the evidence : ( see Figure 56)This methodology 
contrasted with the quanatitaion of  likelihood function, which was  the probability of the 
evidence given the parameters:  in the habitat model  We let a prior belief that the 
probability distribution function  was  and then the geo-spectrotemrpoal, narrow riverine 
tributary observations with the likelihood ,  along with the posterior probability was 

defined as The posterior probability  was then written in the 
memorable form as Posterior probability Likelihood Posterior probability. 
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Figure 56 Illustration of the gamma PDF for the trailing vegation, discontinuoulsy 
canopied, eco-georfernceable, S. damnsoum s.l. immature, turbid water   Bayesainized 
parameterized  values over k and x with θ set to 1, 2, 3, 4, 5 and 6 for the  Gonycogo  
study site 

 

 

We  wrote  the discontinuous, infrequently canopied, sparsely shaded, S.damnsoum 
s.l. ,agro-village, narrow tributary,  capture point’s mean functions as = where  was 
the design matrix constructed from a column of 1s and standardized covariates. The 
metaheursitically optimizable regression parameters on the standardized scale are represented 

by . The standardized covariates were computed as follows: =  for 
.Rapid Eye TM  wavelength , immature habitat, uncoalesced frequency-oriented 
 optamally parameterizable covariate coefficients and where and  wer  the 

mean and standard deviation of the th covariate, respectively with summary statement amd 
interval statistics of all the geo-spectrotemrpoally geosampled capture point parametrs ( see 
Table 4).  
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Table 4 Posterior Model Summary of Bayesian Linear Regression with Standardized 
Rapid Eye TM in PROC MCMC for the Adibuk  model 

Posterior Summaries  

Parameter N  Mean  Standard  
Deviation 

Percentiles  
25%  50%  75%  

beta0  200  1.3465  0.0666  1.6059  1.6470  1.6956  
beta1  200  -0.00006  0.000911  -0.00061  -0.00004  0.000547 
beta2  200  0.000112 0.00166  -0.00053  0.000860 0.00200  
beta3  200  0.00176  0.000911  0.00128  0.00186  0.00298  
beta4  200  0.00248  0.000911  0.00184  0.00217  0.00281  
beta5  200  0.1043  0.0233  0.0996  0.1038  0.1169  
beta6  200  0.000711 0.000176  0.000642 0.000750 0.000843 
beta7  200  -0.00633  0.000998  -0.00694  -0.00629  -0.00562  
beta8  200  -1.43E-7  5.844E-8  -1.83E-7  -1.47E-7  -1.08E-7  
sig2  2000 0.0565  0.00511  0.0564  0.0543  0.0649  

 
Posterior Intervals  
Parameter Alpha Equal-Tail Interval HPD Interval  
beta0  0.050  1.5123  1.7714  1.5120  1.7705  
beta1  0.050  -0.00195  0.00165  -0.00192  0.00168  
beta2  0.050  -0.00235  0.00417  -0.00233  0.00418  
beta3  0.050  -0.00006  0.00382  -0.00001  0.00383  
beta4  0.050  0.000236  0.00412  0.000303 0.00416  
beta5  0.050  0.0651  0.1450  0.0625  0.1415  
beta6  0.050  0.000428  0.00107  0.000428 0.00107  
beta7  0.050  -0.00827  -0.00443  -0.00822  -0.00442 
beta8  0.050  -2.62E-7  -3.17E-8  -2.63E-7  -3.32E-8 
sig2  0.050  0.0498  0.0705  0.0494  0.0699  

 
 
 An optimization technique (i.e., the quasi-Newton algorithm) was chosen to estimate 

the posterior mode and approximate the covariance matrix around the mode in the Gonycogo 
and  Adibuk  models. Quasi-Newton methods are methods used to either find zeroes or local 
maxima and minima of functions, as an alternative to Newton's method, but can be used if a 
Jacobian or Hessian matrix for quantitating, iterative count data variables. In vector calculus, 
the Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued 
function especially when the matrix is a square matrix.The procedure computed a number of 
posterior estimates, and output a posteriorily autoregressed dataset of parameterized, S. 
damnosum s.l. non-homogenously canopied, trailing vegetation–related, non-fractionalized, 
RapidEye 5m, capture point, covariate coefficient estimates. Successful Bayesian inference 
uses sampling-based approaches depending on the convergence of the Markov chain [24]. 
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 Quasi-Newton methods accelerate the steepest-descent technique for function 

minimization by using computational history to generate a sequence of approximations to the 
inverse of the Hessian matrix. This paper presents a class of approximating matrices as a 
function of a scalar parameter. The problem of optimal conditioning of these matrices under 
an appropriate norm as a function of the scalar parameter is investigated. A set of 
computational results verifies the superiority of the new methods arising from conditioning 
considerations to known methods  

We optimally employed quantized gradient information for metaheursitically 
optimizing the quasi-Newton methods. These methods built up curvature information at each 
iteration to formulate a quadratic model. We, considered the unconstrained minimization 
problem, to minimize f(x), where the function took vector arguments and returned  scalars. 
Thus at an explanative, seasonal, hyperproductive, eco-georefernceable, eco-georefernceable, 
capture point x in n-space .a point with a lower function value was employed for quantiating 
the geo-spectrotemrpaolly geosampled Gonycogo and  Adibuk  datasets. The basic idea was 
to approximate f with a simpler function q, which reasonably reflectws the behavior of 
function f in a neighborhood N around the geo-spectrotemporally geosampled habitat point x 

  in each study sites where the Hessian matrix, H, was a positive definite 

symmetric matrix, c  was a constant vector, and b  was a constant. The optimal solution for 
this problem occurred when the partial derivatives of x went  to zero,( i.e., 

). The optimal solution elucidative habitat vpoint, x*, was written as 

in the Gonycogo and  Adibuk forecast, vulnerability, Rapid Eye TM 5m  models. 

         Newton-type methods (as opposed to quasi-Newton methods) calculated H directly and 
proceeded  in a direction of descent to locate the minimum after a number of  S. damnosum 
s.l.iterations for . constructing the Gonycogo and  Adibuk models Originally proposed to find 
the roots of polynomials  the method may be employable for general nonlinear equations and 
for its use in optimization by finding a root of thegradient [26]. In calculus, Newton's method 
is an iterative method for finding the roots of a differentiable function f (i.e. solutions to the 
equation f(x)=0). In optimization, Newton's method is applied to the derivative f ′ of a twice-
differentiable function f to find the roots of the derivative (solutions to f ′(x)=0), also known 
as the stationary points of f[24]. Calculating H numerically for the eco-georefernceable, 
seasonally hyperproductive, trailing vegation, turbid water, eco-georferenecable, agro-village 
complex, discontinuously canopied, S. damnosum s.l.  habitat models  involved a large 
amount of computation. In the one-dimensional problem, Newton's method attempts to 
construct a sequence xn from an initial guess x0 that converges towards some value x* 
satisfying f ′(x*)=0. This x* is a stationary point of f. (http://mathworld.wolfram.com/.html) 
Newton’s method for optimization, in addition to the deficiencies faced when solvingsystems 
of equations, needs to be augmented to enable iterates to move off saddlepoints. This is the 
key augmentation that is needed for minimization problems [25] It took Newton's steepest 
multiple explanative, iterations in order to simulate  the endmember Rapid Eye TM 
,geosampeld  estimators employing  a statistical significance with a 95% confidence interval 
in both models ( see Figure 57). 
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Figure 57 Simulated iterations  using the Quasi-Newton methods employing the 
observed behavior of f(x) and ∇f(x) to build up curvature information to make an an 
appropriate updating technique for robustly quantitating the standardized S. 
damnosum s.l. covariate coefficients geosampled  at the Adibuk narrow tributary study 
site .  

 

Initialization Iteration #1 Iteration #2 Iteration #3 

 

  Iteration #8              Iteration #20                   Iteration #70                      Iteration #85 

We employed Broyden–Fletcher–Goldfarb–Shannon (BFGS) algorithm, to generate  
an iterative method for solving unconstrained nonlinear optimization problems in the trailing 
vegetaion, discontinuoulsy canopied, sparsely shaded, seasonally explanative, captuire point 
in each agro-village complex study site. As any of Newton-like methods, BFGS uses 
quadratic Taylor approximation of the objective function in a d-vicinity of x: f(x + d) ≈ q(d) = 
f(x) + dTg(x) + ½ dTH(x) d, where g(x) is the gradient vector and H(x) is the Hessian matrix. 
The necessary condition for a local minimum of q(d) with respect to d results in the linear 
system: g(x)+ H(x) d = 0which, in turn, gives the Newton direction d for line search: d = - 
H(x)-1g(x))  

 The BFGS method approximated Newton's method using a class of hill-climbing 
optimization techniques that saught a stationary point of a preferably twice continuously 
differentiable capture point, quantized function. A necessary condition for optimality in the S. 
damnsoum s.l. model was that the gradient  had to be zero. Newton's method and the BFGS 
methods converged employing the function which had a a quadratic Taylor expansion near an 
optimum. The BFGS is a mathematical optimization technique which belongs to the family of 
local search (i.e.,  hill climbing)  employed as  an iterative algorithm in ArcGIS  that starts 
with an arbitrary solution to find a better solution by incrementally changing a single element 
of the solution(www.esri.com). The algorithmic methods used both the first and second 
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derivatives of the function.BFGS showed good performance even for non-smooth 
optimizabl,e , trailing vegetaion, turbid water, eco- discontinuous,  canopied, S. dansoum s.l. 
capture point, interventional. narrow tributary, agro-village complexes. The BFGS revealed 
good performance even for conducting  the smoothness  optimizations on the riverine habitat 
data geosampled in the Gonycogo and  Adibuk study sites (see Figure 58) 

Figure 58 The BFGS approximated method for quantiating  the eco-georeferenceable 
trailing vegation, discontinuoulsy canopied, hyperproductive,  agro-village complex, 
ecosystem  capture point, S. damnsoum s.l. habitat employing  a class of hill-climbing 
optimization techniques of a preferably twice continuously differentiable function at the 
Gonycogo study site 
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Figure 59 An S. damnosum s.l. habitat objective function: the Rosenbrock function  
employingf(x)=∑ i=1 N−1 [(1−x i ) 2 +100(x i+1 −x 2 i ) 2 ]∀x∈R N  for the discontinuous 
sparsely shaded, canopy geo-spectrotemporally geosampled at the  Adibuk study site 
 

 

 

 
We queried a collection of additional details about the minimization process after it 

was finished.Information included the number of iterations needed, for quantitaing  the norm 
of the gradient ||grad(f(x ~ ))||  in the S. damnosum s.l. habitat eco-epidemiological Gonycogo 
and  Adibuk models using a . Rosenbrock function (see Figure 58). The mathematical 
optimization, the Rosenbrock function is a non-convex function used as a performance test 
problem for optimization algorithms[24].  
 
              The n-dimensional Rosenbrock function was  implemented in ILNumerics 

Optimization Toolbox among other test functions. The minimum of the 2D variant  
wasknown  was found at [1,1]. In order to get the number of optimal  iterations needed by 
BFGS and L-BFGS to obtain the minimum of the 2D Rosenbrock function, we quantitated a 
minimizer at [1,1].Therefater  fminunconst_bfgs managed to find the solution  using less 
iterations compared to L-BFGS. Also, the solution was  much more accurate. While most 
optimizer implementations are able to find the minimum of the rosenbrock function up to a 
precision of 1e-6 only, fminunconst_bfgs gets as close as 7 * 10-13! [24]. 
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    The norm of the gradient was  plotted as a logarithmic line plot for both algorithms. The 
values 
returned by gradientNorm was a valuable time series, eco-georefernceable, hypeproductive, 

eco-epidemiological, capture point,   indicator for the quality of the results ( see Figure 60) . 
Usually, for a straight path to the minimum, intermediate steps should show decreased 
norm(grad(f(x)))  values[24]. At the minimizer x ∗   , the gradient optimally gets close to 0 ⃗   
. 
Figure 60. Plotted BFGS and Newton for optimizing forecasted S. damnosum s.l. 

habitats using a  Rosenbrock function for the Gonycogo study site 
  

 
 

The MCMC procedure provided a number of non-normality convergence diagnostic tests 
to quantitate skewness and kurtosis in the eco-geographic, eco-hydrologic, geo-
spectrotemporally geospatially eco-cartographical, decomposable variables, eco-
geographically illustrating prolific, seasonal, hyperproductive, S. damnosum s.l., capture 
point habitats geosampled in the African riverine agro-village complexes. Formalizing and 
generalizing families of univariate distributions optimally obtained a density-based (i.e., 
immature count) log-transformation in PROC MCMC of a unimodal, systematic, continuous 
distribution which revealed a shape parameter and explanatively parameterizable, 
discontinuously canopied, covariate estimators (e.g., percent of sparely shaded trailing 
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vegetation) in the eco-georeferenceable, seasonally, RapidEyeTM imaged, eco-
epidemiological, S. damnosum s.l., habitat, capture point, vulnerability, forecast models. The 
resulting distributions in PROC MCMC contained interpolatable, decomposable habitat 
parameterizable covariate, 5m, wavelength, transmittance, frequency estimators, that were 
utilizable for identifying, habitat covariates at each study site. A scaled dataset of unmixed, 
geolocational, immature riverine, eco-georeferenceable, habitat invariant benchmark priors 
then enable validative model renderings. ( Figure 61) The algorithm auto-probabilistically, 
remotely, autoregressively quantitated the random samples from any arbitrarily complicated 
RapidEyeTM 5m, targeted, habitat distribution of any dimension (e.g., a dataset of  slightly 
turbid trailing vegtation geosampled habitats) that was known up to a normalizing constant.  

Figure 61 PROC MCMC simulation of posterior samples  of eco-epidemiological, 
regression datasets of  S. damnosum s.l. habitat covariate, parameterized estimators  for 
the Adibuk agro-village narrow tributary, trailing vegation, discontinuous canopied, 
forecast model 

               

 
Thereafter, the deviance residual was defined as the square root of the contribution of the 

nth narrow riverine,tributary  prolific, habitat, descriptive, observation to the deviance, with 
the sign of the raw, residually quantitated predictor variable in the OUTPUT statement. The 
adjusted Pearson, deviance and likelihood residuals were then optimally defined employing 
the models of Agresti in 1987 [146], and Davison and Snell in 1991 [147]. These residuals 
were useful for outlier detection and for assessing the influence of single observations on the 
fitted Gonycogo and  Adibuk models.  



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

357 
Copyright © acascipub.com, all rights reserved.  

 
For optimally residually quantitating the hierarchically explanatively, generalizable, S. 

damnosum s.l., hyperproductive, immature, narrow,  riverine, tributary, eco-epidemiological, 
immature capture point, habitat, risk models, the variance of the nth individual habitat 
observation was then given by the dispersion parameter which was a user-specified prior 
weight. The mean, and the variance function were parsimoniously quantitated. We also 
constructed a robust, diagonal, uncertainty matrix in PROC MCMC for denoting the nth 
diagonal element in the empirical, eco-ecological, probabilistic dataset. The weight matrix 
was employed in computing the expected information matrix. The Pearson residuals were 
standardized to have unit asymptotic variance. The standardized Pearson residuals in the 
output dataset were quantitated employing STDRESCHI in the OUTPUT statement. The 
deviance residualized probabilistically regressed, endemic, transmission-oriented, eco-
georefernceable forecasts were standardized to have a unit asymptotic variance as tabulated 
by the total deviance from the geosampled habitat observations.  

The standardized deviance residuals were requested in the output dataset employing 
“STDRESDEV” in the OUTPUT statement. The likelihood residuals were thereafter defined. 
We then requested the likelihood forecasted residuals in an output dataset employing 
“RESLIK” in the OUTPUT statement. In so doing, the eco-georeferenced, RapidEyeTM , 
discontinuously canopied, trailing vegetation and turbid water, sub-mixel eco-
epidemiological, time series forecasts were geo-spatiotemporally/ geo-spectrotemporally 
elucidatively quantitated, which allowed the local DIC to assist in model selection to 
regressively visualize the global and local impacts of adding fractionalized, wavelength, 5m, 
RapidEye TM resolution parameterizable, transmittance, frequency-oriented, covariate 
estimators and other unmixed, emissivity, observational predictors to the auto-probabilistic, 
hierarchical, Bayesian estimation, uncertainty-oriented,  probabilistic matrix. DIC statistics 
were generated to identify the best fitting models.  

The deviance in the regressed, habitat, wavelength, 5m, RapidEye TM emissivity 
fractionalized, endmember, transmittance, wavelength, 5m, risk-related, forecasting, iterative 
interpolation models were then defined as – log2  (likelihood), where the ‘likelihood’ was 
defined as p(y | θ). This included all the normalizing constants where y comprised all 
stochastic node values, and θ stochastic parents of y in the risk model. ‘Stochastic parents’ are 
the stochastic nodes upon which the distribution of y depends upon when collapsing over all 
logical relationships [24]. 

We noted that when ~y  Dnorm (mu, tau), then tau was a function of a parameter phi 
which was then optimally defined in PROC MCMC by the prior distribution in the risk 
model. Thereafter, the likelihood was defined as a function of phi in the models. The 
expectation     DED  was optimally employed as a measure of model fitness based on the 
values of the emissivity, sub-mixel, reflectance, covariate coefficient values. The effective 
number of parameters included in the model was computed as  , DDpD  where   was 
the expectation of .  The DIC in the model generated the following conclusions: (1) the 
Dbar, was the posterior mean of the deviance, (2) the Dhat, was the point estimate of the 
deviance (i.e., – log2  (likelihood)) obtained by substituting the posterior means θ bar of θ 
which then rendered Dhat log2  p(y — θ. bar); and, 3) pD was the effective number of 
explanatorily, endemic, immature riverine, tributary, immature habitat, transmission, 
endmember, RapidEye TM, 5m, resolution estimators provided by pD = Dbar – Dha and pD 
employing the posterior mean of the deviance minus the deviance of the posterior means.  

In normal hierarchical eco-epidemiological, vulnerability, forecasting models, Pad = TR 
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(H), where H is the ‘hat’ matrix maps the observed data to their fitted values (3). The DIC 
was then optimally calculated as: .DpDIC D   The DIC value for the finalized, field and 
remote specified, eco-epidemiological, risk models was 931.6.and 937.2 for the Gonycogo 
and  Adibuk agro-village complexes.  

      L-BFGS uses a trust-region method for finding new update steps[24].We  normalized the  
/ scale of the objective functions as to reach a good floating point precision range (i.e.: values 
‘near' 1.0). Linear programming methods are algebraic techniques based on a series of 
equations or inequalities that limit a problem and are used to optimize a mathematical 
expression called an objective function whose enedmember constraints  may be placed upon 
a problem[24].. In order to do so  the regressors must be deterministic and able to be 
expressed in linear form.; An optimization problem was represented  for the eco-
georferenceable, trailing vegetaion, discontinuoulsy canopied, turbid water, eco-
epidemiological, capture point, S. damnsoum s.l. habitats  in the narrow riverine tributary , 
eco-epidemiological, intervention villages employing a function f : A R from the set A of 
the interpretively iteratable, interpolative, geo-spectrotemrpoally gospatially geosampled, 
Rapid Eye, 5m  wavelength, frequency, trasnmittance, paramterizable, covariate, coefficient 
values.In so doing,    an element x0 in A was rendered such that f(x0) ≤ f(x) for all x in A 
("minimization") or such that f(x0) ≥ f(x) for all x in A ("maximization").( see Figure 62).  

Figure 62 A local minimum x*  defined as a hypeproductive, eco-epidemiological, 
capture point, eco-georferenceable, S. damnsoum s.l. point for which there existed some 
δ > 0 so that  when the expression  for the Gonycogo 
study site 

 

 
       

Median parameter values, as well as the 95% credibility intervals (2.5 percentile and 97.5 
percentile values), were autoregressively probabilistically generated for the residually, 
forecasted, normalized, covariate, emissivity, estimator dataset. As the capture point, 
immature habitat sampling sites increased based on the estimators the geo-predictor, 
Percentage of trailing hanging vegetation, geo-classified LULC increased as did, the median 
log-larval count in both study sites. The adjusted model quantitated the independence amongst 
the time-series, explanatively depende,t field and remote-specified, observational eco-
epidemiological forecastors representing the larval counts. Proximity collinearity to a global 
orientation in a Bayessian probabilistic paradigm can generate propagation error such as 
heteroskedastic parameters (Jacob et al 2005). We noted this model fit better than the model 
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that adjusted for correlation within the narrow tributary, riverine, eco-epidemiological, agro-
village complex study sites based on the root mean square error (RMSE). 

Next, a explanatory dataset of Red Edge, NDVI, optimally parameterized, RapidEye 
5m, covariate emissivities was generated in ArcGIS employing the reflectance, 5m RapidEye 
TM waveband data (i.e., capture point) geosampled at the agro-village complex, ecosystem, 
study sites. For each NDVI value, the total LULC areas were optimally determined for 
specific, topographic, LULC vegetation, cover classes ecologically associated to the eco-
georeferenced, capture point, immature habitats. The equation Image Server employed to 
render the output produced a single-band dataset from each 5m, LULC, data product in 
ArcGIS. The differential reflection in the red and infrared (IR) bands from the 5m imager 
enabled robustly quantifying density and intensity of sparsely shaded, within-canopy, LULC 
objects (e.g., trailing vegetation) employing the reflectivity of solar radiation. 

A RapidEye TM Red Edge, NDVI, S. damnosum s.l., habitat, 5m, wavelength, 
transmittance emissivity, empirical, LULC datatset was then created employing ENVI, and a 
spectral library file was opened. A standard ENVI spectral library (.sli) was selected, 
launching ENVI's Spectral Library Viewer. The left side of the Spectral Library Viewer 
dialog listed the Red Edge endmember, 5m, NDVI, immature, habitat biosignature within the 
selected library. The right side of the viewer used the tabs to display the metadata for selected 
unmixed, Red Edge, NDVI, immature habitat, Chl-a, explanatory variables and queried 
selected biosignature-oriented, time series, explanative LULC, reflectance, coefficient values. 
Metadata for the selected biosignature appeared in the Metadata tab.  

 
We then generated a correlation, time series, 5m, RapidEyeTM, uncertainty matrix in 

ENVI to determine the accuracy of a decomposable dataset of spectroscopic, Red Edge, 
NDVI, habitat emissivity, covariate estimators synthesized in ArcGIS. The row in the matrix 
eco-cartographically illustrated the Red Edge, NDVI, biosignature data constructed from the 
RapidEyeTM data products, while the columns represented the reference data (i.e., in-situ 
geosampled data) in the object-based classifier. Measures of thematic accuracy were also 
generated including overall LULC accuracy and percentage of omission forecasting of the 
eco-epidemiological, habitat capture point’s sub-mixel reflectance variables. The habitat 
wavelength, covariate coefficient, indicator measurement values were the percentage of 5m 
mixels that were in a given Red Edge, geoclassified, NDVI class, but these were not eco-
geographically or ecohydrologically geo-spatiotemporally geoclassified.   

      The Red Edge NDVI biosignature produced in ENVI of the geosampled,narrow tributary,  
riverine, trailing vegetation, hyperproductive, discontinuous, sparsely shaded,  canopied, S. 
damnosum s.l. immature habitat capture points in  Gonycogo and  Adibuk ago-villages  was 
subsequently exported into ArcMap. The NDVI was filtered in ArcMap for optimally 
determining and robustly quantitating the lowest unmixed, fractional 5m, wavelength, 
emissivity, transmittance radiance, values that were geo-spectrotemporally associated with 
healthy geoclassifiable,, discontinuous canopy, green vegetation LULC endmembers. To 
determine this value, the natural RapidEyeTM color imagery as the top layer was color 
balanced and then added to the Red Edge, NDVI, canopy layer ( see Figure 63). By clicking 
on multiple 5m mixels with the Identity Tool in ENVI, the edge of live/dead, discontinuous, 
canopy, LULC vegetation, unmixed, reflectance data feature attributes of the 
hyperproductive, time series dependent, geosampled, habitats in the Gonycogo and  Adibuk 
study sites  were eco-cartographically robustly illustrated ( see Figure 64). 
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Figure 63 Braod classifiaction preview of a cluster of sporadic 5m, Rapid Eye TM canopy 
cover of a seasonal, hypeproductive , trailing vegetion, turbid water, eco-
georferenceable, capture point, S. damnosum s.l. habitat at the Adibuk  agro-village, 
eco-epidemiological study site 
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Figure 64  Flassh TM discontinuous Rapid Eye TM canopy reflectance and spectral angles 
of the  S. damnosum s.l.,capture point in Adibuk village  using object-based cluster of 
positively autorccorelated immature hyperproductive immature habitats along with a 
canopied capture point in  Gonycogo village    

 

 
From the Endmember Collection SID dialog we selected 

Import > spectra_source for collecting and archiving the unmixed, hyperproductive, 
geosampled, decomposed, immature 5m, NDVI decomposed, endmember habitat data. The 
SID, LULC endmember parameters dialog appeared. Thresholding options were selected 
from the Set Maximum Divergence Threshold area. The Single Value parameterization was 
employed for quantitating unmixed, endmember Red Edge, NDVI, trailing vegetation and 
turbid water, S. damnosum s.l., immature habitat, canopied, vegetation-related, LULC sub-
mixel radiance. A single threshold was chosen for geo-classifying the hyperproductive, 
geosampled, geoclassifiable, LULC, habitat classes. A value was then entered in 
the Maximum Divergence Threshold field. This was the minimum allowable variation 
between the sparsely shaded, unmixed, geoclassified, trailing vegetation and turbid water, 
LULC endmember, discontinuous, unmixed, canopied, spectrum vector and the mixel 
vector. The default value was .05.  
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Multiple decomposed endmember values were subsequently entered into a different 
divergence to test each geoclassified, RapidEye TM, 5m, canopy endmember, LULC class 
against its corresponding maximum spectral divergence. A class was selected to assign 
threshold immature, habitat, vegetation, sub-mixel, fractionalized, eco-georeferenced 
LULC, endmember sub-mixel, reflectance values, which edited the value in the Edit 
Selected Value field employing the Maximum Divergence Threshold dialog for each 
capture point intervention scene.. 

 
We also employed the Spectral Information Divergence (SID) classification in ENVI 

to compare the similarity between the selected Red Edge, NDVI, eco-georeferenced, 
sparsely shaded, habitat, canopy-oriented, floating, hanging and dead vegetated, 
geoclassified, riverine, geospectral, LULC, decomposed components by measuring the 
probabilistic discrepancy between their corresponding wavelength, transmittance 
emissivities in the Gonycogo agro-village study site. The ToolBox Classification in ENVI 
was selected to perform the geo-classification chores. From the Endmember Collection 
dialogue menu bar, the SID algorithm was then selected. The Classification Input File 
dialog appeared, and an input file was selected which performed the spatial and geospectral 
subsettings and masking.  

 
ENVI technology then automatically categorized each individual 5m, fractionally 

decomposed endmember, LULC, wavelength emissivity, geo-classifed, RapidEyeTM data 
feature attribute from the Red Edge, NDVI biosignature transmittance, data products based 
on discontinuous, floating trailing and dead vegetation geospectral, canopy classes. The 
object classifier converted the remotely-sensed raster layers to vector coverages which were 
then geo-classified as shapefiles. ENVI provided interactive spatial/spectral mixel editing for 
the unmixed, components in the Red Edge, narrow riverine, immature habitat, sparsely 
shaded, trailing vegetation, NDVI biosignature.  

 
The variation of turbid water reflectance was minimal in the blue. The minimum near 

440 nm corresponded to the to Chl-a absorption.  This was distinct in the unmixed, immature, 
hyperproductive habitat reflectance spectra in the range 400 to 500 nm, which did not have 
pronounced decomposable NDVI, biosignature, sub-mixel, eco-georeferenceable, iteratively 
interpolatable, data feature attributes over the broad range of quantitated turbidity and Chl-a 
concentration coefficient values. Absorption by dissolved organic matter and scattering by 
particulate matter may have contributed to the unmixed, canopied, habitat wavelength, 
emissivity, transmittance endmember, discontinuous, multiscattering reflectance, LULC 
patterns, in specific spectral ranges and, as a result, the blue to green ratio (i..e, R440/R550 ) 
was poorly related to Chl-a but appeared adequate for estimating Chl-a in the intervention 
riverine village study site waters (0.24, RMSE). 

In the green range around 550 nm, absorption by the orthogonally decomposed,  
partially canopied, capture point,  immature habitat pigments was minimal and scattering by 
all particulate matter played the main role in the latent, intra-cluster, geo-classifiable, eco-
georeferenceable, LULC quantitation algorithmic decomposition, exercise. Reflectance in 
this range varied about three-fold with fractionalized, endmember variations in the 
concentration and composition of each of the unmixed, habitat, RapidEye TM, 5m, 
biosignature, endmember, reflectance, constituents. Interestingly, the frequency peak 
manifested minimal combined absorption by all the unmixed geosampled, geoclassifiable, 
immature, habitat, LULC, unmixed canopy pigment constituents (e.g., zeathinins). The 
reflectance peak position shifted toward longer wavelengths with increasing Chl-a, from 688 
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nm to about 706 nm. Chl-a demonstrated a strong relationship to peak magnitude of the 
fractionalized decomposed, canopied, biosignature As the water content of leaves in 
vegetation canopies increased, the strength of the absorption around 1599 nm increases 
Absorption at 819 nm iws nearly unaffected by changing turbidity  water content, so it is used 
as the reference threshold marker. 
 
Figure 65.  Sub-mixel, canopy pigment reflectance constituents of the georeferenced, 
geosampled, sparsely shaded, trailing vegetation, turbid water, riverine, 
hyperproductive S. damnosum s.l. habitat capture point. 

 
 

 
. 

 Classification output was selected to Memory in ENVI. Output Rule Images was 
selected to determine whether or not to create rule images. The rule images were 
employed to create intermediate geoclassifiable, endmember, unmixed, image results 
before final assignment of the Red Edge, 5m, RapidEyeTM NDVI, hyperproductive, S. 
damnosum s.l., geosampled, riverine, immature habitat, capture point Chl-a-related, 
canopied LULC classes. The Rule Classifier was employed to create a new classification 
image without having to recalculate the entire scene. 

 
 The bidirectional reflectance, 5m resolution, wavelength, transmittance, emissivity, 

decomposed, Red Edge, NDVI, biosignature covariate estimators in the eco-
georeferenceable, hyperproductive habitat,capture point, geo-spectrotemporal, Chl-a 
model were changed as needed. In Preview the display was updated. ENVI added the 
resulting output to the Layer Manager. The output from SID was a classified 5m image 
and a set of classified sub-images (one per sparsely shaded, eco-georeferenced, partially 
canopied, geosampled, immature habitat, decomposed endmember). The 5m, sub-mixel 
values of the rule images represented the SID value. The output of the equation that 
defined SID for a pair of geospectral endmember vectors was identified. Lower canopy, 
spectral divergence measures represented better matches to the unmixed, LULC, 
endmember, RapidEyeTM, fractionalized, Chl-a, endmember, derivative, forecast spectra. 
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Areas that satisfied the Maximum Divergence Threshold criteria were carried over as 
geoclassified areas into the immature habitat, Red Edge, endmember, LULC, 
discontinuous spectrum, vector image. The SID successfully calculated all the unmixed, 
probabilities of the endmember, biosignature decomposed data in the library. 
 

The ENVI library accounted for all processes and factors influencing the 
fractionalized Red Edge, habitat, Chl-a, endmember, 5m resolution radiance data collections 
as rendered from the unmixed, hyperproductive, sparsely shaded, immature habitat, Red 
Edge, NDVI biosignature, which was subsequently converted to match the library-based data. 
Analogously, the reference fractionalized, endmember, derivative, Chl-a, discontinuous, 
canopy spectra in the library were transformed into the trailing vegetation, forecast, 
endmember spectra of the orthogonally decomposed biosignature. We expressed these sub-
mixel, linear combinations as image endmembers of sparsely shaded, discontinuous, sparsely 
shaded, canopy vegetated, geoclassified, LULC, decomposed, capture point, derivative, 
spectra. A function incorporating the calibration and the alignment was repeatedly evaluated 
for different candidate groups of Red Edge, NDVI biosignature, decomposed variables until a 
suitable representation of the unmixed, Chl-a, image endmembers was determined.  

 
Before applying the spectral index to the RapidEyeTM 5m resolution imagery, raw 

Chl-a, mixel values (i.e., DNs) were converted into physically meaningful units to optimally 
differentiate fractionalized, reflectance, LULC, decomposed, endmember, derivative spectra 
and immature Simulium productivity based oncapture point habitat size in ENVI in the 
Gonycogo  study site study sites, The  DNs of the RapidEyeTM image mixels represented 
absolute calibrated radiance values for non-atmospheric, corrected, image Chl-a, sub-mixel, 
reflectance values. To convert the DN of the eco-georeferenced, habitat mixel to radiance it 
was necessary to multiply the DN value by the radiometric scale factor, as follows:  RAD(i) = 
DN(i) * radiometricScaleFactor(i). The resulting value in the forecasting, Chl-a, eco-
epidemiological, reflectance, endmember, risk model was the Top of Atmosphere (TOA) 
radiance of the 5m mixel expressed in watts per steradian per squaremeter (W/m2sr μm). 

The instantaneous fraction of direct beam radiation intercepted by canopy Chl-a was 
remotely tabulated and described mathematically as fPAR = 1 - exp(-kLAI/cosθs) in ENVI. 
The extinction coefficient k was a function of leaf angle distribution. The factor LAI/cosθs 
eco-geographically represented the geo-classified, metaheursitically optimizable, explicative, 
LULC optical thickness. Thus, the proportion of incident fPAR that was intercepted by the 
habitat was dependent on the canopy Chl-a structure and (LAI). Asrar et al. [148] 
demonstrated that NDVI and APAR are functions of LAI. 

 
The Red Edge, NDVI, decomposed biosignature, endmember, 5m, RapidEyeTM eco-

epidemiological, datasets rendered from the capture point,  S. damnosum s.l. habitat, Chl-a-
related, decomposition variables were calculated employing simulated PAR and NIR albedo, 
which compared well to the extracted geoclassified, LULC, wavelength, frequency-orinted, 
transmittance, 5m, covariate emissivities reported by Asrar et al. [148], who suggested that 
orthogonally explanatively decomposed, expositively fractionalized, discontinuously canopy, 
vegetated, LULC endmember, wavelength, transmittance, emissivities by horizontally 
oriented leaves were not dependent on θs. In the partially canopied, sparsely shaded, 
endmember unmixed, eco-epidemiological Chl-a, decomposition models, those sub-mixel 
reflectance values of the canopy were dominated by vertically oriented leaves which were 
dependent on θs.  
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The Red Edge position was thereafter employed to exactly estimate the Chl-a content 
of leaves and over the discontinuous, infrequnetly canopied, geoclassified LULC for 
categorizing the hyperproductive, capture point, immature habitat, which was easily 
calculated using the reflectance of Red Edge boundary wavebands at 675 and 755 nm (R675 
and R755) and reflectance of Red Edge center wavelength at 731nm (R718), with the equation 
RES = (R718-R675)/(R755- R675). The close relationships between the simulated geoclassified 
LULCs and riverine, immature habitat Chl-a concentration count indicated a high feasibility 
for formatting the photosynthetic pigment with simulated LULCs from the 5m RapidEye TM 
imaged data.  

 
The Chl-a, endmember data was then exported to an ArcGIS 10.3 cyberenvironment. 

The convex geometry SPA provided information on the convergence of the algorithm in 
ArcGIS. This property was employed in the SPA algorithm to determine the main step in the 
habitat, endmember, sub-mixel, unmixing, biosignature execise for identification of the Red 
Edge, NDVI, geospectral, heterogeneous variables at the vertices of the simplex. For the 
given geosampled, Chl-a, endmember, immature habitat, biosignature, unmixed point in the 
simplex, a point with maximum distance was at the vertex of the simplex. 

 
By including a constraint on the geospatialized, Euclidean subspace adjacency 

rendered from the sub-mixel, capture point, immature habitat, decomposed dataset with their 
respective individual, endmember, 5m, wavelength, reflectance, fractionalized, unmixed, 
transmittance, emissivity values, the SPA algorithm captured the contiguous VI in red, IR and 
NIR bands, employing advanced data pre-processing latent algorithmic applications in 
ArcGIS. This made discerning interpolatable, Chl-a, RapidEyeTM, discontinuous canopy, data 
feature attributes very simple. Further, the algorithm reduced the susceptibility to outlier, 5m-
mixel, erroneous, resdiualizable, fractionalized, illumination coefficients which allowed for 
metaheuristically optimizing the unmixed canopy, 5m, resolution endmember, Chl-a 
reflectance, forecast, derivative spectra, and geo-classifying the spectroscopic data based on 
their exact decomposed, endmember, reflection data feature attributes.  

 
Although, the decomposed, Red Edge, NDVI,capture point, immature habitat 

endmember decomposed, proxy biosignature, LULC values were extracted in ArcGIS, the 
final dataset did not include any treatment of diffuse Chl-a irradiance and canopy multiple 
scattering or leaf specularity. This photosynthetic decomposition exercise required the 
selection of individual RapidEyeTM, wavelength,frequency-orinted,  decomposable 
emissivities for each, geoclassified, LULC, biosignature-related, unmixed canopy Chl-a, 
endmember, iteratively interpolatable, emissivity, 5m, wavelength, transmittance, data feature 
attribute which was then calculated by the radiative transfer equation. 

We employed a three-dimensional, radiative transfer model to further decompose the 
Red Edge, trailing vegetation, S. damnosum s.l. habitat, capture point, proxy biosignature. 
The process of solar radiative transfer at the land surface is important to energy, water, and 
carbon balance, especially for discontinuous canopy-vegetated, LULC areas [1]. We 
employed a two-stream model to consider the geoclassified, plant functional types (PFTs) 
LULCs within a digitized 5m RapidEyeTM grid to be independent of each other and their 
leaves to be horizontally homogeneous. Unique identifiers were attached to each stratified 
grid cell. The model gridded, eco-epidemiological, residual, eco-georferenceable forecasts 
revealed an increase of canopy Chl-a, absorption within geoclassifiable, LULC geolocations 
of hyperproductive habitat canopy with a large sun zenith angle θsun, which may have been 
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due to increases of the ground and sky shadows and of the optical pathlength due to the 
shadow overlapping between the eco-georeferenced, habitat canopy layers. 

 A decrease of canopy Chl-a, absorption occured in the densely vegetated, LULC, 
sparsely shaded, georeferenced, geoclassified, riverine, habitat areas with small θsun. For the 
one-layer canopy model, these decreases may have been due to crown shape effects that 
enhanced the transmission through the canopy edge. For the multilayer canopy portion of the 
habitat, aside from the shape effects, emissivity, m RapidEye TM, wavelength, Chl-a, 
transmission may have been increased by the decreased ground shadow due to the shadow 
overlapping between layers. Ground absorption usually changes with opposite sign as that of 
the canopy absorption [23]. Somewhat lower albedos were found over most vegetated, LULC 
canopied, trailing vegetation, turbid water, geoclassified areas. The 3D, forecasting, eco-
epidemiological, geo-spatiotemporal, wavelength, emissivity model quantitated the effects of 
the fraction of sunlit canopy leaves and their corresponding Chl-a, absorption values in the 
hyperproductive S. damnosum s.l. habitat. 

In the geometric-optical model, the bidirectional 5m, RapidEye TM habitat reflectance 
was modeled as a pure phenomenon that resulted in scenes of discrete, 3-D objects (i.e., 
trailing vegetation, sub-mixel, endmember components) from the S. damnosum s.l. habitat 
being illuminated and viewed from different positions in the hemisphere. The resulting 
scenes were broken down into their habitat canopy Chl-a values and geoclassifiable LULC 
fractions, specifically sunlit and shadowed background and scene brightness. Illumination 
direction was calculated by a linear combination of the canopy Chl-a  fractions and their 
respective decomposed, fractionalized, 5m, wavelength, transmittance, emissivity, radiance 
estimates. The shape of the derived geoclassifiable, canopied, trailing vegetation, 
endmember, LULC, geospatial patterns of the diffuse, rippled water components were the  
driving probabilistic, geo-spatiotemporal regressors in the model. These trailing vegetation, 
habitat, canopy spectral, Red Edge, sub-mixel, wavelength, transmittance emissivities 
conditioned the mixture of sunlit and sparsely shaded objects and background data that were 
observed from multiple viewing directions, quantitating all directions of illumination in the 
5m decomposed endmembers in ArcGIS. This mixture, in turn, controlled the brightness in 
the RapidEyeTM image. Corrections in the effects from varying sun sensor target canopy Chl-
a geometries in the multitemporal, decomposed datasets were described by the BRDF. 
Measuring the spread of the corrected results from the desired equal reflectance line provided 
a measure of the accuracy of our method. After correction, the reflectance RMSE errors was 
approximately 0.01 in the visible and 0.02 in the NIR. 

An expression for additional azimuthual variation was also optimally derived from the 
geometric-optical, LULC, RapidEyeTM, Chl-a forecasting, wavelength, forecasting, 
emissivity model. This azimuthual quantitated radiance variation for each layer of the Red 
Edge, hyperproductive habitat, NDVI, riverine, unmixed, endmember, biosignature, canopy 
Chl-a, illumination variables. It was observed that all non-zero polar angles were most 
evident in the georeferenced, immature habitat canopy, Chl-a  concentrations when vertical 
and nearly opaque components of the habitat canopy and its floating, hanging and dead 
vegetation, geoclassified LULC components were illuminated and viewed along polar sun 
angles. For the variation of the directional Chl-a reflectance of the habitat, canopied LULC 
cover with azimuthual view angle, geoparameters were quantified when the illuminated area 
of the 5m imaged canopied, riverine larval habitat (i.e., areas that were affected by the sun at 
large angles from the zenith) were remotely identified.  
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The eco-epidemiological, vulnerability, risk model results indicated that the cause of 
the azimuthual variation could be traced to solar flux illumination of the vertically-oriented 
Chl-a components in the georeferenced habitat and the variation of sub-mixel reflectance 
moderated by azimutually isotropic sources of flux from sky light and the overall habitat, 
LULC 5m, RapidEye TM reflectance values. Spectral unmixing yielded abundance estimates 
for each canopy Chl-a endmember together, summing-up to the 100% reflectance measured 
in the RapidEyeTM image. A scattergram representing the canopy unmixed, endmember, 
reference biosignature of the hyperpoductive S. damnosum s.l. habitat, and its associated 
trailing and floating vegetation, sub-mixel, spectral LULC, Chl-a, unmixed, wavelength 5m, 
transmittance, reflectance values, was then generated. The spectral biosignature was found to 
be characteristic of the Red Edge, S. damnosum s.l, immature prolific, habitat. The 
composition of this signature was 134.67 red, 145.24 blue and 114.101 green. The images 
were analyzed to predict potential S. damnosum s.l. larval habitats. 

The Sechhi depth was then calculated for the hyperproductive, canopied, S. 
damnosum s.l larval habitat geosampled at the Gonycogo eco-epidemiological, riverine, study 
site for aiding in probabilistically regressively quantitating the Chl-a concenrations in the 
canopy. The Secchi depth is reached when the reflectance equals the intensity of light 
backscattered from the water [23]. This depth was divided into 1.7m yields which we used as 
the attenuation coefficient (i.e, an extinction coefficient), for the available light averaged over 
the Secchi disk depth for the georeferenced, canopied, hyperproductive habitat. While used as 
a variable, the extinction coefficient is also used as a variable for turbidity [23, 24]. The light 

attenuation coefficient k was employed in a form of the Beer–Lambert law [i.e. ] to 
estimate Iz, the intensity of canopy Chl-a, light at depth z from I0, and the intensity of light at 
the hyperproductive habitat surface.  

The modelled transmittance, canopied, wavelength emissivities of hyperproductive, 
canopied, S. damnosum s.l habitat, sparsely shaded, Chl-a, unmixed, 5m, RapidEyeTM, 
decomposed, wavelength emissivity sample material was related to its optical depth τ and to 

its absorbance A as  as tabulated in ArcGIS, where Φe
t was the 

immature, habitat canopied, surface radiant flux transmitted by the material sample, and Φe
i 

was the radiant flux received by that material sample. Due to certain canopy uniform 
attenuation, these relations became   or 

equivalently   

The amount Chl-a, concentration c was then optimally rendered by a mixture 
containing two discontinuous,canopy sparsely shaded, geoclassified, eco-georeferenced, 
LULC types at amount concentrations c1 and c2. The attenuation coefficient at any Red Edge 
wavelength λ was then given by Hence, measurements at two 
RapidEye TM wavelengths yielding two equations in two unknowns was sufficient to 
quantitate the amount concentrations c1 and c2, as long as the molar attenuation coefficient of 
the the surface habitat, decomposed, 5m RapidEye TM reflectance, wavelength, emissivity 
components, ε1 and ε2 were known at both wavelengths. We solved the equation in ArcGIS 
employing linear least squares to determine the two amounts of canopy Chl-a concentrations 
from measurements made at more than two wavelengths. Mixtures containing more than two 
components can be analyzed in the same way, using a minimum of N 5m-resolution, 
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wavelengths for a mixture containing N components [23]. Four equations at four different 
wavelengths were then employed to determine Cp, Cn, Cc, and Cw in ArcGIS. The Red Edge 
bands considered most sensitive to Chl-a were tested with the simulated, canopy, endmember 
decomposed dataset from a spectral range of 490 nm to 730 nm. For efficiently extracting 
Chl-a concentrations, low reflectance at wavelengths less than 500 nm has been associated to 
absorption by both algal pigments (e.g., Chl-a) and dissolved organic matter [www.esri.com]. 
Likewise, an increase in endmember, estimator reflectance at wavelengths 510–620 nm has 
been associated to low absorption by phytoplankton pigments coupled with increased 
backscattering due to high particle concentration. A peak of reflectance at 685–715 nm may 
be due to Chl-a fluorescence [23]. The relationship between the decomposition coefficient 
and the hyperpoductive, sparsely shaded, habitat Chl-a was then determined by using various 
regression models. 

For metaheuristically determining an empirical dataset of metaheuristic, optimal, 
hyperproductive, eco-georeferenceable, Chl-a, S. damnsoum s.l. habitat, trailing vegtaion, 
turbid water, discontinuous, sparsely shaded predictors, a semivariogram was constructed 
which expressed the variation in the spectral, Red Edge, NDVI endmember, reflectance, 
unmixed, parameterized, illumination, covariate coefficients. The semivariogram was 

nonnegative [ ]. The semivariogram   
was at distance 0 since at zero the residual, discontinuously canopied, trailing vegetation, 
eco-georeferenced, geosampled, turbid water habitat,geo-spectrotemporal forecast was 

. A semivariogram holds if and only if it is a conditionally negative 

definite function for all weights  subject to  and geolocations 

, it holds:  [24]. The interpolated, operationizable, 
decomposed, habitat, Chl-a, unmixed endmember, 5m RapidEyeTM, NDVI proxy 
biosignature, wavelength emissivity, transmittance variables corresponded to the variance 

 of  , which was given by the negative of this double sum. As a 
consequence the interpolated, temporally dependent, riverine, immature habitat  

A differential equation in Calculus Methode/Map Server TM was then used to solve  a  
solution in  to determine  whether solutions existed  for all the uncoalesced eco-
georfernceable, hypeproductive, S. damnsoum s.l. capture point notabl,5m,  endmember 
subjects of interest. A  first order dataset of Chl-a initial values  for  dataset of was tested. 
Given any eco-georferenceable explicative  point seasonally hypeproductive, trailing 
vegetation, turbid water, discontinuous, infrequently canopied, sparsely shaded, agro-village , 
narrow riverine tributary,  S. damnosum s.l. capture point in the xy-plane we were  ble to 
define some rectangular region , such that and is in the interior of 

. a differential equation  was generated where  the condition that when 

, locally existed. A solution  was rendered and which were  both continuous 
on . This solution existed on some Chl-a interval at . We then tesetd if we had a linear 
initial value problem of the nth order employing 

suchthat
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For any nonzero , if and that 
was non- continuous on some interval containing a  unique ,  existed in the S. damnosum 
s.l. capture point differential equation.swas discontinuous only at the origin.  

Stochastic partial differential equations (SPDE) were also generated in Calculus 
Methode/Map Server TM They were essentially partial differential equations that has random 
forcing terms and  uncoalesced , trailing vegation, disocntinuous, sparsely shaded, %m 
radiance coefficients.  As with deterministic ordinary and partial differential equations, it is 
important to know whether a given SDE has a solution, and whether or not it is unique[24]. 
We employed uniqueness theorem for Itô SDEs taking values in n-dimensional Euclidean 
space Rn which was driven by an m-dimensional Brownian motion B; the proof may be found 
in Øksendal (2003, §5.2).In  we let T > 0, and 
let be measurable endmember functions for 
which there existed constants C and D such that . I so 
doing for all t ∈ [0, T] and all x and 

y ∈ Rn, where We then let  Z be a random variable that is independent of 
the σ-algebra generated by Bs, s ≥ 0, and with finite second moment: Then the 
stochastic  S. damnosum s.l. differential equation/initial value 
problem has a Pr-almost surely 
unique t-continuous solution (t, ω) |→ Xt(ω) such that X  was adapted to the filtration Ft

Z 

generated by Z and Bs, s ≤ t, and In so doing, 

 

where  

for a given differentiable function was  equivalent to the 
Stratonovich SDE which had a general 

solution where  .The Stratonovich integral can be 
defined in a manner similar to the Riemann integral, that is as a limit of Riemann sums. the 
Riemann integral, was the first rigorous definition of the integral of a function on an interval 
[24].Suppose that is a Wiener process and is a 
semimartingale adapted to the natural filtration of the Wiener process. Then the Stratonovich 

integral is a random variable defined as the limit in mean square of[ 

as the mesh of the partition of 
tends to 0. The Wiener process Wt is characterised by the following properties: 1)W0 = 0 

a.s.,2) W has independent increments: Wt+u - Wt is independent of σ(Ws : s ≤ t) for u ≥ 03) W 
has Gaussian increments: Wt+u - Wt is normally distributed with mean 0 and variance u, 
Wt+u−Wt ~ N(0, u) 4) W has continuous paths: With probability 1, Wt is continuous in t[24]. 
The independent increments means that if 0 ≤ s1 < t1 ≤ s2 < t2 then Wt1−Ws1 and Wt2−Ws2 are 
independent random variables, and the similar condition holds for n increments 
(http://mathworld.wolfram.com/ html). 
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A variogram [2γ(x, y)] was generated in ArcGIS using a function form for describing the 
degree of dependence between the geo-predicted, hyperproductive, S. damnosum s.l. captue 
point seasonal habitats (i.e., Z(x)) in the  Gonycogo and  Adibuk  agro-village , narrow 
tributary, study sites. This was defined as the expected squared increment of the forecasted 
values between the georeferenced habitat geolocations at the sites. The unmixed, Chl-a, 
interpolator was non-negative, since it was the expectation of a square. The covariance 
function was related to the semiovariogram by 2γ(x,y) = C(x,x) + C(y,y) − 2C(x,y). 
Interestingly, γ(x,y) = E( | Z(x) − Z(y) | 2) = γ(y,x) was a symmetric function, consequently, 
γs(h) = γs (−h) was an even function. The function was also a semivariogram, as it was a 
conditionally negative definite function, for all the sub-mixel, decomposed covariance 
weights in the S. damnosum s.l., eco-epidemiological risk model related to geolocations, 
which then was employed to statistically validate the unknown, un-geosampled, canopied, 
georeferenced, capture point habitat using the Chl-a, unmixed, wavelength 5m, RapidEyeTM, 
transmittance emissivities. 

Since the covariance function of the stationary process existed in the hyperproductive 
S. damnosum s.l. habitats it was related to the semiovariogram by 

 in both stsudy sites. But since our stochastic, 
endmember, interpolated, Chl-a, unmixed, RapidEye TM, eco-epidemiological, wavelength, 
emissivity, risk model reflected a non-stationary process, the square of the difference between 
expected Chl-a emissivity value was quantitated by 

. In the models.For 
quantitating a random field [i.e., stochastic process] Z(x) on the domain D employing a 
covariance function C(x, y), we used the covariance of the interpolated, Chl-a–oriented, 
endmember decomposed, RedEdge, NDVI, sub-mixel values of the random field at the two 
model geolocations x and y as  

The following RapidEye TM parameters operationally described the sparsely shaded, Chl-
a, unmixed, interpolated, 5m, S. damnosum s.l. larval habitat, capture point, Gonycogo and  
Adibuk variograms. The nugget represented the height of the jump of the semivariogram at 
the discontinuity at the origin of the habitat endmember interpolator. The sill was the limit of 
the variogram tending to infinity lag distances. We also computed the range which was the 
distance in which the difference of the semiovariogram from the sill became negligible. In the 
geo-spectrotemporally, geospatially interpolated, sparsely shaded, canopied, Chl-a, S. 
damnosum s.l. habitat unmixed LULC, reflectance model with a fixed sill, the distance at 
which the sill was first reached for the habitat model was taken to be the distance when the 
semivariance first reached 95% of the sill. 

 We let X be an arbitrary set and H be a Hilbert space of real-valued, Chl-a, unmixed, 
canopy, endmember, hyperproductive, S. damnosum s.l., immature habitat, time series 
dependent functions on X in ArcGIS for the Gonycogo and  Adibuk models. . The evaluation 
functional over the Hilbert space of functions H was a linear functional that evaluated each 
function at a sample estimated, georeferenceable, geosampled, eco-epidemiological, 
immature, habitat point x, . We say that H is a reproducing kernel Hilbert 
space if  is a continuous function for any  in H, or equivalently, if  is a bounded operator 
so that for any  in H there exists some M > 0, such that  [142]. A 
more intuitive definition of the space was obtained by the evaluation functional of the Chl-a, 
unmixed, habitat, sparsely shaded, canopied endmembers, which was represented by taking 
the inner product of  in ArcGIS with a function  in H. This function was the reproducing 
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kernel for the Hilbert space H in the models More formally, the Riesz representation theorem 
implied that for all the  in X in the model here exists a unique element  in H with the 
reproducing property, .  

The habitat endmember, unmixed, wavelength, transmittance, vulnerability, 5m 
RapidEyeTM, eco-epidemiological risk models established an important connection between a 
Hilbert space and its (continuous) dual space. In the model the underlying field were the 
remote, immature capture point, hyperproductive, habitat variables in the Gonycogo and 
Adibuk agro-village complex models.  where the remotely regressed, categorized covariates 
that were isometrically isomorphic. Let H be a Hilbert space, and let H* denote its dual 
space, consisting of all continuous linear functionals from H into the field R or C. If x is an 
element of H, then the function φx, for all y in H defined by  where  
denotes the inner product of the Hilbert space, is an element of H* [149]. The Riesz 
representation theorem states that every element of H* can be written uniquely in this form. 
According to the model forecasts, hyperproductive, S. damnosum s.l. habitat endmembers 
may be robustly mapped employing : H → H* defined by = , which is an 
isometric (anti-) isomorphism, meaning that  is bijective. In mathematics, a bijection, 
bijective function, or one-to-one correspondence is a function between the elements of two 
sets, where every element of one set is paired with exactly one element of the other set, and 
every element of the other set is paired with exactly one element of the first set [24]. 

    Further, since the norms of  and  agreed in the hyperproductive Gonycogo and  
Adibuk habitat risk models,  was additive:  

. If the base field was R, then  for all unmixed S. damnosum 
s.l. larval  habitat estimators λ. If the base field is C, then  for all λ, where 

 denoted the complex conjugation of λ [24]. The hyperproductive, S. damnosum s.l. larval 
habitat regression, endemic risk map  was described as follows. Given a non-zero element 

of H*, the orthogonal complement of the kernel of was a one-dimensional subspace of H. 

Take a non-zero element z in that subspace, and set ; then = . 

As mentioned earlier, the axiom of choice implies the Hahn–Banach theorem. The 
converse is not true. One way to see that is by noting that the ultrafilter lemma (or 
equivalently, the Boolean prime ideal theorem), which is strictly weaker than the axiom of 
choice, can be used to show the Hahn–Banach theorem, although the converse is not the case. 
The Hahn–Banach theorem is equivalent to the following:](∗): On every Boolean algebra B 
there exists a "probability charge", that is: a nonconstant finitely additive map from B into [0, 
1] [24, 150, 151]. The Boolean prime ideal theorem is equivalent to the statement that there 
are always probability charges which take only the values 0 and 1. In ZF, one can show that 
the Hahn–Banach theorem is enough to derive the existence of a non-Lebesgue measurable 
set [26]. Moreover, the Hahn–Banach theorem implies the Banach-Tarski paradox. For 
separable Banach spaces, D. K. Brown and S. G. Simpson proved that the Hahn–Banach 
theorem follows from WKL0 [151], a weak subsystem of second-order arithmetic that takes a 
form of König's Lemma restricted to binary trees as an axiom. In fact, they prove that under a 
weak set of assumptions, the two are equivalent, an example of Reverse mathematics.  

Reverse mathematics is a program in mathematical logic that seeks to determine which 
axioms are required to prove theorems of mathematics. Its defining method can briefly be 
described as "going backwards from the theorems to the axioms", in contrast to the ordinary 
mathematical practice of deriving theorems from axioms. The reverse mathematics program 
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was foreshadowed by results in set theory such as the classical theorem that the axiom of 
choice and Zorn's lemma are equivalent over ZF set theory Zorn's lemma can be used to show 
that every nontrivial ring R with unity contains a maximal ideal. In the terminology above, 
the set P consists of all (two-sided) ideals in R except R itself, which is not empty since it 
contains at least the trivial ideal {0}. This set is partially ordered by set inclusion. Finding a 
maximal ideal is the same as finding a maximal element in P. The ideal R was excluded in 
the Gonycogo and  Adibuk models because maximal ideals in the outputs were not equal to 
R. 

To apply Zorn's lemma, we took a non-empty totally ordered subset T of P from the S. 
damnosum s.l. habitat endmember, 5m RapidEyeTM, eco-epidemiological, forecast, risk 
models. It was necessary to show that T had an upper bound (i.e. that there exists an ideal I ⊆ 
R which is bigger than all the geoclassifiable geosampled, LULC members of T but still 
smaller than R in the riverine habitat dataset.s We took I to be the union of all the ideals in T 
in the models. Because T contained at least one element, the union I was not empty. To prove 
that I was an ideal, (if a and b are elements of I ) J, K ∈ T such that a was an element of J and 
b was an element of K. Since T is totally ordered, we knew that J ⊆ K or K ⊆ J. In the first 
case, both a and b were members in the dataset K.  Therefore their sum a + b was a member 
of K, which also revealed that a + b was a member of I. In the second case, both a and b were 
members of the ideal J, and thus a + b ∈ I. Since r ∈ R, in the Gonycogo and  Adibuk models 
ar and ra were geoclassified as geosampled  immature capture point habitat elements of J and 
hence elements of I. Thus, I was an ideal in R in both model renditions. 

A bounded self adjoint operator on Hilbert space is a fortiori, a bounded operator on a 
Banach space [24]. Therefore, one can also apply to T the decomposition of the spectrum that 
was achieved above for bounded operators on a Banach space. Unlike the Banach space 
formulation, the union  was not disjoint in the forecast vulnerability  model.  Riesz 
representation theorem established an important connection between a Hilbert space and its 
(continuous) dual space in the S. damnsousm s.l. habitat mdoel Hence, if the underlying field 
an emperical dataset of decomposed, Chl-a-related, S. damnosum s.l. endmembers, the two 
would have been isometrically isomorphic; if the underlying field was isometrically anti-
isomorphic. Let H be a Hilbert space, and let H* denote its dual space, consisting of all 
continuous linear functionals from H into the field R or C. If x is an element of H, then the 
function φx, for all y in H defined by  where denotes the inner product of 
the Hilbert space, is an element of H* [152]. The Riesz representation theorem states that 
every element of H* can be written uniquely in this form. 

The S. damnosum s.l. larval habitat mapping : H → H* was defined in both study site 
models  by (x) = x in ArcGIS which was an isometric (anti-) isomorphism, meaning that 

 was bijective. The norms of x and (x) were quantitated using .  is 
additive: . If the base field is R, then , for 
all   λ [142]. If the base field is C, then  for all complex numbers λ, where  
denotes the complex conjugation of λ [152]. An inverse,eco-epidemiological, Chl-a, 
forecasting maps of  for the Gonycogo and Adibuk agro-village models was then described 
as follows. Given a non-zero element of H*, the orthogonal complement of the kernel of 

was a one-dimensional subspace of H. We arbitrarily took a non-zero element z in that 
subspace, and set . By so doing, (x) =  in both model outputs. 
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 Since  was itself was a function in H in the unmixed Chl-a,, RapidEyeTM, S. 
damnosum s.l. habitat interpolator we then had an x in X  in both models/ 
This allowed us to define the reproducing kernel of H in ArcGIS as a real-valued Chl-a, 
unmixed, S. damnosum s.l., habitat, biosignature, endmember function  by 

 From this definition, it was easy to see that a function  
was a reproducing kernel in the models since it was both symmetric and positive definite, 

] for any  

We investigated the method of regularization for estimating un-geosampled unknown 
hyperproductive habitats employing  and  in the Gonycogo and Adibuk agro-village 
models. We let  be a data fit functional that measured how well  fit the geosampled, 
RapidEye TM S. damnosum s.l., larval productivity count data and  was a penalty functional 
that assessed the “plausibility” of . The method of regularization estimates  by 

, where the minimization was taken over and then defined in 
ArcGIS as  where X > 0. The key to the model 
simulation was a tuning parameter that balanced the fidelity of the geosampled, Chl-a, 
unmixed, canopy, endmember data. Equivalently, the minimization in the models was taken 
over by (a,p) instead of n to obtain prime estimates for both the intercept and the slope, 
denoted by  and  thereafter. The choice of the Chl-a, data fit functional was the 
squared error, which we represented in the cyberenvironment as . 

Next, ln was chosen such that it was convex in n and Eln(n) for quantiating the 
Gonycogo and Adibuk agro-village model estimates which then was uniquely minimized by 
n0. In the context of functional linear regression, the penalty functional was defined through 
the slope function p as a squared norm or semi-norm associated with H [142]. The canonical 
example of H in the RapidEyeTM model was the Sobolev spaces. Without loss of generality, 
we assumed that T=[0,1], where we quantitated the Sobolev space using an order m as 
defined by Wm([0,1]) = {p : [0,1] ^ R|p, p(1),...,p(m-1), where p(m) e C2). There were many 
possible norms that were equipped with W2m to make it a reproduce kernel Hilbert space. 
Another setting in the Chl-a, unmixed, S. damnosum s.l. immature habitat, endmember 
interpolator was T = [0, 1]2 which naturally occured when X represented in RapidEye TM 

image predictor dataset. We used the thin plate spline where J was given 

by  

The name "thin plate spline" refers to a physical analogy involving the bending of a 
thin sheet of metal. In the physical setting, the deflection is in the z direction, orthogonal to 
the plane [152]. In order to apply this idea to the problem of coordinate transformation in the 
S.damnosum s.l. habitat, eco-epidemiological model the lifting of the plate as a displacement 
of the x or y coordinates within the plane was conducted in ArcGIS Geospatial Analyst TM. In 
general, two thin plate splines are needed to specify a two-dimensional coordinate 
transformation [142].  

 We then considered the relationship between the eigenstructures of the covariance 
operator for X(-) in the Chl-a, S. damnosum s.l. risk model and the reproducing kernel of the 
RKHS H. These eigenstructures played prominent roles in determining the difficulty of the 
prediction and estimation problems in the functional regression exercise. As a result the 
quantitated simultaneous diagonalization of the reproducing kernel of the RKHS H and the 
covariance operator of X(-) provided a powerful machinery for studying the minimax rates of 
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convergence in the Chl-a, S. damnosum s.l., eco-epidemiological, wavelength, emissivity, 
transmittance, decomposition, risk model. 
  

Thereafter, we investigated the rates of convergence of the smoothness regularized by 
the unmixed, interpolative, 5m wavelength, fractionalized, transmittance endmember habitat 
estimators. Both the minimax upper and lower bounds were established. The optimal 
convergence rates were probabilistically regressively derived in terms of a class of 
intermediate norms which subsequently rendered a wide range of fractionalized, reflectance 
5m, endmembers. In particular, this approach rendered a unified treatment for both the 
prediction of f0(X) and the estimation of i0 in the hyperproductive, immature habitat, 
forecasting, eco-epidemiological, risk model. The results revealed that the smoothness 
regularized forecastable explanators achieved the optimal rate of convergence for both 
prediction and estimation of the riverine, Chl-a related, sub-mixel data under conditions 
weaker than those for the functional principal components based methods developed 
previously in the literature. 
  

The smoothness regularized, unmixed Red Edge, NDVI, Chl-a, 5m RapidEyeTM, 
wavelength, emissivity biosignature estimators in the model were defined as the solution to a 
minimization problem over an infinite-dimensional space. Before studying the properties of 
the unmixed, interpolated estimators, we first showed that the minimization was indeed well 
defined and easily computable due to a version of the so-called representer theorem. 
  

The representer theorem is a property that lies at the foundation of regularization 
theory and kernel methods [23]. A class of regularization functionals in a seasonal, vector 
arthropod, endmember, geo-spatiotemporal, geo-spectrotemporal stochastic interpolator is 
said to be part of the linear representer theorem if every field, remote or clinical 
geoclassifiable, decomposed class member acknowledges that minimizers lie in finite 
dimensional endmember subspace spanned by the representers of the entomological, 
empirical data [22]. A recent remote characterization states that certain gridded, geoclassified 
LULC classes have regularization functionals which admit a linear representer theorem if 
every member of the class admits minimizers that lie in the finite dimensional subspace 
spanned by the representers of the data in a decomposition unmixing algorithm in ArcGIS 
[22]. The results were extended which rendered from the Chl-a, Red Edge, unmixed, NDVI, 
sub-mixel, fractionalized endmember model employing a radial non-decreasing function. The 
model was extended in the residual, reflectance, interpolated results by weakening regression 
assumptions on the regularization term. In particular the residually forecasted, 
hyperproductive S. damnosum s.l. model estimators implied that for a sufficiently large 
family of Chl-a endmember, radiance fractionalized, 5m, radical non-decreasing functions, 
the only semicontinuous regularization terms that guaranteed existence of a representer 
theorem concept for any unmixed, fractionalized, eco-epidemiological, explanatorily 
georferencable habitat data point. In statistical learning theory, a representer theorem is any 
of several related results stating that a minimizer of a regularized empirical risk function 
defined over a reproducing kernel Hilbert space can be represented as a finite linear 
combination of kernel products evaluated on the input points in the training set data [23].. 
      

The penalty functional J in the model was a squared semi-norm on H such that the 
null space H :={£ e H: J(f) = 0}was a finite-dimensional linear subspace of H with 
orthonormal basis {^1,...,^N } where N := dim(H0), denoted by H and its orthogonal 
complement in H such that H = H0 © H1. Similarly, for any function f e H, there existed a 
unique decomposition f = f0 + f1 in the Chl-a, S. damnosum s.l. habitat, predictive risk 
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model, such that f e H and f e H1 were rendered. We noted H formed a reproducing kernel 
Hilbert space with the inner product of H restricted to H1. We let K(, ■) be the corresponding 
reproducing kernel of H such that J(f1) = || fi nK = II fi II ^ for any fi H1. Thereafter, the 
subscript K was employed in Geospatial Analyst TM to emphasize the correspondence 
between the inner product and its reproducing kernel in the model. We assumed that K was 
continuous and square integrable. Note, that K was also a nonnegative definite operator on L. 
With slight abuse of notation, we wrote (Kf)(■) = j K(,s)f(s)ds as the habitat, RapidEyeTM, 
Chl-a interpolator, uncertainty matrix.  
     

 It is known that Kf e H1 for any f eL [153]. Thus, in the geospatial, geospectral, 
interpolator for any f e H1jf(t)fi(t)dt = (Kf,0)H. This georeferenceable observation allowed us 
to prove the following result was important to both numerical implementation of the control 
procedure. It was assumed that in was dependent on n only through n(x1), n(x2), ••••>n(xn) in 
the model. We noted that there existed d = (d1,..,dN)' e RN and c = (c1,...,cn)' e Rn, such that 
Pnl(t) = £ dk^k(t) + £ Ci(Kxi)(t). 

 
The endmember, NDVI, RapidEyeTM, 5m, heuristically optimizable, biosignature 

depiciting the trailing vegetation, turbid water, S. damnosum s.l., immature hyperproductive, 
capture point, canopied, habitat Chl-a, wavelength, unmixed, transmittance emissivity model 
employed generalization of the well-known representer lemma for smoothing splines [154]. 
Employing this lemma, we demonstrated that although the minimization with respect to n 
was numerically intergratable, the residuals from the geospatial, geospectral explanatorily, 
decomposed, Chl-a, RapidEye TM-dependent model were taken over using an infinite-
dimensional space during the interpolation phase, which we actually found to be in a finite-
dimensional subspace in ArcGIS Geospatial AnalystTM. As such, it was suffice to evaluate 
the coefficients c and d in the model. In Wahba [154] ln was assumed to be squared error, and 
therefore we omitted it here for brevity (ainx=y-J^ x (t)jnx(t)dt1n and jinx = argmin y )-J 
(xi(t) -x (t))j(t)dt + XJ(j) (yi-y ) - j eH i=1 was then employed. Correspondingly,  f [X(t) -
x(t)]j(t)dt = d1 j [X(t) - x(t)] dt + d2 j [X(t) - x(t)]tdt +±«u [xi(s) - x (s')]K(t, s)[X(t) - x(t)] 
dsdt. 

 
Note that for any f given in the unmixed, Chl-a, biosignature-related, S. damnosum 

s.l. hyperproductive habitat forecasting, interpolative, RapidEye TM risk model where J(f) = 
c'Sc and where S = (Sij) was an n x n matrix with Sij = j j [xi(s) -X(s)]K(t, s)[xj(t) -X(t)] dsdt. 
We denoted T = (Tij) as an n x 2 matrix by (i, j) entry which was then quantitated in ArcGIS 
as Tj= [x(t)-mv-'dt for j = 1, 2. We set y = (y1,...,yn)'. The model revealed ln(n) + kJ(f) = - ||y - 
(Td + Sc)|l + Ac'sc which was quadratic in c and d. By doing so, the explicit form of the 
solution was obtained.  

 
W = S + nXI was rewritten in the immature habitat interpolator, so that the minimizer 

rendered d = (T W-T)-T W-y, c = W-[I - T(TW-T)-TW-]y. A simultaneous diagonalization in 
ArcGIS was conducted. Before studying the asymptotic properties of the unmixed, Chl-a, S. 
damnosum s.l. habitat endmember, Red Edge, NDVI interpolative, estimators, fjnA and ffnA 
were quantitated. However, prior to so doing, we investigated the relationship between the 
eigenstructures of the covariance operator for X(-) and the reproducing kernel of the 
functional space H. The univariate Sobolev space in the immature, habitat, S. damnosum s.l. 
unmixed, canopy, risk endmember, eco-epidemiological, reflectance interpolator was 
considered where Wm([0, 1]) was the norm and penalty. We observed that H1= f e H :j f(k) = 
0,k = 0,1,...,m-1J. We then solved for  

1  (-1)m-1 
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K ( s , t ) = 2 B m ( s ) B m ( t )  + B 2m ( \ s  -  1 1). 
(m!)2 (2m)! 

 
In the model Bm was the mth Bernoulli polynomial. It is known [155] that in this case, 

pk x k-2m, where for two positive sequences ak and bk, ak x bk means that ak/bk is bounded 
away from 0 and then to k ^to >. In the endmember interpolator this regressive quantitation 
was denoted by C where the covariance operator for X was optimally determined such that 
C ( s , t ) = E { [ X ( s )  -  E ( X ( s ) ) ] [ X ( t )  -  E ( X ( t ) ) ] } .  

There was a duality between the reproducing kernel Hilbert spaces and covariance op-
erators in the unmixed, Chl-a, S. damnosum s.l., habitat, endmember, interpolator. Similarily 
to the reproducing kernel K assuming that the covariance operator C was continuous and 
square integrable, the interpolated forecasts rendered the following spectral decomposition 
C(s,t)=J2Hktk(s)Mt), where ix1> /x2>••• was the eigenvalues and {fa,fc,...} were the 
eigenfunctions denoted such that C^k:= J C(,t)(pk(t)dt =/xkfik when k = 1, 2,—. 

The decay rate of the eigenvalues {^k :k > 1} in the model forecasts was determined 
by the smoothness of the covariance operator C. More specifically, when C satisfied the so-
called Sacks-Ylvisaker conditions of order s where s was a non-negative integer [156, 157, 
158], then the forecasts were xk x k-2(s+1). The readers are referred to the original papers by 
Sacks and Ylvisaker or a more recent paper by Ritter, Wasilkowski and Wozniakwski [159] 
for detailed discussions of the Sacks-Ylvisaker conditions. . 

The Chl-a, endmember, RapidEyeTM, trailing vegetation, 5m, resolution, S. 
damnosum s.l., habitat, emissivity, sub-mixel, interpolative model then revealed that 
quadratic forms || f ||R = (f, f)R and (Cf, f )c2 which was simultaneously diagonalized on the 
basis of {a>k : k > 1}. We noted that in the endmember model for any f e H,f = £ fk^k, when 
k=1in the absolute sense where fk = Vk(f, Mk)r. Further, if Yk= (v—1 — 1)-1. 

Note that {(Yk,Mk): k > 1} was determined jointly by {(pk,fk): k > 1} and {(pk,fk): k > 
1} in the model. However, in general, neither Yk nor Mk was given in explicit form of 
{(pk,fk): k > 1} and {(pk,fk): k > 1}. One notable exception in the model were the operators C 
and K which in the endmember model were commutable. In particular, the setting fk = fk, k = 
1,2,..., is adopted when studying FPCA-based approaches [160, 161]. 

If fk = fk, k = 1, 2,..., then Yk = PkPk and Mk = ti—1/2fk was assumed. The one-
dimensional case when T = [0,1] was considered. If H was the Sobolev space W, f([0,1]) was 
x endowed with a norm and C satisfied the Sacks-Ylvisaker conditions in the endmember, 
Chl-a, S. damnosum s.l., immature, habitat model then Yk x PkPk. The interpolator revealed 
that under fairly general conditions yk x fikpk. As such, there was little difference between the 
general situation and the special case when K and C shared a common set of eigenfunctions, 
which revealed then that the system i(yk,Mk), k = 1, 2,...}. This observation was crucial for 
our theoretical development on the model. Convergence rates were then quantitated, followed 
by the asymptotic properties of the smoothness regularized estimators. 

The first condition in the transmission, endmember interpolator specified the 
smoothness of the sample path of X(-). The second condition rendered the fourth moment of 
a linear functional of X(-). This condition was satisfied with M = 3 for a Gaussian process in 
the model, endmember, eco-epidemiological, covariate estimators because / f(t)X(t) dt was 
normally distributed. The endmember Chl-a, immature, habitat, RapidEye TM, spectroscopic, 
endemic, wavelength, unmixed, emissivity, risk model was satisfied by any covariance 
function that satisfied the Sacks-Ylvisaker conditions if H ws taken to be Wm with norm 
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expectations. The products were also trivially satisfied if the eigenfunctions of the covariance 
operator C coincided with those of K. 

Optimal rates of convergence were then regressively quantitated for the unmixed, 
RapidEyeTM, emissivity risk model. The main results on the optimal rates of convergence, 
was given in terms of a class of intermediate norms between ||/||K and Qf/(s)C(s,t)/(t)dsd^ , 
which enabled a unified treatment of both the prediction and estimation of the 
hyperproductive, immature habitats based on the interpolated, Chl-a, sub-mixel data. For 0 < 
a < 1 we defined the norm || • ||a by ii/ Iia = E (1 + y-a)/k, where /k = vk {/, a>k)R. Clearly || / ||o 
reduced to {C/, /)Ll whereas || /11 = || /||R. The convergence rate results given below were 
thereafter valid for all 0 < a < 1. They covered a range of interesting cases in the interpolator 
forecasts including the prediction error and estimation error. 

The following results thereafter rendered the optimal rate of convergence for the 
regularized, probabilistic estimator fnX with an appropriately chosen tuning parameter X 
under the loss 11 • 11 a. in the Chl-a, habitat capture point, interpolation, regression model. 
We assumed that E(ei) = 0 and Var(ei) < M2. In the endmember habitat model the eigen-
values pk of the reproducing kernel K of the RKHS H satisfied pk x k~2r for some r > 1/2. 
Then the regularized estimator fnX was robustly quantitated as Xx n-2(r+s)/(2(r+s)+1), which 
satisfied lim lim sup P(HjinX — ^0|| > Dn—2(1—a)(r+s)/(2(r+s)+1)) D^xFSF(s,M,K),p0eH= 0. 

Note that the rate of the optimal choice of X did not depend on the model forecasts. 
The endmember, Chl-a, S. damnosum s.l., RapidEyeTM, habitat revealed that the optimal rate 
of convergence for the regularized estimator fnX was n—2(1— a)(r+s)/(2(r+s)+1). The following 
lower bound result demonstrated that this rate of convergence was indeed optimal amongst 
all the parameterized, wavelength, emissivity, 5m, covariate estimators, and consequently the 
upper bound we assumed could be improved. As such, we denoted the collection of all 
measurable functions of the geosampled RapidEyeTM observations by (X1,Y1), ..., (Xn,Yn). 
We assumed that there existed a constant d > 0 in the residual forecasts such that lim inf sup 
P(||/d — f0ia > dn—2(1—a)(r+s)/(2(r+s)+1)) > 0. Consequently, the regularized, covariate estimator 
fnX with X x n—2(r+s)/(2(r+s)+1) was rate optimal for geolocating unknown, unsampled, 
hyperproductive S. damnosum s.l. habitats. 

The model results, given in terms of || ■ \\a, provided a wide range of measures of the 
quality of a Chl-a retrieved, RapidEye TM imaged estimate for j0. We observed that fj — 
1301|0 =Ex*(f $ (t)X*(t)dt — j j0(t)X* (t)dt^, when X* was an independent copy of X, and 
the expectation on the right-hand side was taken over X*. The right-hand side of the habitat 
risk model was the prediction error. It measured the mean squared error for a random 
forecasted, hyperproductive, sparsely shaded, canopied, georeferenceable habitat observation 
on X.  

The mean squared optimal prediction error of a slope function estimator was Fe 
F(s,M,K) and_ 2(r+s) where H was of the order n2(r+s)+ was achieved by the regularized, Chl-
a, interpolated, covariate estimator. The results reveal that the faster the eigenvalues of the 
covariance operator C for X(-) decayed in the S. damnosum s.l. habitat model, the smaller the 
prediction error. Then, fk was regressively quantitated as the prediction error of a slope 
function estimator which we understood as the squared prediction error for a fixed habitat 
predictor x*(■) such that |(x*,fk)c21 x k-s.  

A similar prediction problem has also been considered by Cai and Hall [160] for 
FPCA- based approaches. In particular, they established a similar minimax lower bound and 
showed that the lower bound can be achieved by the FPCA-based approach, but with 
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additional assumptions that pk — pk+1>C—1k—2s—1, and 2r > 4s + 3. The habitat model results 
here indicate that both restrictions are unnecessary for establishing the minimax rate for 
quantitating the time series prediction error for a geospectral, geospatial, unmixed, Chl-a, 
endmember, biosignature of an immature, S. damnosum s.l., RapidEyeTM, eco-
epidemiological, habitat risk model. Moreover, in contrast to the FPCA-based approach, the 
regularized estimator jnX in our model achieved the optimal rate without the extra 
requirements. 

To illustrate the generality of our results, we considered an example where T = [0, 1], 
H=Wm([0, 1]) and the stochastic process X(-) which was a Wiener process. The 
unconditional probability density function, in the unmixed, Chl-a, biosignature, interpolative, 
RapidEyeTM, eco-epidemiological, reflectance risk model followed a normal distribution with 

mean = 0 and variance = t, at a fixed time t:  The expectation was zero: 
 The variance, employing the computational formula, was t: 

 The covariance and correlation 

were tabulated as  and  

The results for the expectation and variance followed immediately from the definition 
that increments in the eco-epidemiological predictive model had a normal distribution 
centered at zero. Thus,  The covariance operator of X, C(s, t) = 
min{s, t}, satisfied the Sacks-Ylvisaker conditions of order 0, and therefore pk x k—2. The 
minimax rate of the prediction error in the habitat, reflectance model was then estimated 
where j0 was n~(2m+2)/(r 2m+3). Note that the condition 2r > 4s + 3 required by Cai and Hall 
[160] did not hold here for m < 7/2 in the forecasts. 

It is of interest to further look into the case when the operators C and K share a 
common set of eigenfunctions. Thus, part of the unmixed, Chl-a, NDVI biosignature, 
wavelength, emissivity, RapidEye TM, transmittance, eco-epidemiological risk model was fk = 
fk and yk x k—2(r+s) for all k > 1. We then considered probabilistically estimating / x* j0 where 
x* satisfied |(x*,fk)c21 x k—s+q for some 0 < q < s — ½ in the unmixed, geosampled, Chl-a, 
NDVI, biosignature S. damnosum s.l. habitat model radiance estimates.  

    Note that when q < s 0— 1/2 was needed to ensure that x* was square integrable, the 
squared error then was probabilistically quantitated by Q jj(t)x*(t) dt — j j0(t)x *(t) dt'j, 
which was equivalent to || j — j0 II (s—q)/(r+s). It was supposed x* was a function satisfying 
\(x*,fk )l21 x k s+q for some 0 < q < s — 1/2. Then under the assumptions for some constant d 
> 0, and the regularized estimator jnX with X satisfied the optimal rate of convergence under 
the prediction error. 

It was also evident that when fk = fk, I ■ l|s/(r+s) in the RapidEyeTM, Chl-a–oriented, 
unmixed, endmember, forecasting, NDVI biosignature, eco-epidemiological, risk model, the 
output was equivalent to || ■ ||L2. This implied that if fk = fk for all k > 1, then lim inf sup P(||j 
— j0llL2 > dn—2r/(2(r+s)+1)) > 0n^x jeB FeF(s,M,K),j0eH for some constant d > 0, and the 
regularized estimate j3nX with X satisfying the optimal rate. This result demonstrated that the 
faster the eigenvalues of the covariance operator for X(-) decay, the larger the probabilistic 
estimation error in a geospectral, geopsatial, unmixed, Chl-a, NDVI biosignature, habitat risk 
model. The behavior of the estimation error thus differed significantly from that of prediction 
error. 
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Similar results on the lower bound have recently been obtained by Hall and Horowitz 
[161] who considered estimating j0 under the assumption that \(j0,fk )c2 \ decays in a 
polynomial order. Note that this forecast slightly differed from our setting where j0 e H meant 
that for some constant M0> 0 in the model forecasts. When further assuming that 2s + 1 < 2r, 
and pk — pk+1> M— 1k—2s—1 for all k > 1, Hall and Horowitz [161] obtained the same lower 
bound as ours. However, it was not required that 2s + 1 < 2r, which in essence states that f0 is 
smoother than the sample path of X. Perhaps, more importantly, we did not require the 
spacing condition pk — pk+1> M— 1k—2s—1 on the eigenvalues because we did not need to 
estimate the corresponding eigenfunctions. Such a condition is impossible to verify, even for 
a standard RKHS(2). In addition to 0k = fk, we assumed that Wfkf ^ffk ||x x kq, when H = Wf. 
In this  case\\$(q) — i0q)|£2<CoWi— M(s+q)/(r+s). It was assumed that 0k = fk and W^kf ^/^k 
Wx x kq, for all k > 1. Then for some constant d > 0, and the regularized estimate fnX with X 
achieving the optimal rate. Finally, we noted that the method of regularization was easily 
extended to handle other goodness of fit measures in the immature habitat, resdiual model 
output as well as the generalized functional linear regression such as in Cardot and Sarda 
[162] and Muller and Stadtmuller [163].  

The probabilistic, regularized, fractionalized, Chl-a, habitat, transmittance emissivity 
estimators were easy to implement. Similarly to smoothness regularized estimators in other 
contexts [154], fjnX and fnX can be expressed as a linear combination of a finite number of 
known basis functions, although in the immature habitat model the minimization was taken 
over by an infinitely-dimensional space. Existing algorithms  for smoothing splines in 
ArcGIS to compute our regularized estimator fjnX, f’nXand anX.  

To demonstrate the merits of our proposed Chl-a estimators in finite sample settings 
in hyperproductive S. damnosum s.l. habitats, we carried out a set of simulation studies. The 
simulation setting of Hall and Horowitz [161] where T=[0,1] was assumed. As is common in 
most smoothing methods, the choice of the tuning parameter plays an important role in the 
performance of the Chl-a covariate, endmember, moderate resolution, emissisity estimators 
[24]. A commonly utilized practical strategy of choosing the value of X was performed 
through a generalized cross validation matrix in ArcGIS employing the RapidEye TM 5m 
resolution riverine scene. Note that the regularized estimator is a linear estimator in that y = 
H(X)y where y = (fjnX(x1),..., fjnX(xn))' and H(X) is the so-called hat matrix depending on X 
[142]. The tuning parameter X that minimized XGCV was then selected. 

The setting of well-spaced eigenvalues was generated. The prediction error, \\ftnX — 
ft0\\0, for each combination of v value and forecasted hyperproductive, RapidEye TM 5m, 
habitat sample size when a = 0.5. The results were averaged over 1000 simulation runs in 
each setting. Both axes were given in the log scale in ArcGIS. The plot suggested that the 
estimation error converged at a polynomial rate as sample size n increased. ( see Figure 65) 
Further, it was observed that with the same georeferenced habitat sample size, the prediction 
error tended to be smaller for larger v. This also confirmed our theoretical development 
which indicated that the faster the eigenvalues of the covariance operator for X(-) decay, the 
smaller the prediction error (2) 
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Fig. 65. Prediction errors of the regularized estimator (a = 0.5): X simulated with a 
covariance function with well-spaced canopied, trailing vegetation, unmixed, 
biosignature 7 s.l. habitat turbid water eigenvalues. The results were averaged over 
1000 runs.  

 
Black solid lines, red dashed lines, green dotted lines and blue dash-dotted lines correspond 
to v = 1.1, 1.5, 2 and 4, respectively. 

To better understand the performance of the smoothness regularized, regression-
related, Chl-a covariate parameterizable RapidEyeTM covariate, estimator and the GCV 
choice of the tuning parameter, we recorded the performance of an estimator whose tuning 
parameter was chosen to minimize the prediction error. This choice of the tuning parameter 
ensured the optimal performance of the regularized RapidEye TM 5m, S. damnosum s.l., Chl-
a, fractionalized, estimator. However, it should be noted that this is not a legitimate statistical 
estimator since it depended on the knowledge of unknown slope function fi0. The prediction 
error was associated with this choice of tuning parameter. The RapidEyeTM 5m forecasts 
behaved similarly to the estimate with X chosen by GCV. Note that the comparison between 
the forecasted habitats suggested that GCV generally lead to near optimal performance in the 
forecasting, Chl-a, eco-epidemiological risk model.  

The estimation error was then autoregressively quantitated in the immature habitat, 
interpolated, residualized risk model in ArcGIS. The estimation for the non-normal data 
feature attributes averaged over 1000 simulation runs, with X chosed by GCV. By doing so, 
the model geo-predictive estimation error for each combination of endmember sample size 
estimation errors averaged over 1000 simulation runs, with X chosen by GCV for each 
combination of sample size and value. Similar to the prediction error, the diagnostic ArcGIS 
plots suggested an estimation error when the sample size increased. The GCV lead to near-
optimal choice of the tuning parameter in the model. 
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1 
>— 

3 

The predictions and estimation error were quantitated as rendered from the S. 
damnosum s.l. habitat, decomposed Chl-a and other fractionalized, radiance endmembers. 
The prediction and estimation error were quantitated when the estimates in the immature 
habitat, eco-epidemiological, reflectance, canopied, risk model tuned with GCV for the large 
noise (a = 1) setting. We noticed that the prediction error were very much smaller than the 
estimation error we assumed would be rendered from the model. 

For brevity, we assumed that p1 = m =1 without loss of generality. By the Cauchy-
Schwarz inequality, 

If  |R >1f ( s ) C ( s , t ) f ( t ) d s d t  + II /1IIH 2 Tx T 

> f o ( s ) C ( s , t ) f o ( t ) d s d t  +f 1( s ) C ( s , t ) f 1( t ) d s d t  
2 TxT 2 Tx T 

-^ j T  T f o ( s ) C ( s , t ) f o ( t ) d s d ? j  

x ^ j T  T h ( s ) C ( s , t ) f 1( t ) d s d t ^  

f o ( s ) C ( s ,  t ) f o ( t ) d s d t ,  
T xT  

 

where 3a2/2 — ab > — b2 / 6 was required for deriving the last inequality. Therefore, Ilf|R > 
IfolH. Together with the statements that If|H = I foIlH + II f1 IIH and If|R >J(f1)>Ilf!Ih, we 
concluded that If|R > (1 + 3/mn)—1I/IIH. In mathematics, the Cauchy–Schwarz inequality is 
a useful inequality encountered in many different settings, such as linear algebra, analysis, 
probability theory, and other areas. It is considered to be one of the most important 
inequalities in mathematics [24]. It has a number of generalizations, among them Hölder's 
inequality [24]. 

  In mathematical analysis Hölder's inequality, is a fundamental inequality between 
integrals and an indispensable tool for the study of Lp spaces. Hölder's inequality theorem 
states, “Let (S, Σ, μ) be a measure space and let p, q ∈ [1, ∞] with 1/p + 1/q = 1. Then, for all 
measurable real- or complex-valued functions f and g on S,   ”  If, in 
addition, p, q ∈ (1, ∞) and f ∈ Lp(μ) and g ∈ Lq(μ), then Hölder's inequality becomes an 
equality if and only if |f |p and |g|q are linearly dependent in L1(μ), meaning that there exist real 
numbers α, β ≥ 0, not both of them zero, such that α|f |p = β |g|q μ-almost everywhere. The 
numbers p and q in the habitat, Chl-a, fractionalized radiance estimates were Hölder 
conjugates of each other in the model. The special case p = q = 2 gave a form of the Cauchy–
Schwarz inequality. Hölder's inequality held even when ||fg||1 was infinite. Then f  was in 
Lp(μ) and g was in Lq(μ). Then the pointwise product in the habitat, eco-epidemiological risk 
model fg was L1(μ). Hölder's inequality is used to prove the Minkowski inequality, which is 
the triangle inequality in the space Lp(μ), and also to establish that Lq(μ) is the dual space of 
Lp(μ) for p ∈ [1, ∞) [24]. 

The bounded positive definite operator R1/2 was applied, to both sides of the Chl-a, 
endmember, RapidEye, 5m, immature S. damnosum s.l. reflectance, endmember, 
vulnerability, risk model. Then {rnk,Mj)R = vk

xSkj. Therefore, E VkVj {f,Mk )r {f,tej )r 
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(tek,Mj )r k,j= E Vk {f,Mk)R. Similarly, because {Ca>k,a>j)L2 = Skj, when Vk {f,Vk 
)RC<Mk,Y^Vj {f,tej )rMj k=1 j=1 L2= E VkVj {f,Vk)r {f,Vj )r {CMk,Mj )l2 k,j=1= E Vl{f,^k )2r. 
Recall that for any f e H0, Cf = 0 if and only if f = 0, which implies that H0 n l.s.{0k : k > 1}x 
= {0} [142]. Together with the fact that H0 n H1 = {0} in the Chl-a fractionalized, 5m 
RapidEyeTM, radiance model , we concluded that H = H1 = l.s.{fk : k > 1}.  

Further, it was not hard to see that for any f,g e H,{f,g)R = f(s)C(s,t)g(t)dsdt +{f,g)K 
in the S. damnosum s.l. habitat model. In particular, {fj,fk) R = (Pk + P-1')sjk, implied that 
{((pk + pfl)~l,fk): k > 1} which was also the eigensystem of R, where WR(s,t)=J2(Pk + 
pfl)~lfk(s)fk(t). Then Rfk ■= j R(-,t)fk(t)dt =(pk + pfl)~lfk,k = 1, 2,.... Therefore, Rl/2CRl/2fk = 
R1/2C((m + p-V1/2fk) = R1/2(/Xk(Rk + P-l)~l/2fk) = (1 + P-V-Wk, which implied that Zk = fk = 
fk, Vk = (1 + p-1 ^.-V1 and Yk = PkPk. Consequently, Mk = v-1/2R1/2fk = v-l/2(^k + P-l)~l/2 fk 
= R-l/2fk in the resdidual forecasts rendered from the immature habitat model.  

The Chl-a, eco-epidemiological, reflectance risk model was remotely regressively 
quantitated employing H = Wf, which implied that pk x k-2m. Based on Corollary 2 of Ritter, 
Wasilkowski and Wozniakowski [159], [ik x k~2(s+1)] it was was revealed that Yk x k~2(s+1+m) 

existed in the forecasted residual, eco-epidemiological, unmixed dataset. Our habitat 
forecasting Chl-a model indicated that the reproducing kernel Hilbert space was associated 
with C, which differed from W2+1([0,1]) in the forecasts only by a finite-dimensional linear 
space of polynomials. 

   Qr the reproducing kernel for W([0,1]) was denoted in the kdoel in ArcGIS. It was observed 
that Qr (L2) = W, [153]. It began by quantifying the decay rate of lk(Qlm/2Qs+1Qm/2). By 
Sobolev’s embedding theorem, (Q^2qU2)(C2) = Q%{Wm) = Wm+s+1 [142]. Let W k,p(Rn) 
denote the Sobolev space consisting of all real-valued functions on Rn whose first k weak 
derivatives are functions in Lp. Here k is a non-negative integer and 1 ≤ p < ∞. The first part 
of the Sobolev embedding theorem states that if k > ℓ and 1 ≤ p < q < ∞ are two real numbers 

such that (k − ℓ)p < n and: then  and the embedding is 
continuous. Initially the Chl-a, risk model revealed k = 1 and ℓ = 0, Sobolev embedding ten 

rendered , where p∗ was the Sobolev conjugate of p, given by  

The Sobolev embedding is a direct consequence of the Gagliardo–Nirenberg–Sobolev 
inequality. Assume that u is a continuously differentiable real-valued function on Rn with 
compact support. Then for 1 ≤ p < n there is a constant C depending only on n and p, such 
that  [24]. The case  is due to Sobolev,  
to Gagliardo and Nirenberg independently. The Gagliardo–Nirenberg–Sobolev inequality 
implies directly the Sobolev embedding  

 The embeddings in other orders on Rn are then obtained by suitable iteration. The 
second part of the Sobolev embedding theorem applies to embeddings in Hölder spaces 
C r,α(Rn). If (k − r − α)/n = 1/p with α ∈ (0, 1), then one has the embedding 

 This part of the Sobolev embedding in the Chl-a, S. damnosum s.l. 
habitat eco-epidemiological risk model was a direct consequence of Morrey's inequality. 
Intuitively, this inclusion expressed the fact that the existence of many weak derivatives in 
the eco-epidemiological risk forecasts which implied some continuity in the derivatives.  

It was assumed n < p ≤ ∞ in the uncertainty, habitat risk model residual, covariate 
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estimators. As such there existed a constant C, depending only on p and n in the residual 
heuristically eco-epidemiological dataset such that for all 

u ∈ C1(Rn) ∩ Lp(Rn), where  Also when u ∈ W 1,p(Rn), then u was in fact Hölder 
continuous of exponent γ, after possibly being redefined on a set of the sparsely shaded, 
canopied, risk model measures. A similar result held in a bounded domain U with C1 
boundary in the model forecasts. In this case, , where the 
constant C was dependnet on n, p and U. This version of the inequality followed from the 
previous by applying the norm-preserving extension of W 1,p(U) to W 1,p(Rn). In mathematics, 
a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder 
condition, or is Hölder continuous, when there are nonnegative real constants C, α, such that 

 for all x and y in the domain of f [24] More generally, 
the condition can be formulated for the risk model functions between any two metric spaces. 
The number α is called the exponent of the Hölder condition. If α = 1, then the function 
satisfies a Lipschitz condition. If α = 0, then the function simply is bounded [24].  

Therefore, qK2Qs+1Ql(2 was equivalent to Qm+s+1 in the risk model, Xk(Q) was 
denoted and quantitated to be the kth largest eigenvalue of a positive definite operator Q. We 
let {hk: k > 1} be the eigenfunctions of Qm+s+1, that is, Qm+s+1hk = Xk(Qm+s+1 )hk, k = 1, 2, 
—n. This was denoted by Fk and Fk where a linear space was spanned by {hj :1 <j < k} and 
{hj : j > k + 1}, respectively. By the Courant-Fischer-Weyl min-max principle, 
Xk(Q1m/2Qs+1QK2) > min ||Q]+2QK2f|||2/\\f ||L2J jFk>c wQm+,+1fiiL,/WfiiL,>C1Xk(Qm+s+1) 

for some constant C1 > 0. On the other hand, Xk(Qm/2Qs+1QK2) < max 
WQ1+21Qm/2fWL2/Wf WL,f jFk-1 <  C, min WQm/+s+1 f WL,/Wf WL,f jFk-1 , C2Xk(Qm+s+1) 
for some constant C2 > 0. Xk(QlJl

2Qs+1 qU2) x xk~2(m+s+1) is summarized in the risk model 
resdiual dataset. As shown by Ritter, Wasilkowski and Wozniakowski [159, Theorem 1, page 
525], there exist D and U such that Qs+1 = D + U, D has at most 2(s + 1) nonzero eigenvalues 
and ||U1/2f \\c2 is equivalent to ||C1/2f \\c2. 

Moreover, the eigenfunctions of D, denoted by {g1,...,gd} (d < 2(s + 1)) were 
polynomials of order no greater than 2s + 1 in the endmember, RapidEye TM S. damnosum 
s.l., Chl-a, habitat, fractionalized, wavelength, transmittance, eco-epidemiological, 
RapidEyeTM 5m, optimizable, risk model. G A denoted the space spanned by {g1,...,gd}. 
Clearly G C Wm = QlJi2(L2). Theerfater {hj :j > 1} was the eigenfunctions of qK2Qs+1Ql2 
whilest Fk and Fjf were defined similarly as Fk and Fjf. Then by the Courant-Fischer-Weyl 
min-max principle, Xk-dQ^UQm/2) >min \\U 1/2QK2f ||L2/If IIL2f efik 
nQm/z(G)r=milUQifiQm2fIL2/\\fIL2 f eTkC\Qm

ul(Q)r= min IQ^f 1L2/. If I2L 
feFk22>C1Xk(Qm+s+1)for some constant C1> 0. On the other hand, k+d(QU2Qs+1QK2) <
 max_ |U1/2QK2f /\\f ff eF— nQm1/2(G)1 = max IQl/21Qll2fI2c2/IfI2C2f eF— nQm/Z(G)r = 
min IQ1+1Qm/2f 11L2/. If 11L2feFrk-1<C2Xk(Qm+s+1) for some constant C2> 0 in the risk 
model residual forecasts. Hence, Xk(Qml2UQQJF) x k-2(m+s+1). Because QlJi2UQlJl

2 is 
equivalent to R1/2CR1/2, [142] we again employed the Courant-Fischer-Weyl min-max 
principle.  

The Courant minimax principle, as well as the maximum principle, can be visualized 
by imagining that if ||x|| = 1 is a hypersphere, then the matrix A deforms that hypersphere into 
an ellipsoid. When the major axis on the intersecting hyperplane are maximized (i.e., the 
length of the quadratic form q(x) is maximized), this is the eigenvector and its length is the 
eigenvalue. All other eigenvectors will be perpendicular to this [24]. The minimax principle 
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also generalizes to eigenvalues of positive self-adjoint operators on Hilbert spaces, where it is 
commonly used to study the Sturm–Liouville problem. In mathematical applications, the 
classical Sturm–Liouville equation, is a real second-order linear differential equation of the 

form  where y is a function of the free variable x. Here, the 
functions p(x), q(x), and w(x) > 0 were specified at the outset. In the simplest of cases, all 
coefficients are continuous on the finite closed interval [a,b], and p has a continuous 
derivative. This function "y" is called a solution if it is continuously differentiable on (a,b), 
and satisfies the equation ('1') at every point in (a,b) [24]. In addition, the unknown function y 
is typically required to satisfy some boundary conditions at a and b. The function w(x), 
sometimes referred to as r(x), is called the "weight" or "density" function. The Courant 
minimax principle rendered a condition for finding the habitat, fractionalized Chl-a 
eigenvalues for a real symmetric matrix. The Courant minimax principle was employed in 

ArcGIS for any real symmetric matrix A,  where C was any 
(k − 1) × n matrix. Notice that the vector x was an eigenvector to the corresponding 
eigenvalue λ in the georeferenced habitat. The Courant minimax principle is a result of the 
maximum theorem, which states that for q(x) = <Ax,x>, A being a real symmetric matrix, the 
largest eigenvalue is given by λ1 = max||x||=1q(x) = q(x1), where x1 is the corresponding 
eigenvector [24].The unmixed Chl-a eigenvalues λk and eigenvectors xk are found by 
induction and are orthogonal to each other; therefore, λk = max q(xk), with <x,xk> = 0, j < k.  

An endmember unmixed analysis in ArcGIS employed the rate of convergence of 
smoothing splines [164, 165] to improve the model output. For brevity, EX() = 0 was 
assumed.  Then, a0 was estimated by y and j0 by employing the he Cauchy–Schwarz 
inequality. Thus, for all vectors x and y of an inner product space in the eco-epidemiological 
dataset of Chl-a endmember regressors it was true that  where 

was the inner product (i.e., dot product). Equivalently, by taking the square root of both 
sides, and referring to the norms of the vectors, the inequality in the model forecast was 
written as  in ArcGIS Geospatial Analyst.  

   It was noted that when  and  had an imaginary component, 
the inner product in the habitat risk model, the standard inner product and the bar notation 
was used for complex conjugation, and the inequality was restated more explicitly 
as  

Moreover, two sides are equal if and only if x and y are linearly dependent (or, in a 
geometrical sense, they are parallel or one of the vectors' magnitude is zero) [24]. When 
viewed in this way the numbers x1, ..., xn, and y1, ..., yn were the components of x and y with 
respect to an orthonormal basis of V in the residual model forecasts. These latent variables 

were compactly written as  

Let (S, Σ, μ) be a measure space and let p, q∈ [1, ∞] with 1/p + 1/q = 1. Then, for all 
measurable real- or complex-valued  functions f and g on S,  [23]. If, in 
addition, p, q∈ (1, ∞) and f∈Lp(μ) and g∈Lq(μ), then Hölder's inequality becomes an equality 
in the risk model if and only if |f |p and |g|q were linearly dependent in L1(μ). This indicates 
that there exists parameterized covariates α, β ≥ 0, which are not both zero, and α|f |p = β |g|qμ- 
existed almost everywhere in the regressed dataset. 
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A  Aa+1/(2(r+s)
) 

= A-(a+1/(2(r+s))) x A-

(a+1/(2(r+s))) 

(1 + x 2(r+ s ) / ( 2 a(r+s)+r^-2dx 

The semivariogram analysis made implicit use of the ergodicity hypothesis in the eco-
epidemiological, Chl-a, endmember, emissivity model. The VARIOGRAM procedure 
worked with the forecasted, residually centered values , , where it 
was assumed that the sample mean  was the constant expected value of . This was 
equivalent to employing the original values, since , which in the 
habitat model revealed that the optimal property of the semivariance could be parsimoniously 
tabulated by filtering out the mean. PROC VARIOGRAM was used to compute the empirical 
classical and robust semivariances (www.sas.edu). 

The VARIOGRAM procedure worked with the forecasted habitat values (i.e., 
, ), where it was assumed that the sample mean  was the 

constant expected value of . This was equivalent to employing the original 
geosampled values, since  showed the property of the 
semivariance to filter out the mean. Additionally, since the time series random field was 
ergodic, the regressors corresponded to the variance in the Chl-a canopy, unmixed, 
reflectance model.  

A practical range and defined and the distance at which 95% of the sill was reached 
for an asymptotic variogram. A Voroni decomposition error matrix then assessed the 
accuracy of the unmixing systematics as well as the proper selection of the covariate 
coefficients of the risk model. The model output revealed that the kriged sub-mixel, 
biosignature NDVI, eigen-decomposed derivative spectra were within normal statistical 
thresholds. A field verification exercise revealed an accuracy of the model residual forecasts. 
On the other hand, 

ro 
5Z(1 + XYk!) 2(1 + Yk a) 
k = 1  

<Q£(1 + Ak2(r+s))-2(1 + k2a(r+s)) 
k=1 

ro 
1 + Ax 2(r +s^-2x 2a(r+s)dx 

ro 
(1 + Ax2(r +s)/(2a(r+s)+1))-2dx 

 
 

summed up, ||/3 - Ml = Op(n-1A-(a+1/(2(r+s)))||/ - M2). In particular, taking a = c in the immature 
habitat model output yielded 11/3 - ^||2 = Op(n~1A~(c+1/(2(r+s)»||/3 - /?|2). If n-1A-(c+1/(2(r+s)))^ 0, 
then HV-hc = OpiMp-hc). Together with the triangular inequality H/S- hc> 11/3 - hc - 11/3 -
hc = (1 - Op(1))Up – hc. Therefore, H/3-hc = Op(HP-hc), and as such the model rendered b 
H/3 - ^H2 = Op(n-1A-(c+1/(2(r+s)))) = Op(1). Putting it back to into the dataset of the habitat 
model, we were able to robustly regressively quantitate all the RapidEyeTM 5m, unmixed, 
transmittance wavelength data. If there also existed some 1/2(r + s) < c < 1, such that n1 x A-

(c+1/2(r+s)) ^ 0, then Hf-M2 = op(n-1A-(a+1/2(r+s))).  

/ 
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The semivariogram analysis made implicit use of the ergodicity hypothesis in the 
habitat model. The VARIOGRAM procedure worked with the residual centered values 

, , where it was assumed that the sample mean  was the constant 
expected value  of . This was equivalent to employing the original values 

, which revealed that the optimal property of the semivariance 
could be robustly parsimonioulsy tabulated by filtering out the mean. PROC VARIOGRAM 
uses to compute the empirical classical and robust semivariances (www.sas.edu). 

 The VARIOGRAM procedure worked with the forecasted, residually centered, 
RapidEye 5m, sparsely shaded canopied, geospatial/geospectral, explanatorily interpolated, 
hyperproductive, georeferenceable, S. damnosum s.l. riverine , immature, habitat geosampled 
values (i.e., , ) where it was assumed that the sample mean  was 
the constant expected value of . This was equivalent to employing the original geo-
spatiotemporally, geosampled values, since  showed the property 
of the semivariance to filter out the mean. Additionally, since the time series dependent 
random field was ergodic the time series, dependent regressors corresponded to the variance 
in the canopy, endmember reflectance model.  

      A practical range was defined at which 95% of the sill was reached for an asymptotic 
variogram. A Voroni decomposition error matrix in ArcGIS then assessed the accuracy of the 
unmixing systematics as well as the proper selection of the coefficients of the risk model ( see 
Figure 66). A weighted Voronoi diagram is the one in which the function of a pair of points 
to define a Voronoi cell is a distance function modified by multiplicative or additive weights 
assigned to generator points. In contrast to the case of Voronoi cells defined using a distance 
which is a metric, in this case some of the Voronoi cells may be empty. A power diagram is a 
type of Voronoi diagram defined from a set of circles using the power distance; it can also be 
thought of as a weighted Voronoi diagram in which a weight defined from the radius of each 
circle is added to the squared distance from the circle's center The model output revealed that 
the kriged sub-mixel, riverine, habitat, biosignature endmember, derivative spectral estimates 
were within normal statistical threshol 
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Figure 66 Voroni tessellations of the interpolated unmixed RapidEyeTM Red Edge NDVI 
S. damnosum s.l. habitats biosignature at the Goncogo study site 
 

 

 
In the control villages Ayago and Laminlatoo, fly density was relatively the same 

from the beginning of monitoring to the final day of monitoring, with some small fluctuations 
in between the catching days probably due to mild weather changes. In Goncogo and Adibuk 
Villages, fly density was relatively constant from the beginning of the monitoring up to the 
13th day, and then gradually started reducing up to the last day. This is possibly due to the 
slashing and clearing of the potential breeding sites of the flies, which was done in two 
cycles.  The first cycle took place on the 8th and 9th day, and the second cycle on the 19th and 
20th day of the exercise. These were intervention villages. 
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FLY CATCHES DURING THE SLASH AND CLEAR TRIALS IN FOUR VILLAGES 
(OVER A PERIOD OF 31 DAYS) 
 
 
GONYCOGO 
(INTERVENTION) 

AYAGO/NILE 
(CONTROL) 

ADIBUK 
(INTERVENTION) 

LAMINLATOO 
(CONTROL) 

310 370 226 230 
299 349 237 251 
321 366 213 212 
279 339 260 217 
283 295 217 229 
297 361 204 201 
258 389 256 255 
267 278 241 243 
281 315 269 219 
309 364 253 232 
261 352 259 207 
252 341 219 246 
215 331 191 215 
189 350 151 221 
163 327 155 258 
152 369 148 235 
138 377 121 239 
116 356 128 225 
141 287 120 233 
133 359 129 211 
120 321 119 240 
111 345 99 234 
102 367 76 227 
116 353 70 241 
98 216 66 266 
77 307 61 237 
51 368 63 222 
44 344 50 208 
30 308 44 218 
37 360 40 236 
31 379 33 214 
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Figure 67. Histogram of post-collection of adult black flies captured at Adbuk 
intervention village and Laminlato control village  
 
 

 
 
 
Figure 68. Histogram of post-collection of adult black flies captured at Gonycogo 
intervention village and Ayago control village  
 
 

 
 

Slash and Clear was conducted in the intervention narrow tributary, eco-
georferenceable, explanatorial, agro-village complexes (see Figure 67 to 73). In Gonycogo 
and Ayago villages, there was a fly density decrease of 52%, while in Adibuk and 
Laminlatoo villages, there was a fly density decrease of 66% after intervention. This rendered 
an overall percentage efficiency of the Slash and Clear approach of 60% within a period of 31 
days 
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Discussion  

            The mean and variance  were optimally defined in terms of integrals in a forecast 
vulnerability , narrow African, agro-village,  riverine tributray,  S. damnosum s.l., 
decomposable, endmember iterative,,stochastic interpolator What it means for the mean or 
variance to be infinite in the signature probabilsic paradigm would be defined then be the  i 
statement about the limiting behavior for those integrals For example, if the mean is 
lim a,b→∞ ∫ b −a x dF lima,b→∞∫−abx dF for a (considering this, say as a Stieltjes integral) 
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in a S. damnosum s.l. probabilistic model for a continuous density this would be 
lim a,b→∞ ∫ b −a xf(x) dx lima,b→∞∫−abxf(x) dx (now as a Riemann integral, say). 

This can happen, for example, if the tail is "heavy enough". In A SAS/GIS  Then a medical 
entomologist or expeimenter may optimally consider the following examples for four cases of 
finite/infinite mean and variance quanatiation for a moderate resolution, uncoalesced, geo-
spectrotemporal, probabilsic, itearatively quantitatively  interpolative, endmmeber signature, 
geospatial, time serirs  : A distribution with infinite mean and infinite variance for a  Pareto 
distribution with α=1 α=1) , a zeta(2) distribution. 2) A distribution with infinite mean and 
finite variance.3) A distribution with finite mean and  infinite variance.A distribution with 
finite mean and finite variance. The Pareto distribution is a power law probability distribution 
that is used in description of social, scientific, geophysical, actuarial, and many other types of 
observable phenomena[25] 

 The beta function  is the name used by Legendre and Whittaker and Watson 
(1990) for the beta integral(also called the Eulerian integral of the first kind). The eco-
georferenceable, explanatorial, trailing vegetation, narrow , riverine tributary S. damnosum 
s.l. capture point, immature habitat eco-epidemiolgical,  model  was defined 

by The beta function  was implemented in 
the Wolfram Language as Beta[a, b].To derive the integral representation of the beta function, 

we wrote the the product of two factorials as .We  
let , , 

so = =  Transforming 
to polar 

coordinates with , = rendered 

=

 The polar coordinates  (the radial coordinate) 
and  (the angular coordinate, often called the polar angle) were defined in terms of moderate 
resolution derived  Cartesian coordinates by = , = where  was the radial distance 
from the origin, and  was the counterclockwise angle from the x-axis in the S. damnoum s.l. 

model in terms of  and , = and =   In so doing,  was  
interpretable as a two-argument inverse tangent which took the signs of  and  into account 
to determine in which quadrant  lay the S. damnosum s.l. eco-epidemiological, moderate 
resolution , forecast vulnerability model forecasts. It followed immediately that polar 
coordinates were inherently unique; in particular,  was  precisely the same polar 
point as  for any integer .in the model One often allows negative values of  under the 
assumption that  is plotted identically to [25]. 

The beta function  in the eco-epidemiological, moderate resolution, geo-
spectrotemporal, S. damnosum s.l. immature, habitat, eco-epidemiological, capture point, 
eco-georeferenceable  model was then defined 
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by = =  Rewriting the arguments then 

rendered the usual form for the beta function, = =  By 
symmetry,  in the vulnerability , probabilistic, regressive, paradigm 
forecasted residual datset. The beta function was also given by the 

product . 

The general trigonometric form  of the riverine tributary, moderate resolution, 
discontinuously canopied, S. damnosum s.l. immature, capture point, moderate resolution , , 
trailing vegation, discontinuously canopied, eco-georeferenceable, immature, capture point,  
habitat model  

was ,This equation was transformed to an integral 
over polynomials by letting , In so doing, 

= = and = =  for 
any   in the probabilistic paradigm with , . 

The expression of a point as an ordered pair  is known as polar notation, the 
equation of a curve expressed in polar coordinates is known as a polar equation, and a plot of 
a curve in polar coordinates is known as a polar plot ( www.esri.com).In much the same way 
that Cartesian S. damnosum s.l.  curves were plotted on rectilinear axes, polar plots which 
was drawn on radial axes such as those shown in the figure above.The arc length of a polar 

curve wasgiven by  which when tabulated was The line 
element was given by and the area element 
by The area enclosed by a polar curve  in the S. damnosum s.l. oviposition 

predictive risk model was then The slope of a polar function  at the 
hypeproductive, eco-georeferenceable, narrow, riverine tributary, agro-village capture  point  

immature, habitat  was given by The angle between the tangent and 

radial line at the point  in the paradigm was  

A polar curve is symmetric about the x-axis if replacing  by  in its equation 
produces an equivalent equation, symmetric about the y-axis if replacing  by  in its 
equation produces an equivalent equation, and symmetric about the origin if 
replacing  by  in its equation produces an equivalent equation[25].In Cartesian 

coordinates, the radius vector  is giving 
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derivative Its unit vector is giving 

derivative In polar coordinates, the radius vector is given 

by giving derivatives = =  and 

= = The unit vectors were = and 

= giving derivatives = and = A unit vector is 
a vector of length 1, sometimes also called a direction vector (Jeffreys and Jeffreys 1988). 
The unit vector  having the same direction as a given (nonzero) vector  is defined 

by where  denotes the norm of , is the unit vector in the same direction as the 

(finite) vector . A unit vector in the direction is given by  where  is the radius 
vector. The vector  from the origin to the current position.is also called the position vector 

where the derivative of  satisfies [25]. 

To put it in a form which can be used to derive the Legendre duplication formula, We 
let , so  and , 

and = =  in the S. damnosum s.l. 
model. Gamma functions of argument  can be expressed in terms of gamma functions of 
smaller arguments[25]. From the definition of the  hypeproductiive, S. damnosum s.l., 
seasonal oviposition LULC site moderate resolution model, we quanatiate the  beta 

functionas  We  let , 

then and , 

so  and = = =

= We  employed the beta 

function identity to  parsimoniously 

quantitate Solving for  and 
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using  then rendered  = =  

A form was used to develop integral representations of the Bessel 
functions and hypergeometric function, in the forecast vulnerability model by  

letting , so  A function  optimally  defined 

by the recurrence relations and The Bessel functions 
are more frequently defined as solutions to the differential 

equation (www.mathworld.com).The hypergeometric functions 
are solutions to the hypergeometric differential equation, which has a regular singular point at 
the origin[25] 

.  To derive the hypergeometric function from the hypergeometric, S. damnosum s.l. 
explanative, ,immature, habitat differential 
equation we usde the Frobenius method to reduce it 

to giving the indicial 

equation  The Frobenius method enables us to create a power series 
solution to such a differential equation, provided that p(z) and q(z) are themselves analytic at 
0 or, being analytic elsewhere, both their limits at 0 exist (and are 
finite)(www.mathworld.com). An indicial equation, also called a characteristic equation, is 
a recurrence equation obtained during application of the Frobenius method while  solving 
a second-order ordinary differential equation.[25] The indicial equation is obtained by noting 
that, by definition, the lowest order term  (that corresponding to ) must have 
a coefficient of zero.   is an ordinary point of the ordinary differential equation, expand  in 
a Taylor series about . Commonly, the expansion point can be taken as , resulting in 

the Maclaurin series A Maclaurin series is a Taylor series expansion of a function 

about 0,  

Plugging this into the ansatz series then optimally  rendered the 

solution This is the so-called regular solution, 

denoted = = which converged in 
the S. damnosum s.l. model  if  was not a negative integer (1) for all of  and (2) on 
the unit circle  if . The complete solution to the  trailing vegetation, 
discontinuously canopied, S. damnoum s.l. hypergeometric differential 
equation was The hypergeometric 
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series is convergent for arbitrary , , and  for real , and 
for  if Here,  was a Pochhammer symbol. T he Pochhammer 

symbol = =  [25]. 

The Pochhammer symbol was implemented in the S. damnosum s.l. hypeproductive 
seasaonl oviposition  model employing  the Wolfram Language as Pochhammer[x, n].The 
Pochhammer symbol satisfied the dimidiation 

formulas = and = and the duplications 

formula A ratio of Pochhammer symbols was  

given in closed form. The derivative was given 

by where  is the digamma function. The digamma 
function arises in simple sums such 

as = = where  is a Lerch 
transcendent[25]. 

The Lerch transcendent is generalization of the Hurwitz zeta 
function and polylogarithm function.T he Hurwitz zeta function  is a generalization of 
the Riemann zeta function  that is also known as the generalized zeta function. In the S. 
damsnoum s.l. model this function was defined by 

the formula for  and by analytic continuation to other , where 
any term with  is excluded. It is implemented in this form in the Wolfram 

Language as HurwitzZeta[s, a].The slightly different form is 
implemented in the Wolfram Language as Zeta[s, a]. Note that the two are identical only 
for . 

 Many sums of reciprocal powers can be expressed in terms of it. It is classically 

optimally defined by for  and , , .... It is implemented in this 
form as HurwitzLerchPhi[z, s, a] in the Wolfram Language.The slightly different 

form sometimes also denoted for  (or  and ) 
and , , , ..., is also implemented in theWolfram Language as LerchPhi[z, s, a]. Note 
that the two are identical only for .A series formula for  valid on a larger 
domain in the complex -plane is given 

by which holds for all complex  and 
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complex  with  The Lerch transcendent can be used to express the Dirichlet beta 

function= =  

The Dirichlet beta function is defined by the sum 

= = where is the Lerch transcendent. The 
Dirichlet beta function  in the S. damsnoum s.l. model was implemented in the Wolfram 
Language as DirichletBeta[x]. The beta function waswritten in terms of the Hurwitz zeta 

function by The beta function can be defined over the 

whole complex plane using analytic continuation, where 
is the gamma function.  

The (complete) gamma function I wasdefined to be an extension of the factorial to 
complex and  the decomposed , geo-spectrotemporal, eco-georferenceable, trailing 
vegeatation, narrow, African, riverine tributariy , agro-village complex S. damnosum s.l. 
capture point  arguments. It was related to the factorial by a slightly unfortunate 
notation due to Legendre which is now universally used instead of Gauss's simpler 

(see Gauss 1812; Edwards 2001,). It was analytic everywhere except at , , , 

..., and the residue at is where There are no points at which 
.[25] The gamma function is implemented in the Wolfram Language as Gamma[z]. 

There are a number of notational conventions in common use for indication of a power of a 
gamma functions in S. damnoum s.l. vulnerability model forecast for targeting seasaonlly 
hyperproductive seasaonl oviposition geolocations on moderate resolution geoclassifieable 
LULs . While authors such as Watson (1939) use (i.e., using a trigonometric function-
like convention), it is also common to write .  

The gamma function in the moderate resolution, S. damnosum s.l., immature 
habitat,capture point, trailing vegation, narrow riverine tributray, discontinuously canopied, 
predictive vulnerability probabilistic paradigm was defined as a definite integral for 

(Euler's integral form) = = or  
The complete gamma function was then  generalized to the upper incomplete gamma 
function and lower incomplete gamma function . The "complete" gamma 
function  can be generalized to the incomplete gamma function  such 
that . This "upper" incomplete gamma function was given 

by For  an integer = = where 
 is the exponential sum function. It is implemented as  Gamma[a, z] in the Wolfram 

Language.The incomplete gamma function  has continued 

fraction  [25]. 
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A special case is given by where  is the polylogarithm. he 
polylogarithm , also known as the Jonquière's function, is the 

function defined in the complex plane over the open unit disk. Its definition on 
the whole complex plane then follows uniquely via analytic continuation.Note that the 
similar notation  is used for the logarithmic integral.The polylogarithm is also 
denoted  and equal to where  is the Lerch transcendent [25]. 

Derivatives of the beta function in the model was then were given 

by = , = , which 

was equivalent to the  equation and  
which was then equivalent to 

where  was the polygamma 
function. 

Various identities were empirically regressively derived  for the ecogeoreferenced, seasonal, 
hyperproductive, capture point, discontinuously canopied, trailing vegetation,S. damnosum 
s.l. ovipoistion,  model using the Gauss multiplication formula. 

= = Additional identities included 

= = = , ,

 If  is a positive integer, 

then ,
[25]. 

Gosper gave the general formulas whih was then 
decomposable 

to for odd , 

and which were an 
immediate consequence of the analogous identities for gamma functions. 
Plugging  and into the above may render  the special 

cases in a ecogeoreferenced, seasonal, 
hyperproductive, capture point, discontinuously canopied, trailing vegetation,S. damnosum 
s.l. ovipoistion,  model 
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when

. 

In the PROC MCMC analyses all the Bayesianized geospatial, "high risk" explanatively 
hyperproductive, S. damnosum s.l., trailing vegetation, turbid water, discontinuously 
canopied, sparsely shaded , narrow tributary, agro-village complex, eco-georeferenced, larval 
habitats were identified and ranked based on an eco-epidemiological dataset of RapidEyeTM  
5m, wavelength, frequency, transmittance covariates and seasonally geo-spectrotemporally 
geosampled, larval/pupal, productivity counts. Elucidative, metaheuristically optimally, 
parameterizable,  reflectance  regressors were strategically interpretively employed in PROC 
MCMC to define expectations for prior distributions. The analyses revealed that the 
Percentage of discontinuity gaps was a significant prognosticator, positively associated with 
the eco-georeferenceable, geosampled, sparsely shaded, heterogeneously canopied, prolific 
habitats at the interventional, eco-epidemiological, agro-village ecosystem, georeferenced 
study sites (i.e., Gonycogo and Adbuk). Systematically investigating sources of differential 
out-of-sample, explicatively geo-predictive, algorithmic, iterative frameworks based on 
RapidEyeTM wavelength, transmittance frequencies and inferencial models in PROC MCMC 
employing a large empirical eco-epidemiological dataset of non-linear,geo-spectrotemporally 
geosampled, covariate coefficients may help gauge the degree of specific, time-varying, 
quantifiable, auto-probabilistic, uncertainties in hierarchical, generalizable,  eco-
georeferenceable, Bayesianistic, S. damnosum s.l., immature habitat, paradigms in PROC 
MCMC. 

The asymptotic truncated mean sqaured error of the geo-spectrotemporal, non-
frequentisic, geospatialized, probabilistically regressed, parameterized, explanatorial, 
covariate estimators in a given hierarchical expositively geoclassifiable, discontinuoulsy 
canopied, turbid water, LULC class in the intervention, riverine, agro-villge, complex 
ecosystem, narrow tributary, study sites  was robustly mapped. Asympotically squared error 
of the weighting scheme was eco-cartographically illustrated by an uncertainty-oriented, time 
series, diagnostic matrix, which employed the 5m, RapidEyeTM, bandwidth/lag truncations 
utilizing an asymptotic, truncated, mean squared criterion.  
The data dependent automatic, 5m, bandwidth/lag truncation parameters were introduced into 
the paradigm. The finite sample properties were then employed in a multi-dimensional 
explanatorial,  integral  analyses via Monte Carlo simulations in PROC MCMC. 

      Integrations were independently employed in the explanatively optimally 
parameterizable,  5m,  wavelength, transmittance,  emissivity, vulnerability  covariates. The 
explanative, eco-georefernceable, eco-epidemiological, immature, trailing vegetation, 
discontinuously canopied, turbid water, immature habitats, geo-spectrotemporally 
geosampled at the intervention, agro-village study sites were employed to quantitate a geo-
predictive, eco-epidemiological dataset of elucidative, time-series dependent, 
geospectrotemporal, eco-epidemiological, capture point, clinical, field and remote-specified, 
asymptotical, non-normal, explanatorial, parameterizable, covariate estimators (e.g., 3-D 
slope coefficients). The MCMC method was used for approximating an ensemble of  eco-
georfernceable, S. damnosum s.l., immature habitat "walkers" move around randomly. At 
each trailing vegatation, discontinuity gap, partially canopied, eco-georefernceable, sparsely 
shaded, agro-village complex, geo-spectrotemporally geosampled, point where a walker 
stepped, the integrand value at that forecasted, explantive, habitat point was counted towards 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

401 
Copyright © acascipub.com, all rights reserved.  

the integral in PROC MCMC. The walker then made a number of tentative steps around the 
iterated area, looking for a place with a reasonably high contribution to the integral to move 
into next.  

However, whereas the capture point,  S. damnosum s.l., immature habitat, randomized 
samples of the integrand employed a conventional Monte Carlo integration  statistically 
independent, those employed in MCMC methods were correlated. The Markov chains were 
constructed in such a way as to have the integrand as its equilibrium distribution. A Markov 
chain (discrete-time Markov chain or DTMC), is a random process that undergoes transitions 
from one state to another on a state spaceand  possess a property that is usually characterized 
as "memorylessness": the probability distribution of the next state depends only on the 
current state and not on the sequence of events that preceded it[24]. The interacting MCMC, 
seasonal hyperproductive, eco-epidemiological, capture point, S.damnosum s.l., immature 
habitat, expostorial iterations revealed hyperproductive, discontinuous canopied, geolocations 
in the interventional, riverine, agro-village complexed by obtaining random samples from a 
sequence of probability distributions with an increasing level of sampling complexity.  

The final eco-georeferenceable, explantively diagnostic,  S.damnosum s.l. turbid water, 
immature habitat, capture point, forecasting, vulnerability paradigm included an illuminative  
dataset of  path space, state,  RapidEye TM 5m, elucidatively optimally parameterized, 
uncoalesced, wavelength, transmittance, covariate,  frequency, coefficient estimators with 
increasing time horizon and posterior distributions along with sequences of sparsely shaded, 
trailing vegetation,  optimally geoclassified, elucidative LULC, diagnostic, observational, 
probabilistic predictors with increasing constraint level sets for evaluating conditional 
distributions. In probability theory, a conditional expectation (also known as conditional 
expected value or conditional mean) is the expected value of a real random variable with 
respect to a conditional probability distribution [24]. 

 The iterative Bayesian, explantive interpretation of a  moderate resolution imaged, 
seasonally hyperproductive, eco-georeferenced, trailing vegetation, discontinuously canopied, 
eco-epidemiological,  partially canopied, S.damnosum s.l., turbid water, oviposition LULC, 
capture point,  forecasting, vulnerability model,  uncertainty, covariate probability can be 
seen as an extension of propositional logic that enables reasoning with hypotheses (i.e., the 
propositions whose truth or falsity is uncertain). Bayesian probability belongs to the category 
of evidential probabilities [24]. The frequentist will evaluate the probability of a hypothesis, 
while the Bayesian probabilist specifies some prior probability, which is then updated in the 
light of new, relevant data (evidence of a ecogeoreferenced, seasonally, hypeproductive, 
moderate resolution, S. damnosum s.l., oviposition site on a geoclassifed ArcGIS derived, 
trailing vegetation, turbid water, agro-village complex, discontinuously canopied LULC). The 
iterative, Bayesian interpretated, explanatorial hierarchical, heuristically optimizable, 
diagnostic,  non-normal, uncertainity-oriented weighted,autoregressive  matrix can provide a 
standard set of procedures and formulae to perform optimal regression calculations of various 
seasonally explanative, hyperproductive, eco-epidemiological, eco-georeferenced, 
orthogonally, explicatively  decomposed, capture point, immature, partially canopied,  S. 
damnosum s.l.,oviposition sites on moderate resolution, geoclassified LULCs. The prior and 
posterior distributions were Beta distributions and the data came from Bernoulli trials. 

The BFGS algorithm implemented in ILNumerics was a Quasi-Newton algorithm 
based on iterative update steps employing a Gauss Conjugate Gradient and a line-search 
algorithm based on the Golden Section Search to solve the 
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WolfePowell’sconditions(http://www.it.lut.fi/ip/evo/functions/node5.html). The Newton 
variant (by default) computed the eco-georeferenced, capture point,  S. damnosum s.l. trailing 
vegetation, partially canopied, habitat  Hessian matrix based on a forward-backward finite 
differences algorithm with Ridders' method of polynomial extrapolation. 

 A factored variant of the Newton iteration may be useable for obtaining a solution 
datset of optimally decomposed 5m, S. damnosum s.l. trailing vegetation, narrow riverine 
tributray, hyepproductive, oviposition, seasonal geolocations opn ArcGIS derived, 5m, 
geolcaasified LULCs within a algebraic Riccati equation via the matrix sign function. In 
particular when the Hamiltonian matrix is associated   with a geospectrotemporal 
geosampled, fractionalized dataset of metaheursitically optimizable,  moderate resolution, 
decomposeable endmembers, the algorithm may exploit the special habitat structures of the 
off-diagonal blocks to yield an alternative factorizable Newton iteration which may reduce 
the time cost by an immense factor. Bayesian inferncial iterations can be tedious temporally ( 
Gelman 2003).  A complex matrix is said to be Hamiltonian if 

where is the matrix of the form is the identity 
matrix, and denotes the conjugate transpose of a matrix . An analogous definition holds 
in the case of real matrices by requiring that be symmetric, i.e., by replacing 

by in (1). Note that this criterion specifies precisely how a Hamiltonian matrix 
must look (http://mathworld.wolfram.com/HamiltonianMatrix.html). Indeed, every 
Hamiltonian matrix (here assumed to have complex entries) must have the form 

where satisfy and . This characterization holds for 
having strictly real entries as well by replacing all instances of the conjugate transpose 

operator in (1) by the transpose operator instead.  

The FD= and FDHESSIAN= options scan specified the useage of finite difference 
approximations of the empirically geo-spectrotemporally geosampled, seasonally 
hyperproductive, trailing vegetation, discontinuously canopied, eco-epidemiological,  eco-
georeferenceable, S.damnosum s.l. turbid water, immature habitat, forecasting, vulnerability 
model, paramterizable, explanative, diagnostic,  covariate  derivatives. The forward-
difference derivative oviposition approximations were quantitated employing central-
difference formulas. For first-order derivatives, additional function calls in the seasoanl,, 
moderate resolution,  S.damnosum s.l.paradigm were devised by : 

 For first-order derivatives, additional function calls are 

required :[24].For second-order derivatives based on 
function calls , additional employed dense Hessian. Hence 

.For second-order derivatives 
based on gradient calls additional gradient calls from the orthogonally explanatively 
decomposed, moderate resolution , narrow , riverine , agro-village complex , hyperproductive 

, seasoanl hjabitats required:   
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            For second-order derivatives based on function calls only (Abramowitz and 
Stegun 1972, p. 884), additional function calls are required. 

 For second-
order derivatives based on gradient calls, additional gradient calls are required: 

 Central-difference 
approximations are usually more precise, but they consume more computer time than 
approximations that use forward-difference derivative formulas[ 26]. 

 
The FD= option  can specify that all the  derivatives are approximated using function 

evaluations, whilest  the FDHESSIAN= option can specify that second-order derivatives are 
approximated using gradient evalutions. Computing derivatives by finite-difference 
approximations can be very important  especially for deriving second-order, elucidative, 
inconspicuous, explicative, geoclassifiable, discontinuous canopied,  LULC derivatives based 
only on Rapid EyeTM wavelength, transmittance, frequency dependent, scattering interactions 
with discontinuous non-phosynthetic, non-eco-geographic, seasoanal, canopied foliage (e.g., 
branches) values using the objective function (FD= option). If analytical derivatives are 
difficult to obtain (for example, if a  S.damnosum s.l. turbid water, habitat, African agro-
village capture point function is computed by an iterative process), a medical entomologist or 
experiementer may consider one of the optimization techniques that uses first-order 
derivatives only (TECH=QUANEW, TECH=DBLDOG, or TECH=CONGRA). The forward-
difference derivative approximations are usually not as precise as those using central-
difference formulas( www.sas.com).  

The FDIGITS= and CDIGITS= options may  be  employable for specifying the 
number of accurate digits in the evaluation of a datset of eco-georeferenceable, elucidative, 
seasonally hyperproductive, trailing vegetation, discontinuously canopied, eco-
epidemiological,  S.damnosum s.l., turbid water, immature habitat, African agro-village,  
capture point,  objective function and nonlinear constraints. These specifications may be  
helpful in determining an appropriate interval size h to be used in the finite-difference 
formulas for quantiating vertical temperature profiles of the discontinuous , sparsely shaded, 
immature capture point, trailing  vegetation canopy for a hypeproductive seasaonal 
geospectrotemrpoally geosampled oviposition sites on a medium resolution,  including the 
substrate.  

 A mathematical approach may be optimall presented which allows for the 
determination of a temperature profile from multiple, Rapid Eye 5m TM sensor view angles 
and a priori knowledge of a moderate reosoluton imaged,  hyperproductive, seasonal, S. 
damnoum s.l. iteratively, interpolative, quantized narrow tributary, eco-georeferenceable, 
partially discontinuous, trailing vegetative geometric structure. The technique may be 
evaluated on data from wider African narrow riverine tributary, eco-georeferenced, agro-
village complex, ecosystem immature, capture point, hyperproductive habitats at different 
stages of development. The technique may be shown to be most applicable for the separation 
of seasonal, eco-georeferenced, geoclassifiable, LULC vegetation cover and substrate 
temperatures. A medical entomologist or experimenter can expect relatively accurate 
inferences of mean vegetation LULC, surface temperatures for intermediate and sparsely 
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canopied, Rapid EyeTM imaged, eco-georeferenced, trailing vegation, turbid water, sparely 
shaded, infrequently canopied, seasonally hypeproductive, narrow tributary, agro-village 
complex, discontinuous, vegetation canopies, and relatively poor inferences of vegetation 
temperatures for sparse discontinuous canopies. The converse may be true for inferring 
substrate temperatures. The root-mean-square prediction accuracy of the capture point, 
vegetation temperatures for intermediate-dense more homogenous, seasonal, S. damnosum 
s.l., immature, hyperproductive,  capture point, discontinuous, canopy gap may be  1.8 and 
1.4Â°C for an exact and overdeterminate system, respectively. These findings may have 
significant implications for parsimoniously quantitating the LULC 5m, capture point, canopy 
vegetation itself or the underlying substrate. For specific narrow Afrian, riverine, agro-village 
complex, turbid water, immature, capture point habitat, geoclassifiable, ArcGIS-derived 
LULC, vegetation geometries, this technique may provide a means for robustly uniquely 
separating mean vegetation and substrate temperatures when a priori knowledge of the 
geoclassified, LULC vegetation geometry and two or more Rapid Eye TM ,sensor view  angle 
seasonal measurements  are obtained. 

       The FDINT= option specifies whether the finite difference intervals h should be 
computed using an algorithm of Gill, Murray, Saunders, and Wright (1983) or based only on 
the information of the FDIGITS= and CDIGITS= options.(www.sas.edu)  For FDINT=OBJ, 
the interval h is based on the behavior of the objective function; for FDINT=CON, the 
interval h is based on the behavior of the nonlinear constraints functions; and for 
FDINT=ALL, the interval h is based on both, the behavior of the objective function and the 
nonlinear constraints functions. Note that the algorithm of Gill, Murray, Saunders, and 
Wright (1983) to compute the finite difference intervals hj can be very expensive in the 
number of function calls using specialized log-transformed proxy signature LULC, 
uncloesced, iterative interpolative explanators (e.g., uncoalesced geo-spectrotemporally, 
Bayesianized Rapid Eye 5m , iterative interpolated geospatialized seasonally 
hyperproductive, trailing vegetation, discontinuously canopied, eco-epidemiological,  eco-
georeferenceable, S.damnosum s.l. turbid water, habitat, narrow tributray, agro-village 
capture point regressors),   If the FDINT= option is specified, the procedure may be 
performed twice, the first time before the optimization process starts and the second time 
after the optimization terminates. If FDINT= is not specified, the step sizes hj, j = 1, ... ,n, 
may be optimally defined as follows: for the forward-difference covariate approximation of 
selected S. damnosum s.l. habitat, first-order derivatives employing function calls and 

second-order derivatives with gradient calls: , for quantiting the 
forward-difference approximation of second-order derivatives that use only function calls and 

all central-difference formulas: . is defineable using the FDIGITS= 

option( www.sas.edu).If the number of accurate digits is specified with FDIGITS=r, may 
be  set to 10-r in the forecast vulnerability S.damnosum s.l.  paradigm.  If FDIGITS= is not 

specified,  must then be set to the machine precision .For FDINT=OBJ and FDINT=ALL, 
the FDIGITS= specification may be  employeable in computing the forward and central 
finite-difference intervals for spatially adjusting and quantitating probabilistic uncertainities 
optimally rendered from a seasonally hyperproductive, eco-georeferenced,  moderate 
resolution, S. damnosum s.l., narrow African, riverine tributary, agro-village complex 
ecogeorferenceable, trailing vegation, turbid water, discontinuously canopied, immature, 
capture point. 
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If a  moderate resolution, metaheusristically eluidatively optimizable, geo-
spectrotemporally geospatialized, uncoalesced, wavelength, transmittance emissivity 
forecasting frequency paradigm, employs uncoalesced, explanative Rapid Eye 5m, 
wavelength, iteratively quanatiatively interpolatable, seasonally hyperproductive, trailing 
vegetation, discontinuously canopied, eco-georeferenced, S.damnosum s.l. turbid water, 
habitat, African, riverine, narrow tributary,  agro-village, capture point, nonlinear constraints 
and the FD[=] option is specified, first-order formulas in SAS/GIS may be used to compute 
finite difference approximations of the Jacobian matrix JC(x). For example, the CDIGITS= 
option  may be employable to specify the number of accurate digits in  an optimizable eco-
epidmeiological datset of constrainted immature, capture point, eco-georeferenceable, time 
series,  explanators to define the step sizes hj, j = 1, ... ,n. for optimally quantitating the geo-
spectrotemporally geospatial, hyperproductive, seasonal, immature  habitat log-normalized 
variables  For FDINT=CON and FDINT=ALL, the CDIGITS= specification is used in 
computing the forward and central finite-difference intervals(www.sas.com). Note, if a 
medical entomologist or  experimenter is able to specify analytic derivatives and the finite-
difference approximations provided by PROC NLP are not good enough to solve non-
normalities in an uncoalesced eco-georferenceable dataset of  Rapid Eye 5m, imaged,S. 
damnosum s.l., forecasting, seasonal, vulnerability, Rapid Eye TM 5m proxy geoclassiifable 
LULC unbiased, biosignature,immature,capture point,  oviposition iterative interpolative, 
predictor variables, better finite-difference approximations using the GRADIENT, 
JACOBIAN, CRPJAC, or HESSIAN statement and the program statements may  optimally 
render wavelength transmittance frequencies for iteratively quantiatively explanatorialy 
interpolating or identifying unknown, ungeosampled eco-georeferenceable, trailing 
vegetation, discontinuously canopied, turbid water, hyperproductive, S. damnosum s.l. in 
,narrow African, riverine, agro-village tributaries. 

     In the PROC MCMC, explicative, eco-georefernceable, eco-epidemiological, trailing 
vegetation, discontinuously canopied, turbid water,  immature, capture point, eco-
epidemiological forecast,  vulnerability, model the Markov chain was robustly constructed in 
such a way as to have the integrand as its equilibrium distribution in the optimally 
parameterized, residualized,Rapid Eye 5m, probabilistic, covariate, wavelength, 
transmittance  emissivities. This specification moved the investigation towards a 
generalizable, autoregressive, wavelength, frequency analysis given that the entire empirical, 
metaheuristically robustifiable, expositively fractionalized, Rapid Eye TM  dataset of geo-
predictive, optimally parameterizable, geoclassified, explanative, LULC,  frequency-oriented, 
transmittance, wavelength estimators were treated as single-valued, with the exception of the 
intercept.  

 
The intercept in the capture point, forecact, vulnerability model was treated as a 

distribution of the expositively autoregressed values and was non-randomly estimated, 
thereafter, by employing empirical Bayes techniques in PROC MCMC. Bayesian vector 
autoregression parameters were treated as random variables, and prior probabilities. Vector 
autoregressions of the optimized eco-epidmiological, eco-georeferenceable, forecast 
vulnerability RapidEyeTM 5m, wavelength, frequency, transmittance emissivity S. damnosum 
s.l.signature model estimators were included in a flexible, statistical gridded weighted 
framework with an uncertainity-oriented, probabilistic, covariance matrix which included 
many free parameters.  
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       The covariance matrix in SAS can enable efficient fusion of different types of proxy 
LULC  discontinuously canopied, narrow, agro-village complex, hyperproductive, seasonal, 
riverine, capture point, S. damnosum s.l.  model, signature features geoclassifiable, eco-
geophysiological, biophysical, eco-georefernceable, trailing vegetation, turbid water,  
immature, capture point, eco-epidemiological vulnerability, forecasting, trailing vegation, 
uncoalesced 5m Rapid Eye TM  data where the spatial and statistical properties as wellas their 
correlations are seasonally characterized. 

  Given the datset of  the Rapid Eye TM geospectrotemporal,geosampled, 
ecogeorferenced S. damnosum s.l. hyperproductive , ovipoistion , explanatively  
geoclassifiable,  moderate resolution  LULC variates denoted , ..., , the first-order 
covariance matrix was defined by  where  was the mean. 
Higher order matrices are given by  An individual matrix element 

is called the covariance of and .  

 The similarity between two S. damnosum s.l. ovipoistion LULC covariance 
descriptors was measured on Riemannian manifolds. For a complete Riemannian manifold, 
the metric  in the forecast vulnereability Rapid Eye TM  probabilistic, time series,  
paradigm was optimally defined as the length of the shortest curve (i.e., geodesic) between  ( 
i.e, a eco-georeferenced hypeproductive,  oviposition, narrow riverine tributary,  geolocation 
parameters), and  ( seasonally  parameterized immature productivity count  variables) . 
Every complete Riemannian manifold is boundedly compact. 
http://mathworld.wolfram.com/RiemannianManifold.html This is part of or a consequence of 
the Hopf-Rinow theorem.  

 Let be a Riemannian manifold in a trailing vegetation, turbid water, eco-
georeferenced, seasaonally hypeproductive, hyperproductive oviposition , moderate 
resolution LULC , and let the topological metric on be defined by letting the distance 
between two points be the infimum of the lengths of curves joining the two points. In so 
doing, the Hopf-Rinow theorem would assume that the following capture pint dat feature 
attributes  are equivalent: 1. is geodesically complete, (i.e., all geodesics are defined for all 
time). 2. is geodesically complete at some point , i.e., all geodesics through are defined 
for all time. 3. satisfies the Heine-Borel property, i.e., every closed bounded set is compact. 
4. is metrically complete 

 
 Based on the same metric, but with a probabilistic framework, a novel tracking 
approach on Riemannian manifolds with a novel incremental covariance tensor learning 
(ICTL) may be proposed for quantitating geo-spectrotemporally geosampled, eco-
georeferenceable, eco-epidemiological. S. damnosum s.l. seasonal, hyperproductive, capture 
points. To address the appearance variations, ICTL incrementally learns a low-dimensional 
covariance tensor representation and efficiently adapts online to appearance changes of the 
target with only O(1) computational complexity, resulting in a real-time performance. The 
covariance-based, optimal representation and ICTL may then be then combined with the 
particle filter framework to allow better handling of background clutter as well as the 
temporary image occlusions in a Rapi Eye TM image of a narrow African, riverine tributray, 
agro-village complex. Theproposed probabilistic ICTL tracker may be applied on numerous 
benchmark sequences involving different types of S. damnosum s.l. imaging challenges 
including occlusionsand variations in illumination, scale, and pose of discontinuous, sparsely 
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shaded, seasonally geoclassifiable. moderate resolution,  LULC changes as diagnostically 
quantitated at A eco-georferenceable, narrow tributary, riverine, agro-village complex, 
ecosystem geolocation. The proposed approach may demonstrate excellent real-time 
performance, both qualitatively and quantitatively, in comparison with several previously 
proposed, proxy, moderate resolution trackers for investigating these riverine foci. 

Given the limited length of standard, macro eco-epidemiological eco-georeferenceable, 
immature habitat, seasonal, geosampled,  hyperproductive, capture point, field-
operationizable, fractionalized, intutive, endmember, S.damnosum s.l.,empirically 
regresseable, explanatorial, geo-spectrotemporal   datasets, inferential Bayesian paradigms in 
PROC MCMC may provide an optimal model fit whilest resolving problems of over-
parameterization in an metaheuristically optimizable dataset of  iteratively interpolative, 
uncoalesced, discontinuoulsy canopied, trailing vegation, disocntinuously canopied,  S. 
damnosum s.l.,   uncoalesced, RapidEyeTM data, feature attributes. The general idea would be 
to employ informative priors to shrink the unrestricted riverine, trailing vegetation, turbid 
water, immature habitat, forecast, vulnerability model, parameterizable, covariate 
coefficients, towards a parsimonious naïve benchmark, thereby reducing probabilistic, 
endmember uncertainties whilest simutaneously improving forecast accuracy. 

  The difference in the deviances between the RapidEyeTM 5m, eco-epidemiologically 
forecastable, uncoalesed, wavelength, frequency,  S. damnosum s.l.,     vulnerability, forecast, 
transmittance,  eco-georefernceable, model emissivity covariate estimators and a more 
complex model was probabilistically regressively quantitated in PROC MCMC which 

parsimoniously  rendered improvement 2  -related, elucidatively geoclassifiable time 
series LULC, optimizable, observational, explanative, predictor  values. Quantizable, time 
series, interaction terms between the optimally parameterizable, regressable explanatively, 
geo-spectrotemporal geosampled, elucidatively geospatialized, clinical, field and remote, 
diagnostic,  trailing vegetation and turbid water, operationialized, non-homogenously, 
canopied Rapid Eye TM LULC explanators were described in the forecasts in ArcGIS. An 
interaction model did not improve the fit, therefore no interaction terms were included in the 
final model. The improvement of fit between a saturated model and the full effects model as 
the number of the geo-spectrotemporal, quantitatively geosampled, endmember non-
optimizable LULC variables needed to be estimated, since the maximum number that could 
be regressed in PROC MCMC was exceeded.  

     To derive the improvement of fit in the eco-georefernceable, forecasted eco-
epidemiological, S. damnosum s.l.,     vulnerability, forecast, Rapid Eye TM model, 
uncoalesced, wavelength transmittance, parameterizable, covariate estimate values the 
posterior mean deviance values were obtained with deviance information criterion (DIC) 
spatial analytical tools in PROC MCMC. The DIC is a risk modeling generalization of the 
Akaike information criterion (AIC) and Bayesian information criterion, (BIC), also known as 
the Schwarz criterion [23]. Bayesian information criterion (BIC), or Schwarz-Bayesian 
information criterion, is an information criterion (Wikipedia 2005). The index iteratively 
defined -2Lm + mlnn, where n was the eco-epidemiological optimal sample size, Lm was the 
maximized log-likelihood employing the discontinuously canopied, trailing vegetation, 
hyperproductive, eco-georeferenceable, explicative, immature habitat, risk model, capture 
point, parameterized, covariate estimators, where m was the number of unbiased, iteratively 
interpolative, endmember  time series estimators in the model.  

An autoregressive index was generated in PROC MCMC that took into account both 
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the statistical goodness-of-fit, and the number of time series, parameterizable, uncoalesced, 
RapidEyeTM wavelength frequency transittance emissivities representing explanatorial, 5m, 
optimally parameterized, metaheuristcally optimizable, S. damnosum s.l.,  LULC covariate 
estimators that subsequently had to be geo-spectrotemporally geospatially autoregressed in 
the iterative Bayesian probabilistic  paradigm to achieve a particular degree of fit. This was 
remotely conducted by imposing a penalty for increasing the number of estimators into the 
algorithm. In particular, the criterion was useful in the Bayesian model selection where the 
posterior distributions of the models were obtained by MCMC simulations. Like AIC and 
BIC, the SIC is an asymptotic approximation, especially as the sample size becomes large 
[24]. Unfortunately, the criterion was only valid when the posterior distribution was 
approximately multivariate normal in the eco-epidemiological, immature habitat, narrow, 
riverine, agro-village complex, trailing vegation, discontinuously canopied, capture point, 
forecast, vulnerability, probabilistic oviposition paradigm. 

      In DIC the deviance in the explanative, eco-georefernceable, narrow riverine,  eco-
epidemiological, tributary, immature habitat, capture point, forecast, vulnerability, 
resdiualized model, time series, iterative output was defined as 

, where  represented the pertinent geo-spectrotemporally 
geosampled, trailing vegetation, discontinuously canopied, sparsely shaded, metaheuristically 
optimizable, parameterizable, covariate, coefficient,  endmember estimators,  which were 
subsequently the unknown parameterized, explicative diagnostic estimators of the model 
when  was the likelihood function. C is a constant that cancels out in all calculations 
that compare different models, and therefore does not need to be known in remotely sensed, 
models [5]. The expectation  was a measure of how well the model fit the 5m, 
trailing vegetation, discontinuously canopied, sparsely shaded, eco-epidemiological, 
uncoalesced, immature habitat, capture point, remotely sensed data; the larger this was, the 
worse the fit. Herewith, the DIC comprised two goodness-of-fit measures and the posterior 
distribution of the deviance, which was the number of effective interpretively, quantitative  
iteratively interpolative times series, dependent, parameterizable Rapid Eye TM wavelength, 
transmittance emissivity frequency-oriented, covariates for measuring complexities in the S. 
damnosum s.l., oviposition, eco-georferenceable, forecasting vulnerability model. Riverine, 
narrow tributary, eco-georefernceable, explanative, immature  habitats with high larval count, 
were compared with the results of a Monte Carlo simulation, which established the 
probabilities and occurrences of the highly productive habitats in the interventional agro-
village, complex, study site. 

   As similarily described in Spiegelhalter et. al. [2002] the Simulium model described 
 in PROC MCMC, where  was the expectation of . Thereafter, 

 was described as in Gelman et al. [2003]. The DIC was 
parsimoniously calculatable as  or equivalently as . 
From this latter form, the connection with AIC was evident in the trailing vegetation, 
discontinuously canopied, sparsely shaded, immature S. damnosum s.l.,  habitat, eco-
georeferenceable,  vulnerability, forecast- model.  

Bayesian S. damnosum s.l.,  eco-epidemiological,  models can be evaluated and 
compared in several ways. Most simply, any model or set of models can be taken as an 
exhaustive set, in which case all inference is summarized by the posterior distribution[25].. 
The fit of the vector arthropod model to geo-spectrotemporally geosampled habitat data can 
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be assessed using posterior predictive checksprior predictive checks (when evaluating 
potential replications involving new parametervalues), or, more generally, mixed checks for 
hierarchical models [http://mathworld.wolfram.com]. 

 
When several candidate models are available, they can be compared and averaged 

using Bayesfactors (which is equivalent to embedding them in a larger discrete model) or 
some more practical approximate procedure or continuous model expansion[25]  In other 
settings, however, we seek not to check S. damnosum s.l. ovip[osition, signature models but 
to compare them and explore directions for improvement. Even if all of the habitat  models 
being considered have mismatches with the data, it can be informative to evaluate their 
predictive accuracy, compare them, and consider where to go next. The challenge then is to 
estimate predictive model accuracy, correcting for the bias inherent in evaluating a model’s 
predictions of the geosampled immature productivity data that were used to fit it.A natural 
way to estimate out-of-sample prediction error is cross-validation (see Geisser andEddy, 
1979, and Vehtari and Lampinen, 2002, for a Bayesian perspective), but researchers have 
always sought alternative measures, as cross-validation requires repeated model fits and can 
run into trouble with sparse data. For practical reasons alone, there remains a place for simple 
bias in S. damnosum s.l. predictive paradigms corrections such as AIC (Akaike, 1973), DIC 
(Spiegelhalter et al., 2002, van der Linde, 2005), and,more recently, WAIC (Watanabe, 
2010), and all these can be viewed as approximations to different versions of cross-validation 
.At the present time, DIC appears to be the predictive measure of choice in Bayesian 
applications,in part because of its incorporation in the popular BUGS package (Spiegelhalter 
et al., 1994, 2003).Various difficulties have been noted with DIC (see Celeux et al., 2006, 
Plummer, 2008, and muchof the discussion of Spiegelhalter et al., 2002) but there has been 
no consensus on an alternative. 

 

Sub-families of geospatial, explanatorial, eco-georeferenceable,  inferential 
algorithms may be optimally employable for corresponding posterior distributions of 
elucidatively simulated geo-spectrotemporal, 5m iterations regarding seasonally eco-
epidemiological, , hyperproductive, narrow African tributary, agro-village complex, 
ecosystem, S.damnsoum s.l. eco-georeferenceable,capture points. For example, a hybrid 
Markov chain Monte Carlo sampler comprising both Gibbs sampling steps and 
metheuristically optimizable, hierarchical, clustering-based, split/merge proposals may be 
useful for obtaining precise posterior inferences in a RapidEyeTM imaged, seasonally 
hyperproductive, ec-georeferenceable,  capture point,  S. damnosum s.l., eco-epidemiological, 
forecast-oriented, vulnerability, wavelength, frequency transmittance, emissivity model. 
Inference for mixture size concentrates when comparing the integrated likelihoods from a 
dataset of explanatively fractionalized, uncoalesced, RapidEyeTM, 5m, geo-spectrotemporal, 
geospatially empirically probabilistically  autoregressable, Bayesianized dataset of 
explicative, seasonally hyperproductive, illuminative, eco-georeferenceable, eco-
epidemiological, uncoalesced, seasonal, capture point, trailing vegetation, discontinuously 
canopied, sparsely shaded, riverine, agro-village, complex, turbid water,   narrow tributary, 
immature  habitats. The prior structures in the estimation matrix may help filter uncertainty-
oriented, optimally unbiased, endmember, wavelength, frequency, transmittance, orthogonal, 
spatial filter eigenvalues from decomposed, proxy RapidEyeTM, 5m, iteratively interpolative 
LULC, signatures. These structures may also provide meaningful comparions of factors 
within flexible Bayesian sub-families for cartographically optimizing and robustly illustrating 
unmixed, field-operationizable, 5m, iteratively interpolative,  wavelength, transmittance,  
metaheursitically, for parameterizing, fractionalized, frequency, covariate, coefficient   
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emissivities representing geo-spectrotemporally geosampled, immature, S. damnosum s.l.,  
hyperproductive, trailing vegetation, turbid water, narrow African, riverine tributary, agro-
village complex ecosystem oviposition seasoanal geolocations and their, ecohydrologic 3-D, 
probabilistic, uncoalesced, frequency-oriented, explanative predictors (e.g., Levels of 
turbidity), which may then be geospatially, ecohydrologically associated with seasonal,  
immature productivity count distribution data. Assessing the number of convergence 
diagnostics in the seasonal habitat, eco-georefernceable, capture point, vulnerabilit , forecast-
oriented, eco-epidemiological datasets may reveal  elucidative endmember, fractionalized 
eigenvectors which may aid in assessing the convergence of  Markov chains. In so doing   the 
simulation mey be employed to identify unknown, un-geosampled, hyperproductive, S. 
damnosum s.l. trailing vegetation, turbid water, discontinuously canopied, eco-
georeferenceable, narrow African riverine, agro-village, seasoanl   habitats.  

 
PROC MCMC optimally rendered, hierarchically generalizable, trailing vegetation, 

discontinuously canopied, sparsely shaded, hyperproductive, capture point, S. damnsoum s.l. 
habitat  explanators that accounted for any non-normality (e.g., skewed error distributions 
with fat tails) in the forecasted heterogeneously canopied, trailing vegetation, turbid water, 
riverine habitats. A Bayesian regression model was considered under a skewed, heavy tailed, 
error distribution. A general class of skewed elliptical distributions was developed in PROC 
MCMC which included heavy-tailed distributions and a skewness parameter. Dependent and 
independent skew elliptical error, probabilistis distributions were considered for the post 
regression, uncertainty-oriented, explicatively parameterizable, probabilistic covariates. The 
results provided a unified parametric approach to optimally diagnosing non-normal 
regression tendencies of immature, eco-georefernceable, eco-epidemiological,capture point, 
trailing vegetaion, discontinuously canopied, sparsely shaded,  RapidEyeTM 5m, spatial 
resolution, non-flexible, uncertainty, probabilistic estimators. The proposed methodology 
may be exemplified in PROC MCMC by a regression framework employing   a uncoalesced, 
iterartively interpolative  dataset of empirically regressable, metaheursitically explanatively 
robustifiable, geo-predictive, endogenous explanators  and a skewed Student-t error 
distribution. In probability and statistics, the skewed generalized “t” distribution is a family 
of continuous probability distributions [24].  

 
The quantification of propagational erroroneous RapidEyeTM 5m, S. damnosum 

s.l.,immature habitat, predictor  variables may alter inferential latent effects processes as 
rendered from probabilistic regression trees which may allow for a generalizable procedure to 
introduce anti-skewness techniques into symmetric distributions in PROC MCMC. 
According to Jacob et al. [22]skewness and kurtosis  are descriptive numerical methods in  
explanative, eco-epidemiological, eco-georeferenceable, discontinuously canopied, trailing 
vegetation, sparsely shaded, seasonally hyperproductive, 5m, imaged, capture point,  S. 
damnosum s.l.,immature,capture point, hyperproductive, narrow tributray, African, 
agroecosystem habitats  In probability theory and statistics, skewness is a measure of the 
asymmetry of the probability distribution of a real-valued random variable about its 
mean[24].In probability theory and statistics, kurtosis (is a measure of the "tailedness" of the 
probability distribution of a real-valued random variable. In a similar way to the concept of 
skewness, kurtosis is a descriptor of the shape of a probability distribution  and, just as for 
skewness, there are different ways of quantifying it for a theoretical distribution and 
corresponding ways of estimating it from a sample from a population in an eco-
georeferenceable, eco-georeferenceable, hyperproductive, S. damsnoum s.l., trailing 
vegetation, sparsely shaded, discontinuously canopied,S. damnosum s.l. habitat eco-
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epidemiological model. Depending on the particular measure of kurtosis that is used, there 
are various interpretations of kurtosis, and of how particular measures should be interpreted; 
these are primarily tail weight, peakedness (width of peak), and lack of shoulders 
(distribution primarily peak and tails, not in between[24]. 

 
      Quantile plot procedures in a QQ plot statement in the UNIVARIATE PROCEDURE 
may  allow for a great deal of flexibility for metaheursitically optimally remotely capturing 
distributional shape, tail behavior in a forecast vulnerability RapidEyeTM S. damnosum 
s.l.,immature habitat, eco-epidemiological, capture point, eco-georefernceable, 5m, 
wavelength, frequency, transmittance, emissivity, vulnerability, forecast model , such that the 
quantitated output would not be severely affected. Applying this skewness procedure to a 
Student t distribution may allow for generation of a "skewed Student" distribution, which 
may display both flexible tails and possible skewness in the emissivity model residuals 
controlled by a separate scalar parameter in PROC MCMC.  

 
       Characterizing existence of the posterior distributiuons in an eco-epidemiological, 
RapidEyeTM 5m, S. damnosum s.l.,immature habitat,capture point, forecast vulnerability 
model and its moments employing standard existence of the posterior distribution and its 
moments, employing standardizable improper priors can  allow for inference on tail 
parameters in the models, which can  reduce probabilistic, propagagtional error in residuals, 
targeting  interpretively iteratively explanative, interpolative, unknown,ungeosampled, 
hyperproductive, narrow tributary, African agro-village complex, trailing vegetaion, turbid 
water, discontinuous, sprasely shaded, eco-georeferenceable, iteratively interpolative, 
immature, seasonal, S. damnosum s.l. habitats. For posterior inference with these models, a 
numerical procedure employing Gibbs sampling may be also suggested. In statistics and in 
statistical physics, Gibbs sampling or a Gibbs sampler is a MCMC algorithm for obtaining a 
sequence of observations which are approximated from a specified multivariate probability 
distribution (i.e. from the joint probability distribution of two or more random variables)[24]. 

 
           Bayesian Canopy Height Models (CHM) derived from RapidEye TM geo-
spectrotemporally geospatially uncoalesced, iteratively interpolative, trailing vegetation, 
turbid water, discontinuously canopied, 5m, wavelength, frequency transmittance, 
emissivities may delineate seasonal gap fractions for accuracy assessments in 
hyperproductive, S. damnosum s.l., eco-epidemiological, capture point habitats in ArcGIS. A 
Bayesian approach to object recognition incorporates a probabilistic model of the active 
sensing process and places a prior probability model on object configurations [24]. Prior 
models for object configurations take the form of Markov marked point processes, where 
pair-wise object interactions depend upon object attributes. 
 

Through eco-cartographic delineation, information regarding immature habitat, 
discontinuous gap geometry, immature productivity may be seasonally investigated and 
robustly quantitated. Explanative, field-operationizable, eco-epidemiological, vulnerability 
mapping, optimizable methods in ArcGIS based on raster layers produced from a 
RapidEyeTM leaf-off and leaf-on dataset may reveal thresholding, 5m, per-mixel and per-
habitat, object supervised, elucidative classifications with broadly geo-classifiable, 
explicatively, orthogonally decomposable, illuminatively, fractionalized, LULC reflectance. 
In addition to the RapidEyeTM CHM, other metrics related to the canopy porosity may also be 
tested in ArcGIS. Gap detection in RapidEyeTM 5m, agro-village, narrow tributary, eco-
georeferenceable, African riverine scenes may be tested for global accuracy for discontinuous 
canopy fractions to elucidatively geovisualize and forecast seasonal, immature productivity, 
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count variables. The geometric accuracy of the eco-epidemiological, forecasting, eco-
georeferenceable, vulnerability, model may be analyzed  employing eco-cartographic 
illustrations of the discontinuous canopy gap area employing  gap shape-complexity indices 
within Thessian polygons in ArcGIS.for conducting quantitative assessments of  the reference 
gaps In so doing, the assessment may identify a technique in ArcGIS which precisely 
delineates optimal, seasonal, discontinuous canopy gap size that can quantitate seasonally 
hyperproductive immature counts.  
   

The performance of a Bayesianized CHM-based thresholding in SAS/GIS may exceed 
that of other software methods, especially when thresholding trailing vegetation, sparsely 
shaded, geo-spectrotemporally, geospatially uncoalesced RapidEyeTM imaged, geo-
spectrotemporal, geospatialized, S. damnosum s.l.,immature habitat   discontinuous, canopy 
gap, porosity rasters whilest simutaneoulsy performing per-mixel, supervised classifications 
employing uncoalesced 5m, wavelength, frequency emittance. SAS/GIS can access raw data 
files and data in external databases such as DB2, SQL/DS, Rdb/ VMS, OS/2 Database 
Manager, Lotus 1–2–3, dBASE, and SYSTEM 2000 while linearly programming  data for 
efficient, multivariate, eco-epidemiological, S. damnosum s.l., seasonal, explanative, 
hyperproductive, eco-georeferenceable, capture point  forecasting modeling, Characteristics 
of discontinuous canopy gaps (e.g., size, shape, distribution, orientation) in an African narrow 
riverine,tributary,  eco-georeferenceable, hyperproductive, S. damnosum s.l., eco-
epidemiological agro-village complex, capture point,  immature habitat discontinuously 
fractionalized, RapidEyeTM , 5m , discontinuous  canopy may become of central importance 
in understanding regeneration, dynamics, and species diversification and distribution of 
immature Simulium. Koukoulas and Blackburn [168] highlighted the importance of gaps with 
different geospatial properties for seed establishment and determining the future forest 
structure. Lindenmayer et al. [169] proposed horizontal heterogeneity due to presence and 
distribution of discontinuous gaps as a mechanism for conserving forest biodiversity by 
maintenance of stand structural complexity. Gap shape, orientation and size variation affect 
the gap dynamics, mainly through the variation in the light environment and moisture levels 
[23]. In his study, Getzin et al. [170] used gap shape metrics derived from Unmanned Aerial 
Vehicles (UAV) images to assess the plant diversity in forests. Thus, critical endmember 
eigenvector, discontinuous, canopy, gap studies may be considered in SAS/GIS for 
improving geometric accuracy of expositively forecasted, unknown, RapidEyeTM 5m imaged, 
S. damnosum s.l.,immature habitats.   

 
The abundance and distribution of eco-georeferenceable, seasonally hyperproductive, 

discontinuously canopied, sparsely shaded, turbid water, eco-epidemiological, capture point,  
S. damnosum s.l. parameterizable, statistically significant,  explanative, capture point habitat, 
variables   rendered from geospatially autoregressive, estimation matrices in SAS/GIS could 
suggest that the plant canopy serves as cover for adult black flies at the interventional, 
narrow,  riverine tributary, agro-village study sites. At the study sites, plants geo-
spectrotemporally geospatially associated with aquatic stages of S. damnosum s.l. larvae were 
found in submerged, discontinuously canopied twigs trapped in the water with some parts 
exposed as offshoots in the stream, which were followed by riverine pathways of coarse rock 
crevices hit by water tides. Decaying leaf matter had the lowest count of larval attachment 
with plants associated with immature S. damnosum s.l. which may have been attributed to 
loss in nutrients in decaying leaf matter, rendering them less attractive for Simulium 
attachment.  

Canopy plants associated with larval breeding attachments at the study site agro-
village complexes were Oryza barthii, Pterocarpus santalinoides, Andropogon gayanus and 
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Lawsonia inermis. At the early stage of the study, larvae were collected along the trailing 
roots of P. santalinoides in the heavily shaded parts of the agro-village, complex, narrow 
river tributary. Subsequently, larvae were collected on the leaves and hollow openings in the 
plant Oryza bartii which grew in the non-shaded areas of the S. damnosum s.l. capture point, 
habitat due to the habitat’s attraction to various discontinuously canopied plant species which 
may be a useful factor in future research for implementation of seasonal control  of 
hyperproductive, black-fly foci in narrow riverine  African tributaries. 

Because Bayesian statistical analysis is involved, prior distributions had to be posited for 
each varying quantity (e.g., the explanatorial, eco-georefernceable,  trailing vegetation, turbid 
water,response variable, each discontinuously canopied, RapidEyeTM 5m, variable coefficient 
value, the spatial autoregressive parameter, the error variance, and the random error term in 
the geospatial, endmember, S. damnosum s.l , seasonally hyperproductive,  eco-
epidemiological, capture point, forecast, vulnerability model. "Bayesianized averaging" over 
the uncertainty paramterized covariate, estimator S. damnosum s.l. habitat eco-
epidemiological, eco-georefernced dataset is a desirable property of Bayesian frameworks for 
unbiasedly, forecast modeling [24]. The summarization of the simulated posterior 
distributions correctly accounted for the quantitative error in estimation algorithm 
encompassing  all the S. damnosum s.l. habitat parameterizable, covariate estimators at the 
intervention agro-village, study sites, where each simulated posterior distribution represented 
an "average" over the joint posterior distributions of all the other covariates in the 
operationizable, geo-predictively  geoclassifiable, RapidEyeTM LULC explanatorial  model. 
The rendered eco-epidemiological, metaheuristically optimizable, eco-georeferenceable, 
forecasts revealed that any probabilistic time series, residual uncertainties in the quantitative 
estimates were fully accounted for in both the mean and the mode of the simulated posteriors, 
and in the dispersion of the posterior.  

Depending greatly on the abundance of poorly estimated 5m, emissvity frequencies, flat 
posteriors rendered in PROC MCMC may be a direct indication that the available precision 
on the reflectance  estimator is very poor. Roughly speaking, a prior distribution is 
noninformative if the prior is "flat" relative to the likelihood function [24]. Thus, a S. 
damnosum s.l. habitat parameterizable, covariate estimator prior  would noninformative 
if it has minimal impact on the posterior distribution of . However, it  may be unrealistic to 
expect that noninformative priors represent a discontinuously canopied, trailing vegetation, 
sparsely shaded narrow tributary, agro-village complex, geo-spectrotemporaly geosampled, 
parameter of interest in a seasonal, narrow, riverine tributary ago-village complex Similium 
hypeporductive, foci. 

 In some cases, noninformative priors can lead to improper posteriors (non-integrable 
posterior density)[24]. In addition, these noninformative habitat priors  may not be invariant 
under transformation; that is, the quantiated  prior might be noninformative in one 
parameterization but not necessarily noninformative if a transformation is applied. A 
noninformative prior I may render a prior distribution that assigns equal likelihood on all 
possible values of the geo-spectrotemporally geospatialized parameter. Intuitively this makes 
sense, and in some cases, such as a fractionalized endmember, Rapid Eye TM  5m , flat prior  
on the regression parameter  maye be noninformative. However, this is not necessarily true in 
all cases. For example, suppose there is a binomial experiment with  Bernoulli trials where 
1s are observed in a narrow, riverine tributary, hyperproductive, discontinuoulsy canopied, 

capture point, S. damnosum s.l. habitat.A uniform prior on ,  might appear to be 
noninformative(www.sas.edu). However, using the uniform prior is actually equivalent to 
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adding two. habitat observations to the data, one and one . With small and , the added 
eco-georeferenceable, narrow riverine,agro-village, tributary observations can be very 
influential to the parameter estimate of . To quantiate the likelihood for a S. damnosum 
s.l.model, an ecologist, entomologist or other researcher may employ  : The MLE 
of is . The uniform prior can then be written as a beta distribution with both the shape ( ) 
and scale ( ) parameters being 1: The posterior distribution of  in the 
habitat model may be proportional to the following:   which is 

beta( ). Therefore, the posterior mean is the model would be   
which may be quite different from the MLE if both and are small. 

   The decomposition, spatial filter, endmember analyses employed  an autoregressive 
weight matrices in SAS/GIS and a stepwise negative binomial regression routine to select 
eigenvectors as regressors. This eigenvector spatial filtering approach added a minimally 
sufficient set of eigenvectors as proxy-variables to a set of  ecophysiological, biophysical, 
agro-village riverine tributary, trailing vegtaion, discontinuously canopied, S. damnosum s.l. 
linearizable predictors  representing the sub-mixel, S. damnosum s.l., eco-
epidemiological,immature, habitat data. The regression residuals represented spatially 
independent variable, endogenous components. The eco-georeferenceable, eigenvectors 
yielded distinct explanative, immature, hyperproductive, capture point, habitat map patterns 
for description of the latent autocorrelation in the geospatialized, narrow tributary, riverine, 
uncoalesced habitat data. There was positive autocorrelation in the residual spatial pattern: 
similar log-larval/pupal counts of Simulium habitats aggregated in eco-geographic space 
based on the geosampled parameterizable covariate Distance from the trailing vegetation, 
eco-epidemiological discontinuously canopied, sparsely shaded, eco-georeferenceable, 
capture point.  

Positive autocorrelation pattern in 5m, sub-mixel S. damnosum s.l. eco-epidemiological, 
habitat data, discontinuously canopied, habitat geo-spectrotemrpoal, geospatial, fractionalized 
Rapidf Eye Tm wavelength, transmittance, non-frequency-orinted, emissivitiy covariates  
may have been driven by multiple exogenous causes be (e.g. autocorrelated environment 
disturbance) and/or endogenous (conspecific attraction, dispersal limitations, demography). 
For example, positive autocorrelation patterns of immature trailing vegetation, 
discontinuously canopied, sparsely shaded, eco-georeferenceable, agro-village, eco-
epidemiological, capture point, Simulium, narrow tributary, riverine, seasonal, capture point,, 
eco-georefreenceable, habitats may be influenced by environmental landscape (e.g., seasonal 
meandering during flooding). Discontinuously canopied, sparsely shaded, trailing vegetation, 
immature  density and their seasonal proximity to eco-epidemiological capture points or 
quality of  man-made eco-georeferenceable, barriers close to hyperproductive Similium  foci 
or  inter-anthropogenic variation in narrow riverine tributary  agriculture may shift  black-fly 
habitat preferences, based on other environmental cues. Positive autocorrelation in the 
regressed immature data may also have been a due to common local weather patterns at the 
eco-epidemiological, study sites that may have caused  the Simulium habitats to spatially 
cluster and partially govern larval/pupal population dynamics. Climatic factors, particularly 
temperature, precipitation and relative humidity, predict to a large degree the natural 
distribution of seasonal, vector arthropod, aquatic immature habitats, as well as ecological 
factors, such as predation, availability of blood meal hosts, and quality of larval habitats [23].   

 
A Red Edge, Rapid Eye 5m, biosignature was generated in ArcGIS. The red-NIR 

transition zone in the Red Edge NDVI marked the boundary between the red visible region in 
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the capture point, narrow,  riverine tributary, S. damnosum s.l. habitat, discontinuous canopy 
scattering, which  may have been due primarily to the 5m, RapidEyeTM-imaged, within-
canopy, leaf structure reflectance. Most NIR canopy radiation is scattered by leaf mesophyll 
resulting in high reflectance and transmittance values (approximately 40-50% each) [47]. 
Leaf chlorosis can cause an increase in visible reflectance and transmission [23].  
    
         The NIR plateau (700 nm – 1,100 nm) is a region where explanative, discontinuously 
canopied biochemical absorptions are limited to the compounds typically found in dry leaves, 
primarily cellulose, lignin and other structural carbohydrates. However, in the unmixing, 
forecasting, 5m, geoclassifiable eigenvector, endmember algorithms, the, geoclassifiable, 
discontinuously canopied,  S. damnosum s.l. habitat, LULC, foliar, wavelength, frequency, 
transmittance emissivites in the NIR region was affected by multiple scattering of canopy 
photons within the RapidEyeTM-imaged, habitat leaves may have been ecohydrologically 
related to the internal structure, fraction of air spaces, and air-water interfaces that refract 
light within these leaves. Multiple scattering of radiation between air and cell wall in canopy 
leaf tissue leads to high reflectance values in NIR [172].  

 
We generated a RapidEyeTM, Red Edge NDVI, in ArcGIS employing the visible 

spectrum and the emittance data of the immature habitat, geo-spatiotemporally, geo-
spectrotemporally autoregressively, auto-probabilistically quantitated at the Gongcoyo agro-
village complex. The NDVI is preferred for global vegetation monitoring as it helps 
compensate for changing illumination conditions, surface slope, aspect, and other extraneous 
factors [23]. The differential reflection in the RapidEye TM 5m, red and NIR bands enabled 
the monitoring of discontinuous canopy density and intensity of trailing, canopy vegetation, 
turbid water, geoclassified LULC, unmixed, geospectral reflectivity based on solar radiation. 
Green leaves commonly reveal better reflection in moderate resolution, NIR, wavelength 
range than in visible wavelength ranges [23]. It was noted that when habitat canopy leaves 
were stressed, diseased, or dead, they revealed yellow and reflect significantly less in the NIR 
range.  

We employed the Add Function button on the Image Analysis window to apply an 
NDVI in ArcGIS. By opening the Image Analysis Options dialog box, and clicking the NDVI 
tab, we were able to check the red and IR, Rapid Eye TM wavelength transmittance. Also on 
this tab we employed the option Use Wavelength, which identified the correct RapidEyeTM 
5m, bands for qualitatively quantitating the wavelength, visible and NIR, emittance 
frequencies  in the dataset. The NDVI map eco-cartographically illustrated a single-band, 5m, 
trailing vegetation, S. damnsoum s.l., eco-epidemiological, immature habitat, explanative, 
metaheuristic dataset that mainly represented the sparsely shaded, discontinuous canopy, 
geoclassified, LULC greenery. The negative values represented the turbid riverine water, 5m, 
decomposed, mixel values. Very low positive values (0.1 and below) of Red Edge NDVI 
corresponded to barren areas of the capture point canopied rock. Moderate values (0.2 to 0.3) 
represented geoclassified, shrub and grassland LULCs, and high values (0.6 to 0.8) indicated 
dense canopy. 
 

 Based on the discontinuous canopied, Red Edge NDVI curve, the 5m leaf reflectance 
was greatest in the spectral bands centered between 1940 nm and 2500 nm, with indirect or 
secondary effects between 400 nm and 700 nm. The visible band (400-700 nm) light 
absorption by leaf pigments descriptively dominated the habitat leaf reflectance spectrum, 
which was parsimoniously tabulated at lower wavelength reflectances (15% maximum). The 
primary and secondary absorptions of water in the 5m, LULC canopy leaf reflectance were 
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greatest centered at around 700nm, with important secondary absorptions at 980 nm, and 
1,210 nm. 

 
 Different studies have revealed wavelengths in which leaf reflectance is influenced 

by water content [174, 175, 176]. Hence, employing spectroradiometry and RapidEyeTM 
technology in ArcGIS can reduce time and cost when constructing forecasting vulnerability, 
endemic maps of seasonally hyperproductive, trailing vegetation, turbid water, S. damnosum 
s.l. narrow riverine, tributary. eco-epidemiological, capture point, eco-georefernceable, 
explanative, immature habitats. This technology may increase the accuracy of 
parameterizable habitat, leaf reflectance, decomposed covariate estimator measurements to 
some extent in ArcGIS. 
 

Studies have estimated EWT by employing either broad waveband ratios [177] or 
narrow wavebands in the NIR and short wave infrared (SWIR) in simple ratios or normalized 
difference forms [e.g., 178]. To estimate leaf EWT, a 5m RapidEyeTM, stepwise regression, 
leaf reflectance, NDVI, Red Edge, model inversion can be constructed in ArcGIS. 
Evapotranspiration is important in the humid tropics for its role in the ecohydrological cycle: 
higher EWT means decreased drainage from soils, which means less nutrient leaching and 
lower yields of water from watersheds [179]. The effect of drastic, discontinuously canopied, 
trailing vegetation, LULC transitions (e.g., conversion of forestland trailing vegetation to 
discontinuous canopied, narrow riverine, turbid water ecosystems), on seasonal EWT 
tabulations in African agro-village, tributary complexes is not well understood. The 
evapotranspiration equation may be included in ArcGIS to seasonally quantitate canopy 
resistance in an eco-georeferenceable, exlnataive, capture point larval habitat which may 
elucidate unmixed, bio-physiological, wavelength, frequency, 5m,  transmittance of non-
homogenously canopied, emissivity processes associated to seasonally hyperproductive, 
immature productivity, explanative, count values. Less understood seasonal effects on EWT 
calculations might result from differential, seasonal, turbid water, pre-flooded, riverine 
discharges, although such information does exist for common forestry species in the tropics. 
Tropical, discontinuous, infrequently, canopied tree species vary greatly in characteristics 
that can affect EWT, such as the phenology, size, shape, and stomatal conductance of leaves 
[23].   

 
Zhang et al. [180] reported five moderate resolution absorption bands for remotely 

qualitatively quantitating water in the 400–2,500 nm spectral region: 970; 1,200; 1,450; 1,930 
and 2,500 nm. Riaño et al. [181] specified that the 1,400–2,500 nm range provides the highest 
correlation with EWT in moderate resolution data. Danson et al. [182] used six water 
moderate resolution absorption bands centered on 975; 1,175; 1,450; 1,650; 1,950 and 2,250 
nm for leaf water content estimation. Fortunately, we were able to obtain elucidative, 
discontinuously canopied, narrow, riverine,agro-village complex, fractionalized estimators of 
EWT for most of the canopy leaf species in the eco-georefernceable, eco-epidemiological, 
capture point habitat employing the Red Edge NDVI. Since the use of turbid, riverine, water 
vapor, absorption bands was avoided in the immature, capture point, habitat NDVI, it may be 
possible to employ these absorption bands along with a RapidEyeTM EWT, iteratively 
interpolative biosignature when it is believed that the seasonal atmospheric water vapor 
content can no longer affect hyperproductive, trailing vegetation, discontinuously canopied, 
capture point, turbid water,  S. damnosum s.l. habitat, NDVI, reflectance model, eco-
epidemiological forecasts. 
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Linear correlation analyses in ArcGIS revealed that there existed a statistically 
significant correlation between non-homogenously, discontinuous canopied, narrow, riverine, 
tributary,  fractionalized, agro-village complex, water content geolocations in a  dataset of  
multivariate RapidEye TM, 5m, visible and NIR wavelength, transmittance, wavelength data 
emitted from the capture point, habitat, NDVI, leaf reflectance. This data was geo-
spectrotemporally quantitated, at 1,450, 1,650 and 2,250 nm. The variation in the 
RapidEyeTM, 5m, imaged leaf structure caused the magnitude of the leaf reflectance to 
change with the leaf water content. However, the relative "depths" of the water absorption 
features in the uncoalesced, Red Edge, reflectance, endmember,derivative, forecast 
LULC,5m  spectra seemed not be affected by leaf structure. As the depth of absorption 
feature increased, the slopes on the leaf edge of the discontinuously canopied, time series, 
LULC features also increased. As a result, the first NDVI derivatives of the RapidEyeTM, 5m, 
reflectance endmember, forecast spectra of the visible and NIR wavelengths corresponded to 
these slopes in an ArcGIS scatterplot, and were easily associated to optimizable, remotely 
depressed geolocations of the eco-georeferenced, Simulium habitat, foliage examined.  

A review of ArcGIS literature reveals that moderate resolution water absorption bands 
have been employed for canopy leaf water content quality assessment and quantification of 
time series photosynthetic and non-phosynthetic discontinuous canopied variables. However, 
there are still few spectral regions that have not received sufficient attention by ecologists, 
entomologists or other researchers. Further, most of the studies conducted have focused on 
one particular canopy plant species and their results cannot be equally applied to any seasonal 
vector arthropod species. Therefore, it is important to define a robust, 5m, RapidEyeTM 
vegetation index that can identify a great number of seasonally explanative, hyperproductive, 
discontinuous canopied, narrow, riverine, agro-village complex, S. damnosum s.l. habitat, 
trailing vegetation, plant species which operates in a wider range of the electromagnetic 
spectrum.  

Various indices and moderate resolution wavelengths in different studies have 
claimed to have the highest correlations with the leaf water content. As Danson and Bowyer 
[183] argue, the moderate resolution wavelength which deduces leaf water content may 
depend on the magnitude and range of leaf water content in the leaf sample under study. 
Thus, if selected RapidEyeTM visible and NIR wavelengths are employed for remotely 
quantitating leaf water content in an eco-epidemiological, capture point, hyperproductive, S. 
damnosusm s.l., trailing vegetation, discontinuously canopied, narrow, riverine, tributary,  
agro-village complex, immature habitat, appropriate determination of a particular geosampled 
vegetation leaf species may need to be pre-identified. 

By assuming that the Red Edge NDVI described the geoclassified, steeply sloped, S. 
damnosum s.l., eco-epidemiological, hyperproductive, turbid water, capture point, riverine 
habitat in ArcGIS in the region of the dense, sparsely shaded,  trailing vegetation-related, 
LULC, 5m, reflectance curve between 690 nm and 710 nm, we were able to identify optimal 
Chl absorption discontinuously  canopied, immature habitat geolocations. Capturing the 
transition from Chl absorption and RapidEyeTM NIR leaf scattering required regression of the 
discontinuously canopied geolocations based on the low/high, Chl, concentration estimates 
and the geo-classified LULCs in the 5m imaged, immature habitat, forecasting mathematical 
model.  

The quantitated 5m, Red Edge, NDVI, wavelength, transmittance emittance values 
from the, hyperproductive, S. damnosum s.l. habitat, LULC data revealed strongly absorbed 
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radiation in the red and blue wavelengths and also in reflected green wavelength, which acted 
as a diffuse reflector of the RapidEyeTM NIR wavelengths. Reflected red irradiance (IRED) 
was strongly diminished, likely through Chl absorption, with peak absorption occurring at 
693nm. Chlorophyll in the discontinuous canopy, narrow tributary, agro-village, 
geoclassified LULC geolocations absorbed most of the light in the visible part of the 
spectrum, but this may have become almost transparent at wavelengths greater than 700 nm. 
Both red and NIR irradiance were strongly influenced by the discontinuous, habitat canopy, 
LULC, plant cover. Red irradiance decreased with plant LULC cover, as NIR irradiance 
(INIR) increased. The Chl irradiance within the RapidEyeTM 5m, waveband spectrum was an 
integral part of the overall, sparsely shaded, canopied, LULC, irradiance spectrum with 
respect to the wavelength frequency 5m, uncoalesced emissivities associated with the 
geosampled habitat, Red Edge, NDVI. 

 
 Red Edge NDVI red and NIR, reflectance variables were scattered in the lower, 

geoclassified LULC, canopy cover reflecting less resolution-intense geolocations. In the 
explanative, hyperproductive Rapid EyeTM, S. damnosum s.l., NDVI, forecast vulnerability 
model, discontinuously canopied, narrow, riverine, tributary,  agro-village study site, LULC 
changes were reflected in the green peak reflectance (~550 nm) and along the Red Edge (590 
to 650 nm). Chlorophyll content may decline more rapidly than carotenoid content towards 
the lower part of an S. damnosum s.l. habitat, discontinuous LULC, canopy cover. Lower, 
immature habitat, canopied, LULC cover may be where the canopy plants in 
hyperproductive, Similium habitats experience more seasonal stress due to leaf senescence, 
especially during flooding sample frames. Chlorophyll was the most abundant plant pigment 
in the canopy geosampled at all the, study sites with the most fractionalized 
endmember,orthogonalized  eigenvectors  captured in uncoalesced, red and blue RapidEye TM 
wavelength, transmittance frequencies. Accessory pigments such as carotenes and 
xanthophylls harvested some green frequencies. 

Dry or senescent carbon components in the Red Edge NDVI provided an estimate of 
the amount of carbon in dry states of lignin and cellulose in the eco-epidemiological, capture 
point, immature habitat. Lignin is a carbon-based molecule utilized by plants for structural 
components.  Cellulose is primarily used in the construction of cell walls in plant tissues 
[172]. Dry carbon molecules are present in large amounts in woody materials and senescent, 
dead, or dormant, discontinuously canopied, narrow, riverine tributary, agro-village complex, 
geoclassifiable, explicative, LULC vegetation. RapidEyeTM 5m, NDVI may be employable 
for seasonal analysis and detection of eco-epidemiological, eco-georeferenceable, capture 
point, S. damnosum s.l. habitats. Reflectance measurements in the RapidEyeTM IR range may 
take advantage of known discontinuous, canopy absorption features of cellulose and lignin to 
aid in detection of seasonally hyperproductive habitats. 

The xanthophyll cycle was clearly implicated in the dissipation of absorbed 5 m ,  
R a p i d E y e T M  o r t h o g o n a l l y  d e f i n e d  photon flux density (PFD) in the 
uncoalesced, photosynthetically active R a p i d E y e T M  wavebands in excess of the 
amount that may have be used in canopy photosynthesis. Conditions of excess PFD i n  a  
e c o - g e o r e f e r n c e a b l e ,  e x p l i c a t i v e l y  s e a s o n a l ,  h y p e r p r o d u c t i v e ,  
t r a i l i n g  v e g e t a t i o n ,  d i s c o n t i n u o u s l y  c a n o p i e d ,  t u r b i d  w a t e r ,   S .  
d a m n o s u m  s . l .  discontinuously canopied, narrow, riverine, tributary,  agro-village 
complex, i m m a t u r e   h a b i t a t  can occur under a variety of stress conditions when there 
is an imbalance between absorbed PFD and the rate of photosynthetic dark reactions. In 
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response to excess PFD and the associated increase of the chloroplast thylakoid pH 
gradient, the xanthophyll pigment violaxanthin (V) is reversibly de-epoxidized to 
zeaxanthin (Z) via antheraxanthin (A) [184, 185]. The quantity of zeaxanthin is closely 
correlated with the rate of dissipation of excess PFD as heat [186]. 

      Leaf water affects plant reflectance in the NIR and SWIR regions of the spectrum [23]. 
Riverine, turbid water, trailing vegetation, discontinuous canopy,  S .  d a m n o s u m  s . l . ,  
i m m a t u r e ,   h a b i t a t  reflectance had maximum absorptions centered near 1400 and 1900 
nm in the moderate resolution data.  However, these spectral regions usually cannot be 
observed from airborne or space-based sensors, and may have been due to atmospheric water 
absorption, preventing their practical use in the creation of the robust Red Edge, endmember, 
fractionalized, iteratively interpolative,  NDVI signature for remotely targeting unknown, un-
geosampled, hyperproductive habitats at the agro-village, narrow riverine, tributary, study 
sites. In the ecohydrological, habitat risk model, the riverine water surrounding Gonycogo 
and Ayago villages was 970 nm and 1190 nm, respectively.  

 For the elucidatievly unmixed, fractionalized, 5m, immature habitat, RapidEyeTM 
wavelength endmember, emissivity, transmittance, eco-epidemiological, uncoalesced, leaf 
senescence, discontinuously canopied, narrow, riverine, tributary,  agro-village complex, 
geoclassified, LULC data, the maximum difference in RapidEyeTM reflectance was within the 
400–850 nm wavelength range for control and stressed states, which occurred as reflectance 
increased to 700 nm. A variety of environmental stressors, including dehydration, flooding, 
and competition, have been imposed on Simulium species [93]. These environmental, 
response stressors may have simulated constant and varying levels of remotely quantifiable 
Chl concentrations in a RapidEyeTM, 5m, habitat scene. Eco-georferenceable, immature 
habitat, canopy leaf radiance discontinuously canopied, narrow, riverine, tributary, agro-
village complex, geoclassifiable LULC may be quantitated thereafter employing the 
variability measures in the seasonal, leaf, Chl concentrations or in the senescent leaves. The 
optical response to stress near 700 nm, as well as the corresponding LULC changes in the 
elucidatively fractionalized, optimally parameterizable, geo-spectrotemporally, geospatially 
covariate coefficient, 5m, wavelength, frequency emissivities, occured in the eco-
epidemiological, RapidEye TM model, residual forecasts encompassing the green–yellow 
spectrum. This may have been explained by the general tendency of seasonal stress to reduce 
leaf Chl concentration in the immature habitat canopies and their discontinuously canopied, 
narrow, riverine, tributary, agro-village complex, geoclassified LULC, eco-georferenceable, 
unmixed data, 5m, feature attributes (e.g., floating vegetation cover).  

     Leaf Chl concentrations may elaborate on geoclassiifable, LULC characteristics affected 
by radiation reflected, transmitted, or absorbed by seasoanl,  hyperproductive, S. damnosum 
s.l. habitat, discontinuous, canopy leaves and provide a more thorough understanding of 
ecophysiological explanative responses to growth conditions and seasonal, canopy plant, 
adaptation processes in African, narrow riverine, agro-ecosystem, village complex tributaries. 
Largely as a result of interest in cost-effectiveness, moderate resolution, remote sensing, bio-
optical, leaf reflectance has been studied more extensively than transmittance or absorbance 
responses to stress [187, 188].  

Customizable, bio-optical algorithms can be developed as practical tools in ArcGIS 
for remotely, optimally monitoring the  plant health of seasonally hyperproductive, eco-
georferenceable, discontinuously canopied, narrow, riverine, tributary, agro-village 
complex,geoclassified  LULC, S. damnosum s.l. habitatd by providing unique non-
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homogenous, explantaively decomposable, 5m, Red Edge, NDVI data that can be related to 
specific plant stresses. Signatures from thermal and fluorescence imaging have been used 
successfully to track pathogen invasion before visual symptoms are observed [23]. Another 
approach for non-invasive canopy plant health monitoring in RapidEyeTM, 5m imaged, 
habitat, Red Edge NDVI can involve elucidating the manner with which light interacts with 
the plant leaf.  This can help identify, LULC changes in habitat characteristics in response to 
specific,discontinuously canopied, quantifiable stresses in ArcGIS.  

Seasonally quantitating canopy perturbations in an discontinuously canopied, narrow, 
riverine, tributary, agro-village complex,geoclassified  hyperproductive, capture point eco-
georeferenceable,  eco-epidemioloigical,, S. damnosum s.l. habitat requires a firm 
understanding of the biochemical and anatomical features governing leaf reflectance, 
transmission and Chl absorption. Many studies have opened up possibilities that subtle 
changes in leaf reflectance, derivative emoderateresolution, endmember spectra can be 
analyzed in a plethora of ways for discriminating nutrient and water stress.  However, these 
techniques have met with limited success for seasonally prolific, vector arthropod, aquatic, 
larval habitat discrimination.. There has also been interest in developing transgenic 
phytosensors to elucidately canopied plant status in relation to environmental conditions in 
ArcGIS. This approach involves unambiguous signal creation whereby genetic modifications 
in discontinuous, canopy plants could result in distinct moderate resolution, bio-canopy, 
optical signals emitted in response to specific remotely detectable, environmental stressors. 
Most of these studies, however, are limited to laboratory or controlled greenhouse 
environments. There has been no contribution to the literature for autoregressively, 
quantitating Chl levels from geoclassfiable, explaicative, LULC, sparsely shaded, seasonal 
hyperproductive, S. damnosum s.l. riverine, turbid water, immature habitat, eco-
epidemiological, eco-georefernceable, capture points at the canopy leaf level. 

We were able to optimally remotely validate the seasonal hyperproductive, S. 
damnosum s.l. habitat, leaf Chl concentration mechanisms by simulating general broad geo-
classified, field-operationizable, LULC patterns in bio-optical responses to stress in the 
RapidEye TM 400–850 nm wavelength range in ENVI. Leaves having unusual anatomical 
characteristics such as heavy pubescence or succulence or colors other than green in the 
healthy, mature state were not included in the fractionalized, endmember emissivity analyses. 
We found senescent leaves in several habitat, discontinuous canopy, leaf species. This 
combination of results should provide a clearer understanding of changes in seasonally 
hyperproductive, S. damnosum s.l., canopied habitat’s leaf, bio-optical properties that occur 
commonly with stress. These  geoclassifiable discontinuous, canopy LULC shifts may be 
eco-cartographically delineated employing cost-effective, RapidEyeTM visible and NIR, 5m 
wavelengths in ENVI.  

Eco-physiologically, the reflectance variation in the eco-epidemiological unmixed, 
Chl-a submixel, 5m, wavelength frequency transmittance endmembers in ENVI was easily 
decomposed. The endmember, transmittance fluctuations may have been due to seasonal 
responses to changing biotic and abiotic factors (e.g., trailing vegetation LULC, solar 
radiation, etc.) which may be of seasonal entomological significance when implementing 
black fly control strategies such as Slash and Clear. Most indices sensitive to Chl content may 
be strongly affected by endmember 5m, wavelength, emissivity reflectance differences in 
explanatively unmixed, LULC, transmittance, of elucidatively paramterizable, wavelength, 
frequency-oriented, transmittance emissivity covariate, coefficient, sub-mixel correlated, 
eigenvectorestimators. One of the main co-factors governing seasonally hyperproductive, S. 
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damnosum s.l., immature, capture point, hypeproducrtive habitats in African narrow riverine, 
tributary, agro-village ecosystems is adequate water velocity (.70-1.5 m/sec), which is linked 
with oxygenation, food supply, and the presence of suitable supports, which may be rocks, 
stones, sills, sidewalks of structures, spillways and gates [93]. Whilst the orthogonally 
decomposable, discontinuously canopied, narrow, riverine, tributary, agro-village 
complex,geoclassified  5m, LULC, immature capture point, hyperproductive, habitat 
emissivity 5m indices revealed strong relationships with Chl content in the Red Edge, proxy, 
NDVI biosignature, additional seasonal validation endmember metrics may be required to 
understand how immature, seasonal, Simulium productivity is geospatially or geospectrally 
associated to proxy, decomposable, canopy, NDVI 5m, biosignatures. This endmember data 
feature attribute may be tabulated at the habitat leaf scale employing known geo-classifiable, 
geosampled, LULC, 5m, wavelength, frequency,  transmittance, emissivity changes geo-
spectrotemporally associated with hyperproductive, immature, sparsely shaded, narrow, 
riverine, Similium, trailing vegation, discontinuously canopied, sparsely shaded, 
hyperproductive, eco-epidemiological, eco-georeferenceable, agro-village, tributary  habitats.  

 
 When scaling up from a leaf to a branch or canopy in flooded, narrow riverine 

tributary  conditions, explanatively geoclassifiable, explanatorial LULC, observational 
predictors of hyperproductive, S. damnosum s.l. habitats (e.g., Percent of trailing vegetation 
LULC, discontinuous, canopy density) may affect a measured RapidEyeTM reflectance signal. 
The reflectance model explicative output of the canopy Chl content was an eco-physically 
sound quantity that ecohydrologically represented the optical path in the canopy where 
absorption N also dominated the RapidEye, 5m, radiometric signal.    Absorption by Chl-a 
may provide the necessary link between seasonally geosampled   trailing vegetation, dense, 
heterogenously canopied, observations and hyperproductive discontinuously canopied, 
narrow, riverine, tributary, agro-village complex ,immature habitats, and their geoclassifiable, 
LULC canopy-state, eco-georeferenceable explanators, as well as other Chl-related,  
frequency, transmittance, covariate estimators. These data products may be subsequently 
employed as indicators of N status and photosynthetic, seasonal immature, habitat canopy 
capacity.  

 
Futher, based on our results, research can pres 

ently concentrate on qualitatively quantitating orthogonally decomposable RapidEyeTM 
seasonal, fractionalized, endmember eigenvector  emissivity relationships between leaf N 
content and the eddy covariance CO2 flux measurements for devising a range of diverse 
discontinuously canopied, narrow, riverine, tributary, agro-village complex,geoclassified  
LULC, unmixed, 5m, leaf area, wavelength, transmittance, emissivity, in a eco-
georeferenceable, hyperproductive,eco-epidemiological, capture point, habitat. Discontinuous 
leaf N content may be a strong co-factor influencing both optimum canopy light use 
efficiency and canopy photosynthesis rates in an capture point, hyperproductive, S. 
damnosum s.l. habitat at these sites. Indeed, Chl-a measurement provides information on the 
plant ecophysiological status because leaf chlorophyll concentration is linked to N content, 
and, therefore, to photosynthesis [172]. 

 
The Red Edge, orthogonally decomposed 5m, wavelength, emissivity transmittance, 

endmember,data described the steeply sloped, discontinuously  canopied, hyperproductive, S. 
damnosum s.l., immature, habitat region of the expositively geo-classifiable, vegetation-
related, LULC, submixel, reflectance curve between 690 nm and 710 nm, where Chl-a 
absorption was geolocalized from low/high Chl-a content in the habitat unmixed spectrum. 
These shifts within the canopy, 5m, LULC spectrum may have been related to stress induced 
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from the vegetation-related, LULC or canopy decline, which probably arose as a result of 
increase in seasonal fluorescence. In our Red Edge, habitat, eco-epidemiological, narrow 
riverine, tributary, risk model output, these flucations were detected in regression space by 
graphing the geospectral algebraic decomposition of the endmember shift toward the longer 
or shorter wavelengths of the electromagnetic 5m spectrum in ENVI.  

Investigations of the shape of the first uncoalesced, reflectance, endmember, 
derivative, fractionalized spectra in the Red Edge region of the eco-georeferenced, trailing 
vegetation,  hyperproductive, discontinuously canopied, narrow, riverine, tributary, agro-
village complex, geo-spectrotemporally geoclassified  LULC, immature habitat, sub-divied 
reflectance suggested that the maximum, sub-mixel, iteratively interpolatable values may be 
associated with low Chl-a content in the canopy. These LULC changes may be related with 
seasonal, canopy, leaf development in seasonally hyperproductive, immature habitats. Thus, a 
time series dependent, quantitatively regressable, 5m, Red Edge, endmember, decomposable, 
NDVI, biosignature in a wavelength, emissivity transmittance, ArcGIS-derived, unmixing 
algorithm may be useful for quantitating canopy defoliation in a seasonally explanative,  
hyperproductive, trailing vegtataion, immature, discontinuously  canopied, sparsely shaded, 
turbid water, capture point, seasonal habitat.These emissivity, geo-predictive, 5m, 
wavelength, eco-epidemiological maps may reveal fractionalized, 5m, Rapid EyeTM , 
endmember, wavelength, frequency transmittance, geo-spectrotemporally uncoalesced, 
geospatialized,geoclassifiable,  LULC sub-mixel changes in Chl-a concentration for 
estimation of photosynthetic activity in specific discontinuously canopied, riverine 
geolocations as rendered from  an eco-epidemiological, eco-cartographic, eco-georeferenced, 
seasonally hyperproductive,  explanative, immature Similium habitat  data rendered from a 
stochastic interpolator constructed in ArcGIS.  

Analyzing seasonal relationships between unmixed, Chl-a in RapidEyeTM vegetation 
indices formulated from an eco-georeferenced, seasonally hyperproductive, immature trailing 
vegetation, discontinuously  canopied, sparsely shaded, turbid water, capture point, S. 
damnosum s.l. habitats may remotely quantitate relations between orthogonally decomposed, 
5m wavelength, discontinuously canopied, narrow, riverine, tributary, agro-village complex, 
geo-spectrotemporally geoclassified,  LULC, wavength, frequency transmittance of Red Edge 
reflectance in the red region of the canopy spectrum. For example, the position of the Red 
Edge on the canopy scale may provide a robust indication of the discontinuous canopy 
condition that may be related to a variety of remotely sensed, co-photosynthetic, iteratively 
explanatively ieratively interpolated, frequency, transmittance emissivities contributing to 
hyperproductivity of immatures in an S. damnosum s.l. immature  habitat, including leaf LAI 
nutrients, water content, and canopy biomass. These proxy, elucidatively geo-classifiable 
LULC, time series dependent, explanators may be studied in a first derivative discontinuously 
canopied, RapidEyeTM 5m, imaged, S. damnosum s.l., eco-epidemiological, uncoalesced 
immature habitat, dataset of parameterizable, reflectance-oriented,  field-operationizable, 
fractionalized, covariate, endmember  eigenvectors estimators from the Red Edge region 
since this position in our risk model was the tabulated point of maximum slope on the sub-
mixel, fractionalized, 5m, wavelength reflectance spectrum of the geoclassifiabel LULCs 
between red and NIR wavelengths amongst all the radiance geomarkers. In doing so, 
powerful eco-epidemiological, forecasting vulnerability, Rapid EyeTM eco-georefernceable 
risk maps of seasonally hyperproductive discontinuously canopied, narrow, riverine, 
tributary, agro-village complex,immature habitats based on geosampled immature count data 
may be generated in ArcGIS.  
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At the fractionalized leaf level, endmember, 5m, reflectance, wavelength, frequency, 
transmittance is a function of Chl-a emissivity absorption, internal structure, leaf thickness, 
air-water interface, distribution of pigments and chemical constituents [172]. Additionally, 
leaf surface, time series dependent, metaheursitically LULC properties, such as a waxy 
cuticle and pigment concentrations and distribution may affect Chl-a concentrations [189]. At 
the canopy level, endmember, Chl-a sub-mixel, reflectance may be a function of LAI, leaf 
clumping, leaf angle distribution, trailing vegetation, 5m, LULC cover, and source-target, 
illumination geometry, especially when identifying localities of S. damnosum s.l. riverine 
larvae. As a consequence, RapidEyeTM vegetation index biosignatures should be seasonally 
constructed for regressing seasonal, geo-spectrotemporal, geospatially uncoalesced, 
explicatively orthogonally decomposable, fractionalized, discontinuous, canopy pigment 
content at the leaf level of a seasonally hyperproductive, trailing vegetation, immature, 
discontinuously  canopied, sparsely shaded, turbid water, capture point, narrow,  riverine 
tributary, eco-georefernceable,  capture point, S. damnosum s.l., habitat.  

 
Further, estimation at the canopy level of N from LAI may be vital for optimally 

targeting immature habitat, discontinuous endmember, forecastable, derivative , 
discontinuous, canopy spectra as the factors that affect eco-georefernceable, riverine, capture 
point, immature  habitat reflectance vary according to seasonal scale. Later in the season, LAI 
values may lose sensitivity for measuring canopy nutritional content. For example, Inada 
[190] found a high correlation between leaf N and leaf optical properties (r2 = 0.90). 
However, at the canopy level, the correlation between canopy N concentration and canopy 
reflectance decreased as a function of LAI. 

The 5m, larval habitat, Red Edge NDVI data from ENVI was exported to an unmixing 
algorithm in ArcGIS, and a SPA algorithm was employed to unmix the Red Edge 
biosignature. By employing the average of multiple RapidEyeTM fractionalized, imaged 
capture point, immature habitat, canopy endmembers from the extracted Red Edge, NDVI 
mixel as one canopy endmember, the total deducable unmixed, Chl-a, submixel, endmember, 
reflectance values was quantitated. The SPA-derived unmixed, fractionalized, endmember, 
forecast, derivative spectra appeared to be without noise (i.e. smooth). Given that adjacent, 
uncoalesced, iteratively interpolative, immature, habitat data extracted from the  5m mixel 
was not likely to be simultaneously spurious, the use of neighboring adjacency, endmember, 
LULC tabulations may have made the SPA more sensitive to isolated, noisy, 
RapidEyeTM,5m, heterogenous mixels, thus avoiding inherent challenges such as uncertainty 
probability estimation and propagation of autocovariate decomposition, erroneous, 
wavelength, transmittance misspecified emissivities, outlier covariate coefficients commonly 
seen in other convex–based, endmember-search, unmixing algorithms. Quantification of 
erroneous explanative, latent autocovariate, endmember, fractionalized relationships is vital 
for efficient endmember forecasting, eco-epidemiological, radiance, risk mapping [22]. 

Although spectral unmixing algorithms in ArcGIS have proliferated in a variety of 
medical entomological, vector arthropod-related, geo-spatiotemporal,geo-spectrotemporal, 
geospatialized, geosampled, geo-predictive models  by exploiting remotely sensed, 
explanatively decomposable, eco-georeferenceable, geo-classifiable unquantitated, moderate 
resolution, wavelength emissivity, sub-mixel data that is autocorrelated will exhibit 
misspecifications. Jacob et al. [191] found that since endmembers of sub-meter spatial 
resolution, wavelength, imaged, aquatic, larval habitats of Anopheles arabiensis, a major 
vector of malaria in Sub-Saharan Africa (SSA), in central Kenyan, riceland, agro-village 
ecosystems, utilize semi-permanent to temporary habitats (e.g., floodwater areas, vernal 
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pools, hoof prints), autocorrelated endmember, fractionalized data can pose a special problem 
namely endmember multiscattering. The authors orthogonally decomposed a hypeproductive, 
An. arabiensis Riceland,immature habitat mixel for forecasting hyperproductive, eco-
georeferenceable, geo-classifiable, immature habitats in a riceland, agro-ecosystem, village 
complex. The resedual regression  forecast vulnerability  model forecasts revealed that paddy 
preparation An. arabiensis habitats were the most productive based on spatiotemporal field-
sampled count data 

 
Here we constructed a meteaheursitically optimizable, explantaorial,  regression 

forecasting model for qualitatively quantitating the empirical5m  uncoalesced, wavelength, 
transmittance emissivity dataset of discontinuously canopied, narrow, riverine, tributary, 
agro-village complex, geoclassified  LULC, S. damnosum s.l. habitat which  assumed a 
normally distributed population with mean μ and standard deviation σ. We chose individuals 
independently and then they had and the sample 

mean which was a random variable distributed thus:  The 
statistical errors were then whereas the residuals were  The 
individual quantiated, explanative residual forecasts. mixel, spectral, reflectance estimates 
from a  Rapid Eye TM dataset of visible and NIR data of the Similium habitat were then 
extracted by using a Li-Strahler geometric-optical model. In ENVI®, the DN of the mixel in 
every band was viewed using the z-profile from a spectral library. The sum of squares of the 
statistical errors, divided by σ2, has a chi-squared distribution with n degrees of 

freedom . This quantity, however, was not observable. The sum of squares of 
the residuals, on the other hand, was observable. The quotient of that sum by σ2 had a chi-

squared distribution with only n − 1 degrees of freedom: This difference 
between n and n − 1 degrees of freedom resulted in the authors employing a Bessel's 
correction for the estimation of sample variance of the immature habitat  capture point, with 
unknown mean and unknown variance,  

After making an atmospheric correction from the image for the eco-epidemiological, 
eco-georeferenceable, study site, the DN was converted into ground reflectance. A convex 
geometrical model was also used for endmember validation of the geo-spectrally decomposed 
habitat. An ordinary kriged-based interpolation was performed in Geostatistical Analyst TM 
using the reference signature generated from the unmixing models.  

Spatial inference, or estimation, of a quantity , at an unobserved 
discontinuously canopied, narrow, riverine, tributary, agro-village complex,geoclassified  
LULC,habitat location , was calculated from a linear combination of the observed 
uncoalesced  values and endmember fractionalized weights 

in Geospatial 
Analyst TM The weights   revealed two extremely important geospatial inferences based on 
the  discontinuous, elucidative discontinuously canopied, narrow, riverine, tributary, agro-
village complex, geo-spectrotemporally geoclassified  LULC, 5m S. damnosum s.l. habitat 
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signature, explanative process: 1) eco-epidemiological, residual linear forecasts   reflected 
structural "proximities" of  habitat samples  for estimation of an explanative, hypeproductive,  
habitat geo location, . 2) a desegregation effect avoided bias caused by eventual sample 
clusters. When calculating the endmember weights , there are two objectives in the 
geostatistical formalism: unbias and minimal variance of estimation[24]. 

The cloud of the eco-epidemiological, eco-georeferenceable, capture point, immature 
habitat, fractionalized, biosignature iteratively interpolated values  were plotted against 

the estimated values , for optimally determining the criterion for global unbias, 
intrinsic stationarity of the geosampled field. In so doing, the eco-epidemiological, forecasts 
implied that the mean of the estimations had to equal to mean of the geo-spectrotemporally, 
geospatial, geosampled, 5m values. The second criterion says that the mean of the squared 
deviations must be minimal, which means that when the cloud of estimated 
values versus the cloud real values is more disperse, the estimator is more imprecise[24]. 
Linearizable unbiased predictors and variance estimates were derived of all hyperproductive 
immature habitats in the study site based on the extracted pixel endmember, reflectance 
estimates were forecasted.  

      Analyses of the explanatively decomposable proxy, RapidEyeTM 5m, geo-predictive, 
remotely synthesized, explanatorial, S. damnosum s.l. habitat NDVI, bisoignature variables, 
along with the ground truth data, revealed relatively high accuracy (RMSE < 1μg/l) between 
the predicted and observed, habitat, discontinuously canopied, LULC, data feature, attribute 
values, which were optimally rendered for the trailing vegetation, turbid water,narrow 
riverine tributary, geo-spectrotemporally geosampled geolocations associated with 
ecohydrologically low vegatation (i.e., < 10 μg/l) content in ArcGIS. By choosing the Red 
Edge band, instead of the red band for the fractionalized, NDVI endmember calculations, a 
lower saturation over highly sparsely shaded, eco-georeferenceable, sporadically vegetated 
geo-spectrotemporally geoclassified, LULC areas in the fractionalized, discontinuously 
canopied, eco-georeferenceable, capture point, agro-village African, narrow, riverine 
tributary S. damnosum s.l. habitat was achieved. Our results revealed strong spatial scale 
dependencies of the Red Edge, NDVI over the Gongcygo agro-village, complex, ecosystem,  
study site, heterogeneous, Chl-a,  discontinuously canopied, LULC surfaces, indicating that 
5m values may be optimal for remotely discerning S. damnosum s.l., seasonally 
hyperproductive, narrow riverine, tributary, immature habitats at 5m, spatial resolution. 

ArcGIS and various unmixing algorithms can be optimally employed  for retrieval of 
a robustifiable  dataset of explanatively fractionalized, trailing vegation, turbid water, 
discontinuous canopied, fractionalized, endmember eigenvectors representing  heuristically 
decomposed,  geoclassifiable, Chl-a, 5m, LULC-related, time series dependent vegetation 
canopy, from an unmixed, Rapid Eye TM biosignature. Sub-mixel, elucidative, biophysical 
properties may be qualitatively quantitated  by determining the relationship between 
unmixed, 5m, NDVI regressable, probabilistic, proxy, wavelength, transmittance, emissivity 
coefficients.  

An additional RapidEyeTM, 5m, byproduct measurement rendered was generated 
while unmixing the Red Ege NDVI, trailing vegetation, turbid water, capture point, immature 
habitat, canopy, biosignature, which was quantitated as the change of the simplex volume 
ratio between successive iterations during the endmember extraction process. We noted that 
the SPA illustrated the influence of a new eco-epidemiological dataset of larval habitat, 
discontinuously canopied, fractionalized, endmember eigenvectors on the orthogonally 
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decomposed, Red Edge, NDVI biosignature, image data structure, and provided information 
about the convergence of the algorithm. Though the rate of convergence speed varied with 
LULC complexity in the endmember, decomposed Red Edge, NDVI biosignature 
representing the eco-georferenceable, seasonally, hyperproductive, capture point, immature 
habitat, the merging revealed large geoclassified discontinuously canopied, endmember, 
unmixed 5m, wavelength, transmittance emissivities in volume ratio, followed by 
progressively smaller changes and convergence towards a spectral plateau. The decomposed, 
canopy, fractionalized, endmember biosignature search terminated before the convergence 
point (i.e., when the volume ratio was close  to 1.0). 

 
We noted that variations in, Chl-a, dry matter, and water content interacted to cause 

nonlinear shifts in the 5m, immature habitat, SPA, elucidatively orthogonally decomposed, 
discontinuous, canopy endmembers. Because  geoclassifiable LULC changes in Chl-a 
variables had the greatest effect in the 5m visible and NIR regions between 400 and 1300 nm, 
and dry plant residues in the habitat canopy had,the greatest effect in the IR region between 
2000 and 2400 nm, the expositively quantifiable, fractionalized, 5m, endmember, radiance 
observations of the full 400- to 2500-nm spectrum for the capture point, immature habitat, 
sub-mixel biosignature may provide the best basis for analyzing and iteratively interpolating 
photosynthetic and non-photosynthetic, fractionalized 5m, endmember estimates. 

 
The decomposed, Red Edge, 5m, imaged, NDVI, habitat, endmember, unmixed 

biosignature, wavelength frequency-orinted, transmittance emissitives rendered from the SPA 
were then input into a 3-D, radiative transfer model in ArcGIS. The medium resolution, 
NDVI, canopy invariants expressed the fractionalized, discontinuous wavelength, spectral 
reflectance by independent bio-optical, RapidEyeTM wavelength, frequency, transmittance 
emissivities. The eco-epidemiological, endemic, explanative, model residual forecasts 
determined a small, uncoalesced, eco-georeferenceable, heuristically robustifiable dataset of 
discontinuously canopied structural, radiatively transferable, RapidEye TM endmember, 
predictor variables. This dataset included the canopy interceptance based on the recollision 
and the escape probabilities. 
 

The spectral invariants of canopied, vegetation geo-classifiable, discontinuous, 
geoclassified  trailing vegation, LULC canopy conveyed from a hyperproductive, turbid 
water, narrow riverine, eco-georefernecable, agro-village complex, tributary, immature 
habitat provides a good deal of information regarding the canopy structure at multi-
hierarchical levels. The findings of the 5m, explanatively, time series, orthogonally 
decomposable, RapidEyeTM wavelength independent and scale independent variables (e.g., 
the ratio between the directional escape and the total escape probability) suggest that umixed, 
discontinuously canopied, immature habitat emissivities depend on the selection of reference 
leaf albedo for achieving accurate, sub-mixel, reflectance values. This ArcGIS decomposition 
technique can be treated as the identifier of macro scale canopy structure (e.g., foliage 
density, aspect ratio, ground cover, habitat shape etc).  

 
In order to better utilize Chl-a retrieval algorithms in ArcGIS, it may be helpful to 

remotely define and qualitatively quantitate 3-D, orthogonalizable, discontinuous, canopy 
structural, synthetic, RapidEye TM elucidative 5m, wavelength, frequency, transmittance 
components. Model simulation based on the stochastic, radiative transfer, non-continuous 
equation may be then optimally employed to test the sensitivity of a Chl-a variable based on 
its geo-spatializable, geo-spectrotemporal relationship to the structural geosampled 5m, 
reflectance parameterizable, covariate, estimators. These geo-spectrotemporal,   
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discontinuous canopied, geoclassifiable, LULC, predictor variables may specify the 
relationship between the  quantitable geospectral response of the, trailing vegation, turbid 
water, larval habitat, vegetation canopy, Chl-a concentrations to the incident solar radiation at 
the leaf and the canopy scale. This may then be optimally tabulated employing the 
decomposed,immature habitat, Red Edge, NDVI, unmixed, reflectance values. The estimates 
rendered from the model may allow for a simple and accurate parameterization for partioning 
the incoming radiation, non-homogenous, canopy emissivity, transmission, reflection and 
absorption at any 5m, RapidEyeTM, decomposed, wavelength discontinuous spectrum. 

 
We then conducted a retrieval of the  discontinuously canopied, geoclassified, 5m, 

Rapid Eye TM , LULC, endmember, sub-mixel, larval habitat, photosynthetic andnon-
photosynthetic, geospatialized, feature, data attributes employing an eco-georeferenceable, 
geometric-optical, explanative, endmember model. The scene reflectance of each 
decomposed, operational, geospectral, geospatial component was classified in the eco-
georferenceable, 5m imaged, hyperproductive, eco-georeferenceable, trailing vegation, turbid 
water, narrow, riverine tributary, agro-village complex, immature habitat. We retrieved the 
immature habitat, structural RapidEye TM wavelength, frequency, emissivity, transmittance, 
decomposed, orthogonal, covariate estimators employing the unmixed, discontinuous canopy, 
LULC, sub-mixel data. We employed a linear spectrum decomposition embedded algorithm 
in the geometric, bio-optical, sub-mixel, eco-epidemiological analyses in ArcGIS to 
determine the 5m reflectances of the Red Edge NDVI, endmember geospectral, unmixed, 
scene components, which were regarded as prior knowledge in the retrieval of the 
uncoalesced, immature habitat, Red Edge, discontinuous, canopy cover, fractionalized, 5m, 
wavelength, frequency emissivities. 

The geometric scene included four components: sunlit canopy, shadowed canopy, 
sunlit background, and shadowed background. The radiance or reflectance of the RapidEyeTM 
riverine, agro-villge complex, eco-georefernceable,   scene as a whole which was modeled 
based on the uncoalesced, discontinuously canopied, reflectance estimates  of the individual 
fractionalized endmember, immature habitat components as weighted by their aerial LULC 
proportions. The aerial proportions of the components were determined by principles of 
geometric optics as applied to the geometric shapes of the capture point, immature habitat, 
canopy envelopes. These partitions yielded the expected proportions of the components as a 
function of angles of RapidEyeTM 5m, irradiance and exitance.  

In ArcGIS, the directional radiance of the S. damnosum s.l., trailing vegation, turbid 
water,discontinuyous, canopied, capture point, larval habitat was dependent on the mixture of 
four components:  sunlit and sparsely shaded, canopy crown, and sunlit and shaded 
background-that was seen from a given viewing illumination angle. The aerial proportions of 
these four components for given illumination and viewing directions was a function of the 
sizes, shapes, orientations, and placements of the elucidative, within-canopied, eco-
georefernceable, immature habitat objects in the RapidEyeTM scene ( e.g., sporadic, floating,  
dead vegetation). The size, shape, and orientation of the habitat was then characterized by 
distributions with known parameters and object centers, which were distributed randomly in 
ArcGIS. This decomposition model accounted for the changes in proportions that occurred 
with random overlapping of objects as the density of fractionalized endmember, 
discontinuously canopied, immature habitat,  objects increased. 

An empirical, BRDF risk model was then derived using the apparent trends between 
the quantitable, ToA reflectance versus solar zenith angle and viewing zenith angle of the 
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elucidatively orthogonally decomposed, explanative, discontinuously canopied, eco-
epidemiological, immature habitat , 5m, wavelength, frequency, transmittance emissivites. 
The physics-based, BRDF, immature habitat, fractionalized, endmember estimation model, 
revealed a complete characterization of the seasonally explanative, biophysical characteristics 
of the diacontinuous canopy, such as its composition, irregular particle shape, refractive 
index, surface roughness, spectral reflectance, etc. Widely used semi-empirical models such 
as the Ross-Li model, Roujean model and Snyder model are kernel driven, whereas BRDF is 
modeled as a weighted sum of volume scattering, geometric scattering and isotropic terms 
[23], The 5m, RapidEyeTM, frcationalizedm endmember, BRDF identified seasonally 
explanative, hyperproductive, S. damnosum s.l., discontinuously canopied, sparsely shaded, 
eco-epidemiological, trailing vegetation, turbid water, sparsely shaded, hyperproductive, eco-
georefernceable, immature habitat, geo-spectrotemporally quantitated  eigenvectors.  

The principles of Boolean models were extended for quantifying the immature habitat 
capture point, discontinuous, canopy leaves in ArcGIS as objects in successive layers above 
the background, sparsely shaded, trailing vegetation, geoclassified 5m, geoclassified narrow, 
riverine tributary, agro-village complex LULCs. By doing so, the bidirectional reflectance or 
radiance of Chl-a in the leaf canopies of the RapidEye TM 5m-imaged, trailing vegation, 
turbid water,S. damnosum s.l., larval habitat was efficiently modeled. As in the case of 
canopy envelopes, the objects’ shape, size, orientation and spacing of the discontinuous, 
sparsely shaded, canopy leaves were deduced by tabulating linear estimators that drove the 
estimation of bidirectional radiance or reflectance in the forecast, vulnerability model. This 
extension led to the formulation of two-stage models, in which Chl-a in the canopy leaves 
represented geospatialized, fractionalized,  endmember objects inside the canopy envelopes 
of the bio-optical, Booleanized, eco-epidemiolgical, capture point, eco-georeferenceable, 
Similium habitat, metaheustically optimizable, risk model. A 3-D, geospatial, residualized, 
explanatorily output then provided the mathematical basis for  qualitatively  quantitating the 
bidirectional radiance, which in the model was dependent upon the directions of irradiance 
and exitance, for accounting and validating an eco- georeferenceable, discontinuous, trailing 
vegetation, turbid water,  canopied, Chl-a related, seasonally explantive   “hotspot” (i.e., 
hyperproductive, capture point, riverine, agro-village complex, ecosystem habitat). 

Because both whole-canopy and individual, eco-epidemiological, fractionalized,  
LULC-oriented, forecast, vulnerability paradigm may be driven by the same principles of 
geometric optics and Booleanization, they may easily be combined together in a single or a 
two-staged, forecasting, S. damnosum s.l. larval habitat, geo-spectrotemporally, geospatially 
uncoalesced, discontinuous canopy, bio-optical, narrow, riverine tributary, agro-village 
complex, trailing vegetation, turbid water, risk model. Through further application of the 
ArcGIS random sets, the averaging and variance quantification that occurs in a 5m, eco-
epidemiological scene may be metaheuristically optimized by the RapidEyeTM sensor 
employing a finite field of view. In addition, Boolean and geometric, bio-optical,  eco-
georeferenceable, trailing vegetation, turbid water, hypeproductive, capture point, S. 
damnosum s.l. larval habitat, time series dependent, discontinuously canopied, 
decomposition, endmember, emissivity, eco-epidemiological, forecasting risk models may be 
capable of inversion, yielding estimates of size, shape, and spacing of crowns and/or leaves in 
ArcGIS from directional and spatial statistical iterative interpolative, algorithmic, 
wavelength, frequency-oriented, transmittance emissivity, forecastable, elucidative, time 
series  residuals representing 5m, remotely sensed, regressed radiances. 

    All forecasting, latent eigen-algorithmic methods in ArcGIS were based on the assumption 
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that bio-optical parameters such as the Chl-a specific absorption coefficient λ and the Chl-a 
fluorescence quantum yield η remained non-constant, regression estimates. In numerical, 
vector arthropod, decomposition endmember analysis, one of the most important challenges 
is designing efficient and stable algorithms for finding the eigenvalues of a probablistic 
estimation matrix[23]. These eigenvalue algorithms may also find an metheursitically 
optimizable, bio-optical, eco-georeferenceable, hyperproductive, narrow, riverine tributary, 
agro-village complex, trailing vegation, turbid water,S. damnosum s.l. larval habitat, time 
series dependent, discountinuously canopied, decomposition, endmember, emissivity, eco-
epidemiological, forecasting risk model eigenvectors. 

In the context of spatial regression analysis, several methods in ArcGIS  can be used 
to control for the statistical effects of spatial dependencies amongst  orthogonalizable, 
elucidative, bio-optical, eco-georeferenceable, hyperproductive, narrow, riverine tributary, 
agro-village complex, trailing vegation, turbid water,S. damnosum s.l. larval habitat, time 
series dependent, discountinuously canopied, decomposition, endmember, 5m, optimally geo-
spectrotemporally  fractionalized endmembers, derived from a a  spatial filter 
decomposoitional algorthm in ArcGIS.  Maximum likelihood  can  account for spatial 
dependencies in a parametric framework, whereas recent spatial filtering approaches focus on 
nonparametrically removing spatial autocorrelation. We applied a semiparametric spatial 
filtering approach in ArcGIS to deal explicitly with (a) spatially lagged, endmember, 
fractionalized,  autoregressive radiance models and (b) simultaneous autoregressive complex 
S. damnosum s.l. narrow tributary, agro-village complex, immature capture point, models. As 
in one non-parametric spatial filtering approach, a specific subset of spatial S. damnosum s.l. 
fractionalized, endmember, trailing vegetation, discontinuous, sparsely shaded,  5m, narrow 
tributary, African agro-village, orthogonally geo-spectrotemporally uncoalesced,  
eigenvectors from a transformed spatial link matrix in ArcGIS  was used to capture 
dependencies amongst the disturbances of a spatial regression, forecasting, vulnerability 
model. However, the optimal subset in the proposed filtering model may be identifiable more 
intuitively by an objective function that minimizes spatial autocorrelation rather than 
maximizes a 5m Rapid Eye TM fractionalized, endmember, eigenvector model fit. The 
proposed objective function has the advantage that it leads to a robust and smaller subset of 
selected expositively fractionalized discontinuous, sparsely shaded, turbid water, 5m, spatial 
filter, orthogonalized  eigenvectors. An application of the proposed eigenvector spatial 
filtering approach, in ArcGIS may demonstrate its feasibility, flexibility,for robustly 
iteratively interpolating, proxy, 5m, LULC biosignatures for deterimining  unknown, un-
geosampled seasaonlly hypeproductive, S. damnosum s.l. capture points . 

As mentioned previously, in linear algebra, an eigenvector or characteristic vector of a 
square matrix is a vector that does not change its direction under the associated linear 
transformation. In other words, if v is a vector in an elucidative, Rapid EyeTM 5m imaged,  
trailing vegetation, turbid water, sparsely shaded, eco-georeferenceable, elucidative, eco-
epidemiological capture point,   bio-optical, geometric, seasonally hyperproductive, 
discontinuously canopied narrow, riverine tributary, trailing vegation, turbid water, agro-
village complex, S. damnosum s.l. larval habitat, time series dependent, fractionally, 
decomposition, endmember, emissivity risk model residual forecast that is not zero, then it is 
an eigenvector of a square matrix A if Av is a scalar multiple of v. This condition could be 
written as the equation  where λ is a number (e.g., scalar dependent, 
explanatorial, riverine agro-village, geo-spectrotemporally geosampled, tributary variables) 
known as the eigenvalue or characteristic value associated with the eigenvector v. 
Geometrically, a hyperproductive, S. damnosum s.l., immature habitat, fractionalized, 
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iterative interpolative, 5m, orthogonally decomposed, endmember eigenvector corresponding 
to a real, non-zero eigenvalue capture point in a direction that is stretched by the 
transformation and the eigenvalue is the factor by which it is stretched [24]. If the eigenvalue 
is negative, the direction is reversed. There may be a correspondence between n by n square 
matrices and linear transformations from an unmixed, n-dimensional, eco-geographic 
regression, vector space to itself. For this reason, this technique in ArcGIS may be  equivalent 
to defining eigenvalues and eigenvectors from a metaheuristically decomposable, 
uncoalesced dataset of geo-spectrotemporally geospatialized, uncoalesced, 5m, wavelength, 
frequency, transmittance, emissivities of bio-optical, seasonally,   explanative 
hyperproductive, eco-georeferenceable,  capture point,  S. damnosum s.l., larval habitat, time 
series dependent, discontinuously canopied, trailing vegetation, turbid water, decomposition, 
fractionalized endmember, emissivity, risk model using either the language of matrices or the 
language of linear transformations. 

The robustness of the Rapid EyeTM  5m, eco-epidemiological, seasonally 
hyperproductive, discontinuously canopied, trailing vegation, turbid water,narrow, riverine 
tributary, agro-village complex, capture point, risk model, optimally parameterizable, 
reflectance covariates were likely dependent on the ecophysiological state and structure of the 
immature, hyperproductive, eco-georeferenced, trailing vegetation, turbid water, sparsely 
shaded,  discontinuous,  canopied geosampled, geo-predictive explanators. Fluorescence 
quantum yield is affected by phytoplankton taxonomic composition, illumination conditions, 
light adaptation, nutritional status, and temperature, and can vary by eight-fold [192]. Thus, 
the assumptions of constant Chl-a can be a significant source of explanatively problematic 
regression uncertainty in decomposed iteratively interpolative, S. damnosum s.l., geosampled 
variables. Using unmixing ArcGIS algorithms and ENVI object-based classifiers can retrieve 
5m resolution, Chl-a robust, regressive estimators especially when remotely targeting 
seasonally, sparsely shaded, hyperproductive, S. damnosum s.l. habitats in African, narrow,  
riverine agro-village, tributary environments. Since immature productivity of Simulium may 
be seasonally heterogenous, it may be necessary to define and measure specific IOPs for a 
specific, seasonal, discontinuously canopied, hyperproductive capture point, immature 
habitat, eco-georefernceable, sample site in ArcGIS. This consideration paridigms may be 
particularly important for unmixing procedures in ArcGIS especially when employing 
geophysical inversion models to estimate Chl-a from other leaf biochemestries 
discontinuously canopied, turbid, riverine, water reflectance for precisely targeting, eco-
georeferenceable, prolific, S. damnosum s.l. habitats in ArcGIS. Selective pressure on plant 
competition for light, water, and nutrients should result in suites of biochemical and structural 
traits that integrate their functional strategies[www.esri.com]. Structural traits affecting light 
scattering “over scales ranging from cells to discontinuous canopies” will be convergent with 
their biochemical traits[24] 
  
 Elucidative  inversion of the, eco-georeferenceable,  eco-epidemiological, seasonally 
hyperproductive, discontinuously canopied narrow, riverine tributary, agro-village complex, 
eco-georefernceable, immature, habitat, risk model in ArcGIS enables resource explorers to 
extract more insight from geophysical data by converting the measurements into 3D images 
of the subsurface that can be integrated with other surface and sub-surface eco-geologic 
observations. Insights generated from a geophysical inversion of a   Simulium forecasting 
vulnerability, capture point, risk model may improve prospecting and focused targeting of 
seasonally hyperproductive,immature habitats, particularly in deeper and more complex 
subsurface, riverine flooded, narrow tributray environments.  
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Variability of the geo-spectrotemporally geosampled, orthogonally decomposed, Chl-
a fluorescence quantum yield, especially of the Chl-a specific absorption coefficients, in 
ArcGIS considerably increased the accuracy of geolocating habitats at the intervention 
villages. We tuned the model band positions, rather than simply parameterizing the 
orthogonally decomposed, RapidEye 5m, wavelength, transmittance, emissivity, risk-related, 
covariate coefficients of the model in ArcGIS. Optimal geolocations of seasonally 
hyperproductive, discontinuously canopied, trailing vegation, turbid water,narrow, riverine 
tributary, agro-village complex, eco-georeferenceable immature habitats were found based on 
the 5m, spectral band, orthogonally decomposed, fractional, endmember, wavelength, 
emissivity, transmittance data in accordance with the bio-optical absorption properties of the 
uncoalesced, study site, geoclassifiable, LULC, explanative, data feature attributes. The large 
range of bio-optically, explicatively active, sub-mixel, fractionalized constituents served to 
validate the robustness of the model. The final field verified output was based on the 
ecophysiological reflectance of the geoclassified LULCs and their seasonal immature habitat, 
uncoalesced, RapidEyeTM , 5m, discontinuously canopied, Chl-a concentrations. 
 

RapidEyeTM Red Eye, discontinuously canopied, geo-classifiable, explantively, 
geoclassifiable, LULC, fractionalized estimates of above seasonal, ground, carbon storage, 
including woody stems and plant litter, could improve  forecasts of seasonally 
hyperproductive, discontinuously canopied, trailing vegetation, turbid water, narrow, riverine 
tributary, agro-village complex, immature habitat LULCs, and  Chl-a,  in ArcGIS. For 
example, increases in the dry litter fraction have been used in tropical forests and grasslands 
to estimate environmental stresses [193]. The nutrient limitations of carbon storage in humid, 
tropical,African, riverine ecosystems may be exploited by combining dry residue indices and 
emitted quantitated geo-spectrotemporally  geosampled, eco-georeferenceable,  
hyperproductive, canopy, sparsely shaded, geo-spatiotemporal, trailing vegetation, S. 
damnosum s.l. immature habitat, turbid water,  riverine, agro-village, eco-epidemiological, 
uncoalesced Rapid Eye TM ,5m data in Geospatial AnalystTM. Carbon absorption features such 
as NPV in a high Chl-a canopy concentrated, capture point, seasonal hyperproductive habitat 
may be interpretable between 2000 and 2200 nm employing Red Edge, 5m, umixed, iterative 
interpolative, wavelength, frequency, transmittance reflectance data, which may be 
algorithmically further utilized in a spectroscopic, explanatively decomposable, 
fractionalized,  discontinuously  canopied, NDVI biosignature, fractionalized, endmember, 
eigenvector, emissivity dataset.  

 
In semi-arid, African, discontinuously canopied, riverine environments, the low 

LULC habitat canopy cover may permit direct detection of plant litter, making it easier to 
estimate stand characteristics, canopy disturbance conditions, ecophysiological states, and 
biogeochemical processes of the hyperproductive, immature habitat. The spatial patterns of 
dry plant residues in shriver shrub, geo-classifiable LULC, delineated in ArcGIS of 5m, 
RapidEyeTM-imaged, grassland, African, narrow, riverine tributary  ecosystems may provide 
iteratively interpolatable, robust, proxy, residual model, geospatial indicators for quantiating 
desertification of a geospatial cluster of hyperproductive, immature riverine, trailing 
vegetation, turbid water, sparsely shaded. hyperproductive, capture point, eco-
georeferenceable habitats. 
 

The quantity of dry plant material is a direct indicator of carbon production, turnover, 
and decomposition (heterotrophic respiration). Turner et al. [194] found that above ground 
stocks of dry and live biomass were tightly coupled to organic soil carbon pools across a wide 
range of heterogenous, African, riverine, flooded ecosystems. Because sub-mixel, 
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RapidEyeTM, 5m, resolution decomposition of surface litter is at least partially geospatially 
and temporally correlated with soil decomposition and respiration, measures of NPV plant 
material, soil carbon efflux in an elucidatively decomposed, endmember, eigenvector 
seasonally hyperproductive, discontinuously canopied narrow, riverine tributary, agro-village 
habitat, Red Edge, NDVI, epidemiological, eco-georefernceable, risk model may be easily 
constrained. RapidEyeTM nadir reflectance values of decomposable, habitat, LULC canopies 
in ArcGIS may be a function of solar zenith angle (0s), and may vary with 5m wavelength 
and soil substrate. Both factors must be considered when quantitating, seasonal, immature 
habitat canopy trends as shown by the results reported by Jacob et al. [22]. Here robust, 
discontinuous canopy surface, fractionalized endmember, RapidEyeTM reflectance variables 
in the immature habitat, geo-spectrotemporally, geospatialzed, uncoalesced  5m, wavelength, 
transmittance emissivities of the LULC discontinuous canopy was geoclassifiable as non-
Lambertian. Functions of wavelength, illumination and viewing directions, soil moisture 
content, particle size, organic matter content, soil mineralogy, and surface roughness 
determine if Lambertian assumptions are violated[24]. Lambertian reflectance is the property 
that defines an ideal "matte" or diffusely reflecting surface [23]. 

 
Solutions for general non-Lambertian scenes have only recently been pursued in GIS 

literature. Regardless, the rank constraint of radiance tensor as a discrepancy indicator in 
ArcGIS may measure discontinuously canopied, 5m, Red Edge reflectance, wavelength, 
frequency correspondences as rendered from seasonally hyperproductive, discontinuously 
canopied narrow, riverine tributary, agro-village Simulium habitats geosampled in African, 
riverine, agro-village, complex environments. This reflectance-sensitive method may handle 
high canopy leaf specularity, endmember radiance rendered from these habitats. Shapes from 
shading and photometric stereo methods make use of such information to recover 3D shapes 
in Geospatial AnalystTM. These methods usually assume that eco-georeferenceable, surface 
reflectance properties are known.  

Measures of structural carbon (cellulose, lignin, and other carbon compounds) may 
provide a Chl-a independent estimate of discontinuous canopy biomass in a agro-village 
complex, tributary, capture point, riverine eco-epidemiological, seasonally hyperproductive, 
eco-georefernceable habitat. RapidEyeTM mapping concentrations of canopy lignin may be 
vital for optimal, 5m, Red Edge, NDVI, sub-mixel, endmember decomposition in ENVI 
algorithms (SID) and subsequent iteratively interpolation of a RapidEyeTM reference, 
unmixed biosignature in ArcGIS when identifying unknown habitats. However, the ability to 
obtain an independent measure of canopy lignin in spectroscopic, 5m, unmixed data may be 
limited because of lignin's spectral similarity to cellulose and other cell wall materials in a 
flooded, larval, Simulium habitat. Using samples of ground dry leaves, Kokaly and Clark 
[195] found smaller errors in time series, multivariate, regressed reflectance, emissivity 
wavelength, transmittance estimates of lignin that were subsequently log-transformed  to non-
linear, regressable estimates of cellulose, although cellulose comprised a substantially larger 
fraction of dry weight in the final model. There has been difficulty studying fresh and dry 
leaves, specifically retrieving separate lignin and cellulose concentrations [196], but better 
results have been claimed for lumped estimates of dry plant canopy matter. Retrievals of dry 
plant canopy residues in the RapidEyeTM, 5m, wavelength spectrum may be measurable from 
high-fidelity, full-range imaging spectrometric vegetation indices when precisely, remotely 
targeting, hyperproductive habitats in African riverine, tributary agro-village, complex,  
environments. 

The Secchi disk readings of the eco-georeferenced, seasonally hyperproductive, 
discontinuously canopied narrow, riverine tributary, agro-village, eco-georeferenceable,  
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immature habitat did not provide an exact measure of transparency, as there were errors due 
to the sun's glare on the riverine water, especially at the Adibuk intervention site. Regardless, 
it was an inexpensive and straightforward method of measuring the riverine water clarity 
around the immature habitat sites. Because of the potential for inter-observational variation 
between researchers, methods should be standardizable as much as possible when computing 
Secchi disc readings for metaheursitically targeting, seasonal hyperproductive, 
discontinuously canopied narrow, riverine tributary, agro-village, eco-georeferenceable,  
immature, S. damnosum s.l., capture point,  habitats at 5m resolution. We recommend taking 
Secchi disk measurements for African riverine environments for targeting these agro-village 
eco-georefernceable, hyperproductive habitats between between 10 am and 2 pm for optimal 
results. The same field researcher should take Secchi depth measurements in the same 
manner every time along any geosampled discontinuously canopied, immature habitat, 
RapidEye TM 5m, explicatively geoclassifiable, LULC areas. Quantitating the measurement at 
the capture point, immature habitat site can be conducted by lowering the disk beyond a point 
of disappearance within the canopy, then raising it and lowering it slightly to set the Secchi 
depth.  

Another method, if the turbulence is too great in the narrow tributary, riverine agro-
village,  trailing vegetation, turbid water, tributary, study areas by the immature 
habitat,capture point is to record the depth at which the disk disappears within the outside of 
the canopy, and the depth at which the disk reappears as it is slowly brought up. The Secchi 
depth is taken as the average of the two values [197]. Secchi disk measurements should be an 
integral component of Simulium control programs, especially targeted removal of seasonally 
explanative, eco-georefernceable, eco-epidemiological, seasonally hyperproductive, 
immature  habitats, since the  depth of habitat may be seasonally associated with these larval 
habitats. Targeting these seasonal habitats employing iteratively interpolated, uncoalesced, 
NDVI biosignature, Red Edge, Chl-a, endmember, wavelength, transmittance, frcationalized, 
eigenvector emissivities may aid in analyzing and estimating riverine, turbid water quality 
around hyperproductive, immature, trailing vegetation, turbid water, sparsely shaded, 
immature habitats. Local narrow, riverine tributary, agro-village, residents and district level 
officers may be able to make periodic measurements and submit their readings to local 
agencies. The aggregated longitudinal data may be optimally employed to reveal general 
trends in habitat water quality.  

Ordinary kriging was employed to iteratively interpolatively geospatialize the 
estimated immature , capture point, eco-georfernceable, habitat geolocations of the 
unknown,un-geosampled, seasonally hyperproductive,  S. damnosum s.l. habitats employing 
the decomposed, Chl-a, fractionalized, endmember, 5m, wavelength, transmittance, 
eigenvector emissivities as the dependent variable in the stochastic interpolator. We 
generated robust Chl-a, endmember concentrations extracted from the immature habitat 
canopy. These unmixed Chl-a values were compared to the spatialized references as a 
validation exercise based on the in situ Chl-a collected in the archived databases of imaged, 
RapidEyeTM, 5m, S. damnosum s.l. habitats, empirically geosampled at the intervention, agro-
village, eco-epidemiological, seasonally hyperproductive, discontinuously canopied narrow, 
riverine tributary, study sites. The comparison was performed through the "Spatial Language 
for Algebraic Geoprocessing" (LEGAL) implemented at SPRING software. At each 
estimated site, the following were measured: 1) downwelling irradiance, 2) upwelling 
radiance, 3) Secchi disk transparency (m), and 4) coordinates of latitude and longitude. 
Results showed a better accuracy for the procedure employing the spatialization of Chl-a and 
the resultant vulnerability emissivity, wavelength, RapidEyeTM 5m, transmittance maps in 
ArcGIS, and the tabulated, algebraic, discrete, integer values. The spatializaton of proximal  
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RapidEyeTM Chl-a, geospectral, explanatorial, time series measurements retrieved revealed 
the bio-optically active pigmentous components in the 5m, discontinuous canopy spectrum of 
a hyperproductive habitat, which was then treated through a “Slash and Clear” technique. 

   We employed a functional linear regression model in ArcGIS where the response Y was 
related to a square integrable random function X(-) through Y = a 0 +  j  X ( t ) f o ( t ) d t  + 
e . Here, a0 was the intercept, T was the domain of X(-), f0(-) was an unknown slope function, 
and e was a centered Chl-a, unmixed, S. damnosum s.l. habitat, noise, random variable. The 
domain T was assumed to be a compact subset of a Euclidean space. Our goal was to estimate 
a0 and f0(-), as well as to retrieve m ( X )  := «0+  f  X ( t ) f o ( t ) d t ,  based on the unmixed 
empirical dataset of the hyperproductive, S. damnosum s.l., larval habitat, Chl-a, orthogonally 
decomposed, 5m, RapidEyeTM, transmittance emissivity training data (x1,y1), ...,(xn,yn) 
consisting of n independent copies of (X, Y). We assumed that the slope function fi0 resided 
in a reproducing kernel Hilbert space (RKHS) H, a subspace of the collection of square 
integrable functions on T. 

We let X be an arbitrary set and H a Hilbert space of real-valued datset of unmixed, Chl-a 
frcationalized, canopy, endmember, immature, capture point, habitat functions on X in 
ArcGIS. The evaluation functional over the Hilbert space of functions H was a linear 
functional that evaluated each function at a sample eco-georeferenceable, immature habitat, 
capture point [i.e., x, ]. We say that H is a reproducing kernel Hilbert 
space if  is a continuous function for any  in  or, equivalently, if  is a bounded 
operator, so that for any in  there exists some M > 0 such that 

 [142]. A more intuitive definition of the space in our model 
was then obtained by the evaluation functional measured, spatially quantitated of the real-
valued, iteratively interpolated, Chl-a, habitat, LULC endmembers, which in our model were 
represented by taking the inner product of  in ArcGIS with a function  in H. This 
function was the reproducing kernel for the Hilbert space H. More formally, the Riesz 
representation theorem implied that for all x in X there exists a unique element  of H with 
the reproducing property,  in the unmixed RapidEyeTM, 
5m, endmember model. 

Riesz representation theorem establishes an important connection between a Hilbert space 
and its (continuous) dual space. If the underlying field is of real numbers, (e.g., optimally 
parameterizable, covariate estimators of hyperproductive, sparsely shaded, trailing 
vegetation, S. damnosum s.l. canopied, turbid water, decomposed, paramterizable estimators) 
the two are isometrically isomorphic; if the underlying field is of complex numbers, the two 
are isometrically anti-isomorphic. Let H be a Hilbert space, and let H* denote its dual space, 
consisting of all continuous,explicative, linear functionals from H into the field R or C in a 
metaheuristically optimizable dataset of explanative, eco-georeferenceable, hyperproductive, 
capture point, trailing vegetation, discontinuously canopied, sparsely shaded,  S. damnosum 
s.l. habitats. If x is an element of H, then the function φx, for all y in H defined by 

 where  denoted the inner product of the Hilbert space, is an element 
of H* [152]. The Riesz representation theorem states that every element of H* can be written 
uniquely in this form. 

The immature habitat, S. damnosum s.l., vulnearbility, forecast, risk mapping : H → H* 
was defined by (x) = x , which was an isometric (anti-) isomorphism, meaning that  was 
bijective. The norms of x and x were optimally quantitated employing  in 
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ArcGIS Spatial AnalystTM.  is additive:  [142]. If the 
base field is R, then  for all  iteratively interpolatable, geo-
spectrotemporally parameterizable or non-parameterizable, field or remote, empirically 
regressable, uncoalesced,  wavelength, frequency-oriented, covariate estimators for 
distinguishing unknown habitats employing the iteratively  interpolated, Chl-a, unmixed, 
wavelength, 5m, RapidEyeTM, transmittance emissivities [23, 24]. An inverse map of  
which was then described as follows. Given a non-zero element of H*, the orthogonal 
complement of the kernel of was a one-dimensional subspace of H. We arbitarily took a 

non-zero element z in that subspace, and set . In doing so, (x) = . 

 Since  was itself a function in H in the unmixed, Chl-a, habitat interpolator, we then 
had an x in X  This allowed us to define the reproducing kernel of 
H in ArcGIS as a real-valued Chl-a, unmixed, S. damnosum s.l. habitat, proxy biosignature, 
endmember function by  From this definition it 
was easy to see that a function  was a reproducing kernel in the 5m, 
RapidEyeTM, unmixed, vulnerability risk model, since it was both symmetric and positive 

definite, [i.e. ]. As such, any unknown habitat could be geolocated 
employing the Chl-a, unmixed, interpolated, 5m, RapidEyeTM, wavelength, transmittance 
emissivities. 

          As observed in earlier studies [161], eigenstructures play prominent roles in deter-
mining the nature of the estimation challenge in functional linear regression. Importantly, K 
was the reproducing kernel of H1 in the seasonal, hyperproductive habitat, unmixed, 5m, 
wavelength, emissivity, transmittance, eco-epidemiological, risk model, which was 
continuous and square integrable. This logic followed from Mercer’s theorem [198] where K 
admitted the following spectral/spatial endmember decomposition: K(s,t)=J2Pkfk(s)fk(t). 
Thus, suppose K is a continuous symmetric non-negative definite  kernel constructed from a 
metaheursitically optimizable, geo-spectrotemporally, uncoalesced, eco-georeferenceable, 
trailing vegetation, discontinuously canopied, hyperproductive, S. damnosum s.l. habitats . 
Then there is an orthonormal basis {ei}i of L2[a, b] consisting of eigenfunctions of TK such 
that the corresponding sequence of eigenvalues {λi}i is nonnegative. In mathematics, 
particularly linear algebra, an orthonormal basis for an inner product space V with finite 
dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and 
orthogonal to each other. An inner product naturally induces an associated norm, thus an 
inner product space is also a normed vector space. A complete space with an inner product is 
called a Hilbert space[24]. Inner product spaces over the field of complex numbers are 
sometimes referred to as unitary spaces The eigenfunctions corresponding to non-zero 
eigenvalues are continuous on [a, b] and K has the 

representation where the convergence is absolute and uniform. In 
mathematics, specifically functional analysis, Mercer's theorem is a representation of a 
symmetric positive-definite function on a square as a sum of a convergent sequence of 
product functions [24]. 
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In the unmixed, Chl-a, endmember, habitat, eco-epidemiological, reflectance model 
residuals p1> p2>••• were the eigenvalues of K, and {^1,^2,...}. The corresponding 
eigenfunctions were described as Kfk = Pkfk in ArcGIS. Moreover, {fi,fj )c2 = Sij and
 {^i,^j )K = Sijlpj occurred when Sij was the Kronecker’s delta. In mathematics, the 
Kronecker delta, or Kronecker's delta, n is a function of two variables, usually just positive 

integers. The function is 1 if the variables are equal, and 0 otherwise:  
Where the Kronecker delta δij is a piecewise function of variables i and j [142]. We found 
that the field–verified, Chl-a retrieval algorithm residual forecasts had a RSME of less than 
11%.  

 
The largest contributors to the errors in the unmixed, S. damnosum s.l. habitat, remote 

sensing subsurface, Rapid Eye TM  reflectance, endmember, wavelength emissivities over the 
intervention, agro-village study site turbid water, river were likely the atmospheric correction 
procedures, either by complex aerosol composition in prolific habitat areas, sun glint, and/or 
the adjacency effect at the spectra intervention village sites. Because aerosol, cross-section, 
moderate resolution, fractionalized, endmember eigenvector derivatives have a weak spectral 
shape, the errors introduced by the atmospheric correction can show up as biases within a 
weak spectral shape in the surface RapidEyeTM 5m, resolution, sensor, sub-mixel reflectance 
spectra [199]. To be less vulnerable to these sorts of errors when remotely targeting, 
hyperproductive, capture point,  S. damnsoum s.l. habitats employing a RapidEyeTM, 
unmixed, Chl-a, retrieval algorithm, it may be more strategic to employ a χ2 merit function 
based on the squared difference in consecutive 5m bands between 400nm to 700 nm. 
Unfortunately, errors introduced by atmospheric correction algorithms in ArcGIS can be 
systematic and  may not be  wavelength independent. As such, common least-square fitting 
may not result in an metaheursitically optimal, robust, sub-mixel estimation of iteratively 
interpolatable concentrations of Chl-a. This issue cannot be solved as long as the exact error 
distributions, including the covariance coefficients between wavelength bands, are not 
remotely rectified. 

 
Roughly speaking, a covariance operator C in the Chl-a, explanative, S. damnosum 

s.l., hyperproductive capture point, endmember, eigenvector habitat, interpolator satisfied the 
Sacks-Ylvisaker conditions of order 0, since it was twice differentiable when s = t, but not 
differentiable when s was not t. A covariance operator C can satisfy the Sacks-Ylvisaker 
conditions of order r for an integer r > 0, if d2rC(s, t)/(dsrdtr) satisfies the Sacks-Ylvisaker 
conditions of order 0 [142]. The covariance operator C satisfied the Sacks-Ylvisaker 
conditions in the RapidEyeTM, Chl-a, habitat, NDVI, interpolative, 5m, resolution, proxy, 
geoclassifiable, LULC biosignature, risk model, since C satisfied the Sacks-Ylvisaker 
conditions of order r for some r > 0.  

Various examples of quantification of covariance functions in SAS/GIS literature are 
known to satisfy Sacks-Ylvisaker conditions. In Jacob et al. [127] the Ornstein-Uhlenbeck 
covariance function C(s, t) = exp(-\s — t\) satisfied the Sacks-Ylvisaker conditions of a first 
order autocorrelation in an endemic, unmixed, wavelength, emissivity, transmittance, S. 
damnosum s.l. habitat, forecasting, eco-epidemiological, risk model. An Ornstein–Uhlenbeck 
process xt satisfied the following stochastic differential equation: 

. Thereafter, where ,  and  were 
parameters and  denoted the Wiener process.  
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The Ornstein–Uhlenbeck process is a prototype of a noisy relaxation process. 
Consider for example a  discontinuously canopied, seasonally hyperproductive, eco-
georeferenceable, trailing vegetation, turbid water S. damnosum s.l., eco-epidemiological, 
forecast Rapid Eye 5m TM  geo-spectrotemporally geosampled, discontinuously canopied, 
immature habitat with constant whose dynamics are  highly overdamped with friction 
coefficient . In the presence of thermal seasonal fluctuations with temperature , the length 

of the sparsely shaded canopy will fluctuate stochastically in length . Thus its 
stochastic dynamics  may be  described by an Ornstein–Uhlenbeck process with: 

 

where is derived from the Stokes–Einstein equation for the effective 
diffusion constant.In physical sciences, the stochastic differential equation of an Ornstein–
Uhlenbeck process is rewritten as a Langevin 
equation where is white Gaussian noise with 

[34]. 

 Principal sources of Gaussian noise in digital images arise during acquisition (e.g. 
sensor noise caused by poor illumination and/or high temperature, and/or transmission e.g. 
electronic circuit noise[22]. In discontinuously canopied, seasonal trailing vegetation, turbid 
water, eco-georeferenceable, turbid water, African, agro-village complex, eco-
epidemiological, narrow, riverine tributary capture point, S. damnosum s.l., habitat, 
endmember, moderate resolution, digital image processing, Gaussian noise can be reduced 
employing an ArcGIS  spatial filter to avoid  an undesirable outcome (i.e., blurring of fine-
scaled predicted hyperproductive habitats), when smoothing a Rapid Eye TM  image.  

In image processing, a Gaussian blur is the result of blurring of an image by a 
Gaussian function. It is a widely used effect in ArcGIS graphics software, typically to reduce 
image noise and reduce detail. The visual effect of this blurring technique is a smooth blur 
resembling that of viewing the image through a translucent screen, distinctly different from 
the bokeh effect produced by an out-of-focus lens or the shadow of an object under usual 
illumination. In photography, bokeh is the aesthetic quality of the blur produced in the out-of-
focus parts of an image produced by a lens[23]. Gaussian smoothing is also used as a pre-
processing stage in computer vision algorithms in ArcGIS in order to enhance image 
structures at different scales—see scale space representation and scale space implementation. 

The Gaussian smoothing operator is a 2-D convolution operator that is used to `blur' 
images and remove detail and noise. In this sense it is similar to the mean filter, but it uses a 
different kernel that represents the shape of a Gaussian (`bell-shaped') hump. Convolution is a 
simple mathematical operation which is fundamental to many common image processing 
operators( www.esri.com). Convolution provides a way of `multiplying together' two arrays 
of numbers, generally of different sizes, but of the same dimensionality, to produce a third 
array of numbers of the same dimensionality[24].. This can be used in image processing to 
implement operators whose output pixel values are simple linear combinations of certain 
input pixel values in a S. damnosum s.l. moderate resolution, hypeproductive, capture point, 
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eco-georferenceable image. The Gaussian distribution in 1-D has the form:  

In 2-D, an isotropic (i.e. circularly symmetric) Gaussian has the form:  
[26]. The idea of Gaussian smoothing in a S. damnosum s.l. forecasting vulnerability, 
probabilistic paradigm is to use this 2-D distribution as a `point-spread' function, and this is 
achieved by convolution. Since the eco-georferenced S. damnosum s.l. trailing vegetation, 
narrow, African riverine tributary agro-village  habitat image would be  stored as a collection 
of discrete pixels, a medical entomologist or experimenter may need to produce a discrete 
approximation to the Gaussian function before he or she  can perform the convolution. In 
theory, the Gaussian distribution is non-zero everywhere, which would require an infinitely 
large convolution kernel, but in practice it is effectively zero more than about three standard 
deviations from the mean, which may be truncated by  the kernel at this point( e.g., eco-
georferenced prolific seasaonl sampled point). Once a suitable kernel in the habitat model,  
has been calculated, then the Gaussian smoothing can be performed using standard 
convolution methods in ArcGIS. The convolution can in fact be performed fairly quickly 
since the equation for the 2-D isotropic Gaussian is separable into x and y components. Thus 
the 2-D convolution can be performed by first convolving with a 1-D Gaussian in the x 
direction, in an S. damsnoum s.l. model  and then convolving with another 1-D Gaussian in 
the y direction. 

Mathematically, applying a Gaussian blur to an eco-georeferenceable, discontinuously 
canopied,  trailing vegetation, turbid water, turbid water, African, agro-village complex, eco-
epidemiological, narrow, riverine tributary, capture point, S. damnosum s.l., habitat,  image is 
the same as convolving the image with a Gaussian function. This is also known as a two-
dimensional Weierstrass transform. By contrast, convolving by a circle (i.e., a circular box 
blur) would more accurately reproduce the bokeh effect ( see Figure 74). Since the Fourier 
transform of a Gaussian is another Gaussian, applying a Gaussian blur has the effect of 
reducing the image's high-frequency components; a Gaussian blur is thus a low pass filter 
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Figure 74. The effects of a small and a large Gaussian blur on a hypothetical, 
discontinuously canopied, trailing vegetation, turbid water, hypeporductive, S. 
damnsoum s.l. immature habitat , capture point within a buffered 5m  Rapid Eye TM 
scene 

 
 

The Gaussian blur is a type of image-blurring filter in ArcGIS that uses a Gaussian 
function (which also expresses the normal distribution) for calculating the transformation to 
apply to each mixel in the image[24]. As mentioned, equation of a Gaussian function in one 

dimension is in two dimensions, it is the product of two such Gaussians, 

one in each dimension: where x is the distance from the origin in the 
horizontal axis, y is the distance from the origin in the vertical axis, and σ is the standard 
deviation of the Gaussian distribution. When applied in two dimensions in a endmber 
eigenvector, Rapid Eye TM  seasonal hypeproductive, trailing vegetation, discontinuously 
canopied,turbid water, eco-georefernceable, eco-epidemiological, capture point,  S. 
damnsoum s.l., immature habitat site. This formula produces a surface whose contours are 
concentric circles with a Gaussian distribution from a narrow, riverine tributary, geo-
spectrotemporal, geospatial, agro-village, complex, African riverine geosampled center point. 
Values from this distribution may be used to build a convolution matrix in ArcGIS which may 
be applicable to the original image. 

In ArcGIS  convolution is given two three-by-three matrices, one a kernel, and the 
other an image piece.This  convolution can multiply geo-locationaly similar entries and sum 
them:[e.g.,  

].The 
explicatively orthogonally decomposable, explanatively geoclassifiable, Rapid Eye TM  
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seasonal hypeproductive, trailing vegetation, discontinuously canopied,turbid water, eco-
georefernceable, eco-epidemiological, capture point, S. damnsoum s.l., immature habitat, 
geo-spatilaized elucidative values of a given 5m mixel in the output image may be then 
calculated by multiplying each tabulated kernel value in AcGIS  by the corresponding input 
image mixel values. This can be described algorithmically using multiple different pseudo-
codes in ArcGIS. In so doing, each trailing vegetation, discontinuously canopied, turbid 
water, eco-georefernceable, eco-epidemiological, capture point, S. damnsoum s.l., immature 
habitat site, geo-spectrotemporally extracted  5m mixel's  in ArcGIS  may be set to a 
weighted average of that mixel's neighborhood. The original habitat mixel's value will receive 
the heaviest weight (i.e., having the highest Gaussian endmember fractionalized, eigenvector 
value) whilest the neighboring mixels will receive smaller weights as their distance to the 
original mixel increases. This results redered from a quantizable Rapid Eye TM 5m, eco-
epidemiologically forecasted,eco-georefernceable, hyperproductive explanatively 
orthogonally decomposed, capture point,  S. damnsoum s.l., immature habitat uniform 
blurring filter algorithm is a fractionalized, endmember that preserves boundaries and edges 
better.  

In mathematics, the Wiener process is a continuous-time stochastic process[24]. It is 
often called standard Brownian motion, It is one of the best known Lévy processes (i.e., 
càdlàg stochastic processes with stationary independent increments) and occurs frequently in 
pure and applied mathematics, economics, quantitative finance, and physics. In pure 
mathematics, the Wiener process gave rise to the study of continuous time martingales. It is a 
key process in terms of which more complicated stochastic processes can be described. As 
such, it plays a vital role in stochastic calculus, diffusion processes and even potential theory. 
It is the driving process of Schramm–Loewner evolution.  

In probability theory, the Schramm–Loewner evolution with parameter κ, also known 
as stochastic LoewnIn er evolution (SLEκ), is a family of random planar curves that have 
been proven to be the scaling limit of a variety of two-dimensional lattice models in statistical 
mechanics. Given a parameter κ and a domain in the complex plane U, it gives a family of 
random curves in U, with κ controlling how much the curve turns. There are two main 
variants of SLE, chordal SLE which gives a family of random curves from two fixed 
boundary points, and radial SLE, which renders a family of random curves from a fixed 
boundary point to a fixed interior point. These curves are defined to satisfy conformal 
invariance and a domain Markov property 

     A sensible way to introduce the Markov property is through a sequence of random 
variables Z i  Zi , which can take one of two values from the set {1,−1} {1,−1} . This is 
known as a coin toss. We can calculate the expectations of Z in Rapid Eye TM 5m, eco-
epidemiologically forecasted,  ecogeorefernceable, hyperproductive, explanatively 
orthogonally decomposed, capture point, trailing vegetation, turbid water,  S. damnosum s.l., 
narrow tributray, immature habitat employing a   Zi 
:E(Z i )=0,E(Z 2 i )=1,E(Z i Z k )=0  E(Zi)=0,E(Zi2)=1,E(ZiZk)=0. The key point is that the 
expectation of Z i  Zi has no dependence on any previous values within the sequence. 
Quantitating the partial sums of  the geo-spectrotemporally  geosampled, agro-village, 
narrow, riverine tributary  eco-georferenceable immature habitats random variables will 
denote by S i  Si :S i =∑ k=1 i Z i   Si=∑k=1iZi 
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The expectations of the partial sums can then be inserted into a forecasting 
vulnerability eco-epidemiological, model, using the linearity of the expectation 
operator:E(S i )=0,E(S 2 i )=E(Z 2 1 +2Z 1 Z 2 +...)=i  E(Si)=0,E(Si2)=E(Z12+2Z1Z2+...)=I 
in ArcGIS. Once again, there is no dependence on the expectation of S i  Si based on any 
previous value within the sequence of the tabulated partial sums. This model may be 
extended to optimally   quantitate conditional expectation in a dataset of  geo-
spectrotemporally geospatialized 5m, Rapid Eye TM uncoalesced, unbiased estimators. 
Conditional expectation is the expectation of a random variable with respect to some 
conditional probability distribution[24]. Hence, an entomologist may qualitatively quantiate 
whethere if i=4 i=4 is geospatially feasiable in space in a S. damnosum s.l. capture point 
hyperproductive, hyperendemic ,African, riverine foci, eco-epidemiological, eco-
georefernceabl, narrow riverine, tributar,  risk map based on the  mean for the expectation of 
as E(S 5 |Z 1 ,Z 2 ,Z 3 ,Z 4 )=S 4   E(S5|Z1,Z2,Z3,Z4)=S4 in ArcGIS.In so doing, the 
expected value of S i  (i.e., Markov Property) would be accommodatable in a second-order  
autocorrelation ESF for quantitating, probablistic sub-mixel uncertainities.   

 
ESF methodology utilized the  explanatively orthogonally decomposed, Rapid Eye TM 

5m, eco-epidemiologically forecasted, ecogeorefernceable, hyperproductive capture point,  S. 
damnosum s.l., immature habitat eigenvectors to account for spatial autocorrelation by adding 
a linear combination of these. InArcGIS, the ESF model specification was written as Y = 
Xβ+EkβE+ε, where X is an n-by-(p+1) matrix containing p trailing vegation, discontinuously 
canopied, sparsely shaded, uncoalesced, covariate 5m coefficients (including a vector of 1s 
for the intercept term), β is the corresponding (p + 1)-by-1 vector of regression parameters, 
Ek was an n-by-K matrix containing K eigenvectors, βE was the corresponding vector of 
regression parameters,and ε ∼ N 0, Iσ2� 

 
 The linear combination of the 5m.endmember S. damnosum s.l. eigenvectors, EkβE, 

accounted for spatial autocorrelation in the geo-spectrotemrpoally geosampled regressed 
dataset.  The ESF linear regression specification in ArcGIS did not suffer from excessive 
endmmeber spatially autocorrelated residuals.An ESF model specification was implemented 
by identifying a feasible set of 5m endmember eigenvectors. The identification was achieved 
through a two-stage process. In the first stage, a candidate set of 5m eigenvectors, was 
quantitated revealing a noticeably smaller subset (i.e., K ≪ n) of the entire set of n. 
Fractionalized habitat eigenvectors, constructed by eliminating eigenvectors that generally 
did not account for significantspatial autocorrelation. These included endmember 
eigenvectors portraying negligible (i.e., near zero) spatial autocorrelation (i.e., their  moran 
coeffinet values are close to the expected value for zero spatial autocorrelation) and 
eigenvectors portraying negative spatial autocorrelation when positive spatial autocorrelation 
was addressed or eigenvectors portraying positive spatial autocorrelation when negative 
spatial autocorrelation was addressed. The overwhelming number of empirically,  
explanatively, orthogonally decomposed, Rapid Eye TM 5m, eco-epidemiologically 
forecasted, ecogeorefernceable, hyperproductive, capture point, discontinuously canopied,  S. 
damnosum s.l., immature habitat, eigenvectors endmember contained positive spatial 
autocorrelation. One criterion for identifying this  candidate set was employing a threshold 
minimum MC of 0.25 in ArcHIS , which was related  to roughly 5% of the variance in a 
response variable being attributable to positive spatial autocorrelation.  

In applied mathematics, the Wiener process is used to represent the integral of a white 
noise Gaussian process, and so may be  useful as a model of noise in instrument errors in 
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filtering theory and unknown forces in control theory. The Wiener process  is a  continuous-
time stochastic process  for  with  and such that the increment  is 
Gaussian with mean 0 and variance  for any , and increments for nonoverlapping 
time intervals are independent[5]. Brownian motion (i.e., random walk with random step 
sizes) is the most common example of a Wiener process.The Wiener process Wt is 
characterized by three properties:  1) W0 = 0, 2) the function t → Wt is almost surely 
everywhere continuous, and 3) Wt has independent increments with Wt−Ws ~ N(0, t−s) (for 0 
≤ s < t), where N(μ, σ2) denotes the normal distribution with expected value μ and variance 
σ2. The last condition means that if 0 ≤ s1 < t1 ≤ s2 < t2, then Wt1−Ws1 and Wt2 − Ws2 are 
independent random variables, and the similar condition holds for n increments ( see Figure 
75)  

Let A be an event related to the Wiener process (more formally: a set, of S. damnosum 
s.l. capture point, endmeber 5m measurables with respect to the Wiener measure, in the space 
of functions), and Xt the conditional probability of A given the Wiener process on the time 
interval [0, t] (more formally: the Wiener measure of the set of trajectories whose 
concatenation with the given partial trajectory on [0, t] belongs to A)[5] Then the process Xt  
is a continuous martingale. In probability theory, a martingale is a sequence of random 
variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, 
the expectation of the next value in the sequence is equal to the present observed value even 
given knowledge of all prior observed values[17].A martingale X is called continuous if 
almost surely, the function t ↦→ X(t) is continuous[151]. 

A Matlab programs to calculate a realization of a Wiener process in a trailing 
vegetation, Precambrian rock , S. damnosum s.l., model may be written as: 

%BPATH1  Brownian path simulation 
 
randn('state',100)           % set the state of randn 
T = 1; N = 500; dt = T/N; 
dW = zeros(1,N);             % preallocate arrays ... 
W = zeros(1,N);              % for efficiency 
 
dW(1) = sqrt(dt)*randn;      % first approximation outside the 
loop ... 
W(1) = dW(1);                % since W(0) = 0 is not allowed 
for j = 2:N 
   dW(j) = sqrt(dt)*randn;   % general increment 
   W(j) = W(j-1) + dW(j);  
end 
 
plot([0:dt:T],[0,W],'r-')    % plot W against t 
xlabel('t','FontSize',16)  
ylabel('W(t)','FontSize',16,'Rotation',0) 
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Figure 75 Typical paths of a Wiener process.for a hypothetical Rapid Eye TM 5m, eco-
epidemiologically forecasted,  ecogeorefernceable, hyperproductive explanatively 
orthogonally decomposed, capture point,  S. damnsoum s.l., immature habitat 
 

 

 In the seasonally explanative, hyperproductive habitat, eco-epidemiological, risk 
model, covariance was a measure of how much two decomposable, geo-classifiable LULC 
variables change together. In the model residuals of the covariance function describe the 
spatial covariance of the variable process or field. For a random field or stochastic process 
Z(x) on a domain D, a covariance function C(x, y) gives the covariance of the values of the 
random field at the two geolocations x and y:  We also 
employed C(x, y) as an autocovariance function in two instances: in time series (to denote 
exactly the same, except that x and y to refer to habitat geolocations in time and space), and in 
multivariate random fields to refer to the covariance of two habitat variables (percent of 
sparsely shaded, canopied, trailing vegetation) with itself, as opposed to the cross covariance 
between two different variables (percent of man-made barriers and levels of turbidity) at 
different habitats. 

 Note that the two sets of eigenfunctions {f\,f2,..-} {f\,f2,...} were also generated in 
ArcGIS/SAS, which differed from each other in the Chl-a, decomposition, NDVI, 5m, 
biosignature endmember, risk-related model, residual, non-optimizable dataset. The two 
kernels K and C, however, were simultaneously diagonalized. To avoid ambiguity, we 
assumed that Cf = 0 for any dependent variable output H0 and f = 0 in the forecasted output. 
When using the squared error loss, there is a necessary condition to ensure that Eln(q) is 
uniquely minimized, even if i is known to come from the finite-dimensional space H0 [142]. 
Under this assumption, we defined a norm || ■ ||R in H in the Chl-a –endmember, interpolator 
as ||R = (Cf,f )C2 + J(f) = f(s)C(s,t)f(t)dsdt + J(f). Note that || ■ ||R was a norm in the model 
output as ||R was defined as a quadratic and was zero if and only if f = 0. The following 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

444 
Copyright © acascipub.com, all rights reserved.  

proposition then revealed that when this condition holds, || ■ ||R in the endemic, 5m, 
wavelength, emissivity, RapidEyeTM transmittance, decomposed, habitat, iterative 
interpolator was well defined on H and equivalent to its original norm, || ■ |H.  

Further, there existed constants 0< c1 < c2 <t, such that c1|f ||R<!f |H < c2|f ||R for all f e 
H in the endmember habitat interpolator. Thus, if Cf = 0 for any f e H0 and f = 0 in the 
interpolator, then || ■ ||Rand || ■ ||h were equivalent. We let R be the reproducing kernel 
associated with || ■ ||R in the model. Recall that R in the interpolator was viewed as a positive 
operator. We then denoted {(p'k,fk): k > 1}, since we were able to successfully remotely 
quantitate the eigenvalues and eigenfunctions of R. R was then a linear map from L2 to L2, 
such that Rfk = f R(;t)f (t)dt = p'k+’k. The square root of the positive definite, non-linear 
operator was therefore given as the predictive, Chl-a, endmember, hyperproductive, habitat 
risk map from L2 to L2, such that R1/2fk = P)1/2fk, k = 1, 2,....n. We then let v1> v2> ■ ■ ■ be 
the eigenvalues of the bounded linear operator, where R1/2CR1/2 and {Zk: k = 1, 2,...}, which 
was then deemed to be the corresponding orthogonal eigenfunctions in L2. We wrote Mk = v-
1/2R1/2Zk, k = 1,2 in ArcGIS. We also let (■ , ■ )R be the inner product associated with || - || R, 
that is, for any f, g e H,(f,g)R = 1 (Ilf + gllR-!f - guR). It was not hard to see that (Mj,Mk )r = v-

l/2v-l/2(R1/2Zj,R1/2Zk )r = v-1(Zj,Zk )L2 = v-ljk and (C 1/2Mj.C1/2Mt )L2 = 
vj''\''2{C‘'2R'/2(„C'l2R'/2Zk )C2 = vj'/2v-'/2(Rl/2CR'/2Zj,Zk )L2 in the model, forecasted, residual 
dataset. 

 
The unmixed, Chl-a, endmember, S. damnosum s.l. habitat, iterative interpolator (x,y) 

employed the arguments of a bivariate function. Other examples of T in the model included T 
= {1, 2,...,p} for some positive integer p, and unit sphere in an Euclidean space, among 
others. The readers are referred to Wahba [154] for common choices of H and J in these as 
well as other contexts. 

 
      Other than the methods of regularization, a number of alternative, parameterizable, 

covariate, moderate resolution, 5m, RapidEyeTM, endmember, decomposed, immature 
habitat,fractionalized,  biosignature, interpolative estimators have been introduced in recent 
years for the functional linear regression [160, 161, 200, 201, 202, 203, 204, 205, 206, 207]. 
Most of the existing methods are based upon the functional, principal component analysis 
(FPCA). The success of these approaches has hinged on the availability of a good estimate of 
the functional principal components for X(-). In contrast, our smoothness regularized 
estimator avoided this task and therefore circumvented any assumptions on the spacing of the 
Chl-a, habitat, tabulated eigenvalues rendered from the covariance operator for X(-), as well 
as Fourier coefficients of i. Commonly, eigenstrucures need to be quantitated in geospace for 
employing FPCA-based approaches [142]. Further, in our 5m, endmember, emissivity, sub-
mixel, radiance absorption analysis, the regularized Chl-a, unmixed, NDVI, biosignature, 
habitat, iteratively interpolative, emissivity transmittance, parameterizable, covariate es-
timator did not rely on estimating the functional principle components with respect to the 
eigenfunctions, since stronger results on the convergence rates were obtained. 
 

   Despite the generality of the method of regularization, the Chl-a unmixed, NDVI 
biosignature, iteratively interpolated, trailing vegetation, turbid water, covariate, endmember 
estimators were efficiently tabulated in ArcGIS/SAS. We demonstrated that the minimization 
with respect to f in a Chl-a unmixed, endmember geospectral/geospatial interpolator may be 
taken over by an infinite-dimensional space in ENVI, which may then be further exploited in 
ArcGIS. The geolocations of unknown habitats were actually found in a finite-dimensional 
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subspace. This procedure enabled us to take advantage of the existing techniques and 
algorithms in the ArcGIS geodatabase for smoothing splines to compute fnl, ini and anl. 

 
  The representer theorem made the regularized the unmixed, habitat, endmember, 

wavelength, transmittance, covariate interpolative estimators easy to implement in ArcGIS. 
Several efficient algorithms are available in the literature that can be employed for seasonal 
implementation of a Slash and Clear strategy, which may be to illustrate the merits of the 
method as well as demonstrate the operational developments of a Chl-a, unmixed, 
interpolated, seasonally hyperproductive, S. damnosum s.l., habitat, forecasting, eco-
epidemiology, vulnerability, risk model. Proofs may be relegated to quantitate the 
geosampled habitat regressor for theoretical models.  

This Slash and Clear approach revealed high efficacy in controlling the younger 
stages of Simulium flies. In Ayago and Laminlatoo Villages, fly density was relatively the 
same from the beginning of monitoring to the final day of monitoring, with some small 
fluctuations likely due to mild weather changes. In Goncogo and Adibuk Villages, fly density 
was relatively constant from the beginning of the monitoring up to the 13th day, and then 
gradually began reducing up to the last day. This is possibly due to the “Slashing and 
Clearing” of the potential breeding sites of the flies, which was performed in two cycles.  The 
first cycle took place on the 8th and 9th day, and the second cycle on the 19th and the 20th day 
of the exercise.  
 

In Gonycogo and Ayago villages, there was a fly density decrease of 52%, while in 
Adibuk and Laminlatoo villages, there was a fly density decrease of 66% after intervention. 
This rendered an overall percentage efficiency of 60% within a period of 31 days. When 
continuously carried out, onchocerciasis disease transmission can be interrupted within two 
years employing the Slash and Clear program around rivers such as Ayago and its neighbors, 
where trailing vegetation is responsible for attachment and survival of S. damnosum younger 
stages. 

 
There is a generic innovative algorithm for remote sensing of narrow tributary 

African, turbid water, riverine waters that can manage a large range of concentrations of Chl-
a, CDOM, and their inherent optical properties. The algorithm is based on the exact solutions 
of the HYDROLIGHT numerical radiative transfer model to support retrieval in optically 
complex riverine waters with varying, sensor, wide, swath, viewing geometry. The algorithm 
may efficiently estimate the concentrations of canopy Chl-a in a hyperproductive, S. 
damnosum s.l., larval habitat in an African, riverine environment by minimizing the 
difference between observed and modeled, RapidEyeTMderivative, endmember, derivative, 
reflectance spectra. The use of a look-up table and polynomial interpolation greatly reduces 
computation time, allowing operational and near-real time processing of large sets of satellite 
imagery [23]. Because the RapidEyeTM reflectance was geospectrally tabulated as a function 
of in-water light absorption and scattering, rather than actual constituents concentrations, the 
algorithm can be applied with any definition of the specific inherent optical properties of Chl-
a and CDOM. A statistical measure for the goodness-of-fit and the formal standard errors in 
the optimally fitted eco-georferenceable, immature, hyperproductive habitat Chl-a quantitated 
concentrations may be provided in ArcGIS, thus producing error-free, vulnerability, 
wavelength, transmittance, emissivity, 5m, eco-epidemiological,  risk maps with each 
thematic image generated employing innovative unmixing algorithms. The performance of 
the algorithm may be optimally demonstrated for multispectral wavelength, 5m, Red Edge 
transmittance, emissivity observations rendered from a riverine, narrow tributary, agro-
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village complex, hyperproductive, Simulium immature habitat employing CDOM from 
riverine influx in ArcGIS. The standard errors of estimated Chl-a concentrations may range 
between 0.5 and 3 (mg m−3), for example, for mean seasonal concentrations between 2 and 20 
(mg m−3) for a RapidEye TM 5m imaged, hyperproductive, S. damnosum s.l. habitat, which 
would be quite acceptable for quantitating optically complex catchment riverine, 
geomorphologic ecohydrologic, ecogeographic, seasonal geoclassified, LULC, biophysical, 
Chl-a, wavelength, emissivity, decomposed regressors. 

This HYDROLIGHT numerical radiative transfer model may discriminate sparsely 
shaded, canopy, fractionalized,  endmember constituents of a habitat by (i) the highly turbid 
waters surrounding the habitat, (ii) suspended sediments, and (iii) colored dissolved organic 
matter. The concentrations of the latter may be denoted by ρchl-a and ρCDOM. Note that 
ρCDOM in HYDROLIGHT-oriented, RapidEyeTM imaged, S. damnosum s.l. larval habitat, 
NDVI-related, geo-spectrotemporal biosignature, eco-epidemiological, unmixing, risk model 
may be expressed as the absorption at 440 nm. The scattering phase functions in the forward 
radiative transfer model may be a uniform scattering function for turbid riverine waters, and 
for canopied suspended particles at the geosampled ,hyperproductive,immature  habitat, agro-
village, stusy sites. 

 
The RapidEyeTM, Chl-a retrieval algorithm in ArcGIS can be applied to geolocate any 

unknown habitat in any highly turbid, riverine water, discontinuously canopied ecosystem if 
the appropriate regional optical environmental descriptors (e.g., geocoordinates of 5m, 
gridded, intervention village centroids) for the area of interest is available in ArcGIS. The 
flexible and transparent calibration opens the possibility of regional processing of eco-
georeferenceable, individual African riverine, agro-village systems with tailored, optical, 
RapidEyeTM cost effective, 5m models for seasonally implementing a “Slash and Clear” 
habitat removal teachnique. Preferably, geo-spectrotemporally analyzing the sub-mixel, 
reflectance variation of the endmember optical properties over a geospatial explanative, 
cluster of hyperproductive habitats will help underpin the applicability of the vulnerability, 
eco-epidemiological, risk model. The determination of a relevant scattering phase function of 
suspended canopy particles, such as an explanatively, orthogonally  decomposed, Chl-a, 
iteratively interpolated, RapidEyeTM, derived 5m, parameterizable or non-parameterizable 
covariate estimator, wavelength, transmittance, forecast-oriented, emissivity, model would be 
optimal.  
 

As expected, the eco-epidemiological risk model results using the RapidEye TM 5m, 
iteratively interpolated, endmember, Chl-a, unmixed data was accurate in eco-
cartographically representing the in-situ geoclassified,partially discontinuously  canopied, 
5m, LULC data. The sources of errors for the Chl-a, forecasting, emissivity model may have 
been related to field measurement procedures. Field measurements of the above-surface, 
remote sensing, endmember reflectance of our eco-epidemiological point of interest (i.e., 
hyperproductive larval habitat) was made several days prior to the  immature habitat 
sampling frame, leading to a delay between optical and chemical measurements. The model 
was built using a dataset of simulated empirical results in ArcGIS rendered from a 
vulnerability decomposable, explanative, stochastic interpolator. Although the input 
parameters for Chl-a and CDOM were specific for the Ayago river, spatial and temporal 
differences in IOPs may be expected. For example, the Chl-a specific absorption, unmixed 
Red Edge, 5m resolution, parameterizable wavelength, transmittance, frequency-oriented, 
covariate, endmember emissivities may be expected to vary when investigating Simulium 
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species in relation to differences in seasonal, iteratively interpolated canopy pigment 
concentrations. In addition, the standard atmospheric parameters (e.g., solar zenith angle) did 
not completely capture the variability of actual within canopy conditions of the 
georeferenced, RapidEyeTM, 5m, imaged, hyperproductive habitat. Variations in the solar 
zenith angle influence apparent optical properties [208].  

 
 While the importance of solar zenith angle is less evident in turbid, riverine water 

with respect to immature Simulium productivity, some errors can be associated with the use 
of these standard covariate estimators [22, 45]. For example, errors associated wtih the actual 
field and riverine, LULC, topographied data frames, especially during seasonal flooding, may 
create misspecifications in diagnostic frequency distribution, particularly from risk model, 
residual, normalized, endmember outputs in ENVI. Therefore, temporal and ecogeographical 
differences in real and model IOPs may affect the remote targeting of hyperproductive, S. 
damnosum s.l. larval habitats.  

 
          The robustness of the Soil Adjusted Vegetaion Index (SAVI) may be evaluated 
employing ground/riverine–based LAI 5m, RapidEyeTM measurements for remotely 
regressively, targeting hyperproductive habitats. A transformation technique may be 
presented to minimize soil brightness influences from spectral canopied vegetation indices 
involving red and near-infrared (NIR) wavelengths. Graphically, the transformation involves 
shifting the origin of reflectance spectra plotted in NIR-red wavelength space to account for 
quantitating first-order soil-vegetation interactions and differential red and NIR flux 
extinction through sparsely shaded, discontinuous vegetated canopies. This method may also 
be performed by iteratively decomposed, RapidEyeTM data within a PROSPECT and/or SAIL 
couple radiative transfer model. 

 
Among all the codes published during the last two decades [209], the SAIL canopy 

bidirectional reflectance, eco-epidemiological risk model and the PROSPECT leaf optical 
properties model are the most popular. An analysis based on the ISI (Institute of Science 
Information) Web of Science finds a total of 113 articles using PROSPECT, and 105 articles 
using SAIL that have been published since 1992, showing parallel evolution of the models. 
They score 1675 and 1783 citations both with an h-index (i.e., number of papers h with at 
least h citations each) between 23 and 24. PROSPECT combined with SAIL are used in 29 
articles with 513 citations leading to 18 citations per article, slightly higher than PROSPECT 
(15) and SAIL(16) separately. This confirms the importance of these two models in the 
remote scientific community and their close relations. Linking these models with RapidEyeTM 
data in ArcGIS may allow description of both the spectral and directional variation of an 
empirical dataset of unmixed, trailing vegetation, discontinuous canopied, turbiod water, 
seasonally hypeporductive, S. damnosum s.l. eco-epidemiological, eco-georeferenceable, 
capture point, agro-village, complex ecosystem, immature habitat, reflectance indices as a 
function of leaf biochemistry — mainly Chl-a ,water, and dry matter contents — and canopy 
architecture — primarily LAI, leaf angle distribution, and relative leaf size.  

 
The effects of atmospheric corrections and scales may be then investigated for all 

operational, hyperproductive, geo-spectrotemporally, geospatially uncoalesced,  S. damnosum 
s.l., larval habitats Rapid  Eye TM 5m  LAI retrieval methods in ArcGIS for implementing 
Slash and Clear methods seasonally. The SDVI may remotely geolocate suitable geoclassifed 
LULC (e.g., trailing canopied vegetation) for large scale LAI inversion due to the sensitivity 
to scale and atmospheric effects in these geolocations (e.g., pre-flooded, meandering, highly 
turbid, African riverine narrow agro-village tributaries). The SDVI is virtually and 
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atmospherically invariant [23]. The proposed method may be validated with experimental, 
field-sampled, iteratively quantitatively interpolated, 5m, RapidEyeTM, immature, count data. 

Interestingly, the main RedEdge NDVI reflectance, spectral difference along the 
canopy gradient in the riverine, narrow tributary immature habitat, hypeproductive, capture 
point, eco-geographic geolocation was the percentage cover of sedge and standing dead 
vegetation, geoclassfied LULC. Unmixed, immature habitat, endmember reflectance, 
derivative, forecast spectra within the sparsely shaded sedges were up to 30 cm long and 
revealed RapidEyeTM NIR reflectance plateaus with stronger slopes between the beginning 
and end of the NIR reflectance plateau. The standing dead material within the immature 
habitat canopy led to an increase in the reflectance in the 5m, red, sub-mixel, wavelength 
region probably due to reduced Chl-a absorption at specific sparsely shaded, immature 
habitat, riverine sites. 

As such, the Chl-a, Red Edge, hyperproductive habitat, Chl-a endmember unmixed 
contents may be estimated employing the green chlorophyll index, and a RapidEyeTM, 
terrestrial, Chl index which may provide accurate,parameterizable, covariate wavelength, 
transmittance, frequency-oriented,  emissivitiy estimators of seasonally hyperproductive, 
immature, canopied habitats. Bands of RapidEyeTM in the green and Red Edge are well 
positioned for deriving these indices in ArcGIS. Results may confirm the particular 
importance of the 5m data for precise wavelength, estimator regressive quantification of 
unmixed, biosignature, emissivity, transmittance variables as it would provide access to green 
and RedEdge waveband data information. Importantly, non-destructive Chl-a content 
retrieved from a RapidEyeTM 5m imaged, larval habitat scene may localize red absorption 
bands delineating where canopy absorption saturates at low to moderate Chl-a values in the 
immature habitat canopy. This way, canopy relationships between N and Chl-a contents at 
the leaf level may also be quantitated and interpolated. Decomposed spectral ranges in the 
green and the Red Edge regions may allow accurate estimation of N and Chl-a contents in an 
S. damnosum s.l. habitat over a wide range of sparsely shaded, canopied, riverine LAI values. 

 
Soil vegetation indexes are relatively insensitive to ecosystems with the low biomass 

characteristic of semi-arid systems (between 0 and 60 megagrams carbon per hectare [ha]), 
because of systems' low leaf biomass and discontinuous canopies [23]. Estimates of dry plant 
residues at a seasonally hyperproductive, S. damnosum s.l. habitat, employing the Red Edge 
RapidEye TM, 5m spectrum may help surmount these difficulties. Although arid and semi-arid 
African riverine ecosystems do not sequester large masses of carbon, and have low fluxes on 
a per-area basis, these ecosystems are the most abundant terrestrial landscapes, and are also 
highly sensitive to climate perturbations. Thus, any explanatively iteratively quantitatively 
interpolatable, decomposable, Red Edge, NDVI RapidEyeTM, discontinuously canopied, geo-
spectrotemporal biosignature focusing on carbon fluctuations may remotely target 
hyperproductive larval habitats and their photosynthetic and NPV seasonal, 5m, LULC 
reflectance, transmittance , frequency-oriented, emissivity parameterized covariate estimators 
with higher efficiency than a non-carbon, NDVI, proxy biosignature. 

The Phong reflection model may be also constructed to remotely quantitate 
RapidEyeTM 5m reflectance of emissivity transmittance to identify the intensity of the 
specular highlights in a geosampled habitat, which may be optimally calculated as:  

, where R is the mirror reflection of the light, larval 
habitat, canopy surface and V is the viewpoint vector. In the Blinn-Phong model the intensity 
of a highlighted riverine, larval habitat, canopy geolocation may be optimally calculated as:  
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, where N is the smooth surface normal and H is the half-
angle direction (i.e., the direction vector midway between L, the vector to the light, and V, the 
viewpoint vector). The number n is called the Phong exponent; this is a user-chosen value 
that controls the apparent smoothness of the surface [23]. These equations may optimistically 
regressively quantitate the distribution of microfacet normals which may find that a 
elucidatively decomposable Red Edge, NDVI, iteratively interpolated biosignature of a larval 
habitat may follow an approximate Gaussian distribution (for large ), or an approximate 
Pearson type II distribution, when optimally quantizing corresponding RapidEyeTM, 5m, 
illumination angles in a  seasonally hypeporductive, eco-georferenceable, eco-
epidemiological, capture point, trailing vegation, turbid water,  discontinuously canopied, 
hyppeorductive, S. damnosum s.l., immature  habitat discontinuous, canopy geolocations. 

    Developing and implementing streamlined data collection aggregation and reporting 
methodologies, employing a RapidEyeTM, 5m, PDA-ArcGIS-DGPS cyberenvironment can 
provide detailed, real-time eco-georeferenceable, eco-cartographic information on a eco-
epidemiological, capture point, hyperproductive habitat, explanatively , orthogonally 
decomposed, Chl-a, endmember  eigenvector information for remotely targeting prolific 
sample sites, which can lower overall treatment costs. A bidirectional RapidEyeTM, 5m, PDA-
ArcGIS-DGPS, web-based, reporting system using a broadband satellite access point and the 
internet can provide efficient and timely amounts of relevant, field-level, geoclassifiable, 
LULC, habitat information. This is important, as hyperproductive habitat treatment and 
management information has the most value when it is quick, clear, easy to understand, and 
relevant to decisions that need to be made immediately. An adaptable modular information 
surveillance system in the cyber-infrastructure can help ensure that the right decisions are 
made to reduce parasites and vectors in African riverine environments. This system can 
support dissemination of information such as spatially summarized, iteratively interpolated, 
endmember, Chl-a, forecast data, for optimizing seasonal field activities and treatment costs 
as they are compiled to provide an expedited understanding of how much is being spent in 
removing and clearing prolific habitats, and to determine whether the intended outcomes (i.e., 
lowering of adult catches in intervention villages) are being realized. This will allow both 
field managers and health ministries timely and vital information to make accurate field 
operational adjustments and maintain the most efficient and economically feasible pressure 
on hyperproductive habitat populations in African riverine agro-village ecosystems. Once 
patterns and correlations of RapidEyeTM imaged habitats are elucidated by imaged, Chl-a, 
sub-mixel, data feature attributes, field management practices can be modified to optimize 
targeting and removal of these habitats yielding lower overall costs, and minimizing 
environmental impacts.  
 

 In addition, a RapidEyeTM, PDA-GIS-DGPS-RS, web-based reporting system can 
provide a module that is dedicated to measuring the economic status of the riverine 
community and clusters of communities, in order to monitor and measure the impacts of 
onchocerciasis and the economic benefits of implementing a “Slash and Clear” larval control 
intervention. These optimizations are a critical factor for onchcerciasis eradication in African 
narrow tributary African riverine communities. Globally accessible, RapidEyeTM, 5m, PDA-
ArcGIS-DGPS- cyber-infrastructural web-based, constructed, capture point, 
ecogeoreferenceable, explanative seasonally discontinuously canopied, trailing vegetation, 
hyperproductive, S. damnosum s.l.  immature habitat, endmember,  eco-epidemiological  
forecast vulnerability  maps that are generated from near real-time field data updates in 
ArcGIS, can be incorporated into other bioecological datasets for fast and timely analyses. 
Although this project did not fully utilize web-based data dissemination techniques, the  
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capability is there using the same off-the-shelf technologies employed for onchocerciasis-
related, seasonal field studies. The logical extension of this field research is to continue to 
expand the use of mobile field data collection and wireless communication technologies in a 
RapidEyeTM, 5m resolution, PDA-ArcGIS-DGPS-RS cyberenvironment to provide a single, 
seamless and cost-effective, information clearing house for implementing “Slash and Clear” 
in African endemic riverine, narrow riverine, tributary environments. Such a system can 
leverage ArcGIS, Chl-a, vulnerabilty risk mapping functionality, wireless communications 
and web-based publications. This study provides an important starting point for the creation 
of standardized techniques for mobile field data collection, global data transmission, data 
aggregation and display, and analyses of multivariate, cost-effective, RapidEyeTM, S. 
damnosum s.l. habitat, eco-epidemiological, orthogonally decomposed, wavelength, 
transmittance, emissivity, 5m, models within a robust cyberenvironment. The standardization 
of a logical geodatabase design for implementing “Slash and Clear” will ultimately support 
linkage with other geo-databases, statistical packages, and software applications. The 
RapidEyeTM, 5m, PDA-ArcGIS-DGPS architecture deployed in our study site, intervention 
agro-villages is the first step in seamlessly sharing geosampled, hyper/hypo-productive, 
habitat data between end users, including field teams, project managers and other 
collaborating researchers. The envisioned web application of this technology would enable 
the sourcing and integration of immature geo-spectrotemrporally geospatialized, geospatial, 
immature, Rapid Eye TM 5m, immature S. damnosum s.l.  habitat data, supporting the creation 
of new datasets, and the coordinated delivery of focused decision-supported information for 
generating reports, charts, maps, tables, using common data exchange formats (e.g., Excel, 
PowerPoint, SAS).  
 

Additionally, revisal software can also be installed in the RapidEyeTM, 5m, PDA-GIS-
DGPS cyberenvironment, which can create seasonally explanative, hyperproductive, 
immature trailing vegetation, discontinuously canopied, sparsely shaded, eco-
epidemiological, capture point, turbid water, hyperproductive S. damnosum s.l. habitat, eco-
epidemiological risk maps from spreadsheet or database data to be integrated with data from 
weather and other African riverine-based scientific studies (i.e. Virtual Earth™). The initial 
deployment of the custom application described here can ensure rapid deployment and proper 
site configuration needed to support local decision-making for optimally implementing 
“Slash and Clear” control efforts. A web-based shared geodatabase project RapidEyeTM, 
PDA-GIS-DGPS-RS cyberenvironment can combine a variety of field and remote, high 
density, eco-georeferenced, black fly foci on elucidatively geoclassified, 5m, LULCs and 
relevant programmatic information to facilitate evidence-based decision-making for “Slash 
and Clear” larval control operations in real-time or near real-time.  

 
Finally, employing endmember, forecasting, real-time or near real time, cost-

effective, RapidEyeTM, data feature attributes acquired through a PDA-ArcGIS-DGPS 
surveillance system can simulate onchocerciasis disease transmission based on postively 
autocorrelated, eco-georferenceable, seasonally hyperproductive, discontinuously canopied, 
sparsely shaded, turbid water, S. damnosusm s.l., immature, agro-village complex, African.  
Narrow riverine tributary, stratified habitats on geoclassified LULCs (e.g., trailing 
vegetation). For instance, Markov simulation, hyperproductive habitat, forecast vulnerability, 
risk models created in Bayesian paradigms in PROC MCMC can be facilated as part of the 
end-user repository dataset in the RapidEyeTM, PDA-ArcGIS-DGPS cyberenvironment. Error 
propagation in these non-linear, algorithmic, residual model forecasts can also be quantifed 
employing an autocovartiate, probabilistic, endmember, uncertainty, diagnostic, regression, 
covariance matrix. According to Jacob et al. [22], a hierachical, Bayesian, generalizable, 
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covariance matrix can be employed to adjust heteroskedastistic and multicolinear endmember 
variables in ecogeographical space.  

 
The first prototype implementation of the Jave virtual machine done at Sun 

Microsystems Inc., emulated the Jave virtual machine instruction set in software by a 
handheld device that resembled a contemporary PDA. As such, accurate S. damnosum s.l. 
habitat, eco-epidemiological, forecast vulnerability modeling within an autocorrelation 
weighted uncertainty-oriented, matrix in ArcGIS or AUTOREG can define and quantitate a 
set of iterated, riverine, seasonal interactions that may affect immature productivty in these 
habitats. These habitat, forecasting, remotely decomposed, sub-mixel, Chl-a models in a 
robust RapidEyeTM, PDA-ArcGIS-DGPS architecture can seasonally analyze and display data 
for predicting eco-georferenceable, seasonally hyperproductive, immature habitat 
geolocations for testing as well as improve research hypotheses. These models can also 
provide information about realistic sampling grid, Chl-a endmember, covariate 
parameterized, decomposed, 5m, wavelength, emissivities that are involved in high 
larval/pupal population levels and other transmission dynamics from simple, transparent 
simulated representations.  
 

Geostatistical models of trailing vegetation, hyperproductive, S. damnosum s.l. 
habitats derived from RapidEyeTM, 5m PDA-GIS-DGPS-RS data cannot replace mentally 
intuitive intervention techniques, but models can expand into more formal and quantitative 
realms in which field decomposed, endmember components and their sub-mixel, 
environmental interactions within geosampled, hyperproductive habitats are made more 
specific which can help reduce the overall cost of implementing “Slash and Clear” in African, 
riverine environments. Geographic information science for seasonal onchocerciasis, 
forecastable, unmixed, endmember NDVI biosignature, interpolations in a RapidEyeTM, 5m, 
PDA-ArcGIS-DGPS cyberinfrastructure are dynamic and allow for continuous innovation 
(e.g., high turbidity, meandering, riverine tributaries). In remote sensing, increasing use of 
RapidEyeTM, 5m, time-series dependent data present both opportunities (e.g., improved 
characterization of riverine LULC) and challenges (e.g., handling large data volumes; image 
understanding) for data fusion and integrated data analysis. Enhancements in remote internet, 
wireless and satellite communications, and innovations in in-situ RapidEyeTM, 5m sensors, 
for PDA-GIS-DGPS-RS cyber-infrastructures are paving the way for increasingly robust 
“real time” applications of remote sensing and ArcGIS, (i.e. telegeoprocessing) for accurate 
seasonal, onchocercisis, predictive, endmember, risk mapping. Web-based tools, such as 
Google Earth (http://earth.google.com/) and Internet Map Service (IMS) applications, may 
now provide increasingly larger audience of research collaborators with ready access to 
onchocerciasis data from RapidEyeTM, 5m PDA-GIS-DGPS cyber-environments while 
allowing elementary integration of unmixed endmember interpolated Chl-a imagery and 
graphics in PDAs.  

    Since the parameterized, covariate, wavelength, hyperproductive, S. damnosum s.l. larval 
habitat estimators held, every ket  had a corresponding bra , and the correspondence 
was unambiguous. Rigged Hilbert space mathematics, a rigged Hilbert space (Gelfand triple, 
nested Hilbert space, equipped Hilbert space) may be a designed in ArcGIS to link the 
distribution and square-integrable aspects of functional endmember wavelength, unmixed, 
larval habitat, RapidEyeTM 5m, vulnerability risk analysis. In mathematics, a square-
integrable function, also called a quadratically integrable function, is a real- or complex-
valued measurable function for which the integral of the square of the absolute value is finite. 
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Thus, if  in a Ch-a, eco-epidemiological, RapidEyeTM, risk model, then ƒ 
is square integrable on the real line . One may also speak of quadratic 
integrability over bounded intervals such as [0, 1] [24]. Such spaces may be introduced to 
study spectral theoretical applications for seasonally targeting habitats based on immature 
productivity count data in the broad sense. 

In mathematics, spectral theory is an inclusive term for theories extending the 
eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the 
structure of operators in a variety of mathematical spaces [24]. It is a result of studies of 
linear algebra and the solutions of systems of linear equations and their generalizations. The 
theory is connected to that of analytic functions because the spectral properties of an operator 
are related to analytic functions of the spectral parameter. Hilbert's adoption of the term 
"spectrum" has been attributed to an 1897 paper of Wilhelm Wirtinger on Hill differential 
equation (by Jean Dieudonné), and it was taken up by his students during the first decade of 
the twentieth century, among them Erhard Schmidt and Hermann Weyl. The conceptual basis 
for Hilbert space was developed from Hilbert's ideas by Erhard Schmidt and Frigyes Riesz. 
About twenty years later, when quantum mechanics was formulated in terms of the 
Schrödinger equation, the connection was made to atomic spectra. A connection with the 
mathematical physics of vibration had been suspected before, as remarked by Henri Poincaré, 
but rejected for simple quantitative reasons, absent an explanation of the Balmer series. The 
later discovery in quantum mechanics that spectral theory could explain features of atomic 
spectra was therefore fortuitous, rather than being an object of Hilbert's spectral theory. 

       Consider a bounded linear transformation T defined everywhere over a general Banach 
space in an interpolative, ArcGIS derived, forecasting vulnerablity, decomposing, 
RapidEyeTM, 5m, endmember, risk model . An ecologist, entomologist or researcher may 
employ the transformation  when iteratively interpolating a 
fractionalizable, explanative hyperproductive habitat. In the forecasting risk model, I can 
optimally be the identity operator and ζ a complex number. The inverse of an operator T that 
is T−1 may then be eco-cartographically defined by  This way, the 
resolvent set of T would be the set of all complex covariate coefficient values ζ such that Rζ 
exists and is bounded. This set may be denoted as ρ(T) in ArcGIS. The spectrum of T then 
would be the set of all geosampled S. damnosum s.l.riverine habitat, sub-mixel, moderate 
resolution, fractionalized, data, feature attributes ζ such that Rζ fails to exist or is unbounded. 
Often the spectrum of T is denoted by σ(T) [24]. The function Rζ for all ζ in ρ(T) (that is, 
wherever Rζ exists as a bounded operator) in the risk model would then be called the 
resolvent of T . The spectrum of T thus would be the complement of the resolvent set of T in 
the complex ArcGIS delineated Euclidean plane. As such, every tabulated eigenvalue 
rendered from an eigenfunction decomposition algorithm in ArcGIS would belong to σ(T) 
even though the dataset may contain non-eigenvalues. The Banach space in a Chl-a, 
vulnerability, spatial filter orthogonal risk model may reveal topological vector spaces in 
ArcGIS. On the other hand, Banach spaces that include Hilbert spaces similar to those that 
we employed in ArcGIS for identifyning unknown, hyperproductive S. damnsoum s.l. larval 
habitats would have lower root mean square error in forecasts rendered from a weighted 
algorithmic matrix. With suitable restrictions (CI 95%) the endmember structure of a 
decomposed RapidEyeTM biosignature may reveal spectra of optimal log-transformability in a 
regression equation (e.g., Poisson probability model). Fortunately, if any violations occur in 
the model assumptions (variance not equal to the mean) due to excess overdispersion, which 
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may be attributable to outliers [45], then a negative binomial paradigm with a non-
homogenous mean be alternatively utilized to compensate for the over–Poissonian varition. 
The key assumption is negative binomial regression is that the standard deviation is equal to 
the mean [24].  

Interestingly, the immature habitat, fractionalized Rapid EyeTM 5m,  endmember 
iterative interpolative, sub-mixel output from a negative binomial regression framework in 
ArcGIS may then be exported into SAS (e.g., AUTOREG). Clustering tendencies of 
endmember autocorrelated decomposed, fractionalized, interpolative RapidEye TM 5m 
wavelength, transmittance emissivites can then be stratified and delineated using Pearson 
Moments correlation products such as Morans’ I.  

By spatially amalgamating the “bound state” (e.g., trailing vegetation eigenvector) 
and a discontinuous, unmixed, decomposable canopied, 5, discontinuous  spectrum, a more 
robust (low root mean square error) weighted interpolator may render optimal eco-
epidemiological, risk maps in ArcGIS. The spectrum of a linearizable operator T that 
functions on a Banach space within an ArcGIS-derived, seasonally hyperproductive, trailing 
vegation, turbid water, discontinuoulsy canopied, eco-epidemiological, eco-georeferenceable,   
S. damnosoum s.l. habitat in a forecasting, decomposable, dataset of geo-spectrotemporally 
uncoalesced, RapidEyeTM 5m, wavelength, transmittance emissivity, forecast vulnerability 
model may consist of all scalars such that the operator  does not have a bounded inverse 
on . The  immature habitat canopy Chl-a spectrum may have to be decomposed in 
ArcGIS/ENVI employing a standard decomposition into three parts: 1) a point spectrum, 
consisting of the eigenvalues of , 2) a continuous spectrum, consisting of the scalars that 
are not eigenvalues but make the range of a proper dense subset of the space, and 3) a 
residual spectrum, consisting of all other scalars in the spectrum. This decomposition exercise 
may be relevant to the study of differential equations in an ArcGIS cyberenvironment for 
remotely targeting hyperproductive S. damnosum s.l. habitats seasonally. 

Let X be a Banach space, L(X) the family of bounded operators on X, and T ∈ L(X). 
By definition, a complex number λ is in the spectrum of T, denoted σ(T), if T − λ does not 
have an inverse in L(X). If T − λ is one-to-one, then its inverse is bounded. This follows 
directly from the open mapping theorem of functional analysis. So, λ in the spectrum of T in 
an eco-epidemiological, Rapid Eye 5m trailing vegetaion, turbid water, discontinuoulsy 
canopied, hyppeorductive, capture point,  geo-spectrotemporally geospatially  S. damnosum 
s.l. forecasting,  eco-epidemiological, risk model would be robustifiable, if and only if T − λ. 
These three separate cases may be descibed in ArcGIS, especially when T − λ is not injective 
(that is, there exist two distinct elements x,y in X such that (T − λ)(x) = (T − λ)(y)). Then, z = 
x − y in the risk model would be a non-zero vector such that T(z) = λz. In other words, λ 
would be an eigenvalue (e.g., trailing vegetation) of T. In this case, λ would be said to be in 
the point spectrum of T, denoted σp(T). Secondly, T − λ would be injective, and its range 
would be a dense subset R of X, but not based on the whole of X. In other words, there would 
exist some element x in X such that (T − λ)(y) may be as close to x as desired, with y in X, but 
would be never equal to x. It can be proved that T − λ is not bounded below (i.e. it depicts far 
apart uncoalesced, partially canopied, decomposed, explicative, Euclidean elements of X too 
close together)in regression space.  

Equivalently, the inverse linear operator (T − λ)−1 may be defined in ArcGIS on the 
dense subset R, which is not a bounded operator, and therefore cannot be extended to the 
whole of X. Thus, λ would be said to be in the continuous spectrum σc(T) of T. Finally T − λ 
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would be injective in the forecast vulnerability model but the residuals would not have a 
dense range. That is, there would be some element x in X (e.g., sparsely shaded, turbid water, 
trailing vegetation, sub-mixel regressor) geo-spectrotemporally uncoalesced, hyppeorductive, 
eco-epidemiological, capture point, immature S. damnosum s.l. habitat in an African riverine, 
agro-ecosystem ,village complex N of x, such that (T − λ), where (y) is never in N. In this 
case, a Chl-a map (T − λ) x → x may be bounded or unbounded in ArcGIS, but may not admit 
a unique extension to a bounded linear map on all of X. Then λ may be in the residual 
spectrum of T, σr(T). So σ(T) is the disjoint union of these three 

sets In a spectrum of a dual operator, if X* is the 
dual space of X, and T* : X* → X* is the transpose operator of T, then σ(T) = σ(T*) for a 
bounded operator T, σr(T) ⊂ σp(T*) ⊂ σr(T) ∪ σp(T) [24]. The notation <·, φ> may denote an 
element of X*,( i.e. x → <x, φ> ) which may be the action of a bounded linear functional φ in 
a robust endmember dataset of RapidEye TM , orthogonally decomposed, iteratively 
interpolative, discontinuously canopied, trailing vegetation , turbid water uncoalesced, 5m, 
wavelength, transmittance frequency-orinted, emissivities. Let λ ∈ σr(T). So Ran(T - λ) is not 
dense in X. By the Hahn–Banach theorem there exists a non-zero φ ∈ X* that vanishes on 
Ran(T - λ) [24]. 

         In Calculus Methode/Map Server TM a Green's function ( see Appendix 7) is the impulse 
response of an inhomogeneous differential equation defined on a domain, with specified 
initial conditions or boundary conditions. Through the superposition principle for linear 
operator problems, the convolution of a Green's function with an arbitrary function f (x) on 
that domain may be  the solution to the inhomogeneous differential geospectrotemrpoally 
uncoalesced, hyperproductive, turbid water, discontinuously canopied, sparsely shaded, 
capture point equation for f (x). In other words, given a linear ODE, L(solution) = source, an 
ecologist, entomologist or othe researcher  can first solve L(green) = δs, for each s, in a 
forecasting paridigm.  Realizing that, since the source is a sum of delta functions in a S. 
damnosum s.l. model, the solution may be  a sum of Green's functions by linearity of L. 
.Linear differential equations are differential equations having solutions which can be added 
together in particular linear combinations to form further solutions. In mathematics, the Dirac 
delta function, or δ function, is a generalized function, or distribution, on the real number line 
that is zero everywhere except at zero, with an integral of one over the entire real line They 
can be ordinary (ODEs) or partial (PDEs). The solutions to (homogeneous) linear differential 
equations form a vector space (unlike non-linear differential equations) may reveal unknown, 
un-geosampled seasoanl S. damnsoum s.l. immature habitat, capture points. If a differential 
operator L admits a set of eigenvectors Ψn(x) (i.e., a set of functions Ψn and scalars λn such 
that LΨn = λn Ψn )  in a robustifiable, uncoalesced, moderate resolution, trailing vegation, 
turbid water, discontinuous , S. damnosum s.l. model that is complete, then it  may be 
possible to construct a Green's function from   orthogonalized spatial filter  eigenvectors and 
eigenvalues. 

Through the superposition principle for linear operator problems, the convolution of a 
Green's function for a trailing vegetation, Precambrian rock seasonal hypeproductive, 
S.damnosum s.l. capture point with an arbitrary function f (x) on that domain would be  the 
solution to a inhomogeneous differential equation for f (x). In other words, given a linear 
ordinary differential equation (ODE), L(solution) = source, a medical entomologist or 
onchocerciasis researcher  can first solve L(green) = δs, for each s, for realizing that, since the 
source is a sum of delta functions in the entomological model the solution would be  a sum of 
Green's functions  based on the linearity of L.  
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GANSO is a programming library which implements several methods of global and 

nonsmooth, nonlinear optimization. GANSO library is specifically designed to solve 
optimization problems with a very complex, nondifferentiable objective function. It is not 
designed for solving linear, quadratic or integer programming problems, for which many 
specialised methods are currently available in ArcGIS GANSO may provides a 
computationally efficient way to tackle these complicated problems in moderate resolution, 
fractionalized, endmber eigenvector,  probability uncertainties by plotting  them in ArcGIS. 
We discuss the implementation of a number of modern methods of global and 
nonsmoothcontinuous optimization, based on the ideas of Rubinov, in a programming library 
GANSO. ( see Figure 76)  

Figure 76 Plotting the objective function  in Geospatial Analyst TM  emplolying Ganso 
optimization methods for quantitatively denosing  S. damnosum s.l. moderate 
resolution, endmember heterokedascity 

  

In conclusion, we constructed a RapidEyeTM, reflectance, wavelength, eco-
epidemiological, 5m, model to to iteratively  interpolate decomposed Chl-a, endmember 
emissivities for the estimation of geolocations of  hyperproductive, sparsely shaded, trailing 
vegetation, S. damnosum s.l., immature habitats in four riverine, agro-village complexes in 
northern Uganda. To quantitate Chl-a in the discontinuously  canopied, larval habitat, narrow 
tributary riverine, turbid waters we used a one kilometer gridded buffer and a variety of 
ArcGIS algorithms for eco-cartographically delineating properties of the sub-mixel 
reflectance peak near 700 nm. In our model, the RapidEyeTM constellation’s Red Edge band 
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was sensitive to leaf status and canopy structure, and contributed to LULC eco-
characterization of different, Chl-a canopy plant cover types (e.g., trailing vegetation) of the 
georeferenced hyperproductive, riverine, immature habitat. These included the ratio of the 
reflectance peak (Rmax) to the reflectance at 670 nm (R670), and the ratio R705/R670, which 
were subsequently employed for remotely regressively quantitating the reflectance ratio at 
692 nm and absorption and backscattering coefficients at these wavelengths to assess Chl-a  
concentrations. Four regression equations at four different RapidEyeTM wavelengths were 
used to determine Chl-a concentrations.The RapidEyeTM bands considered most sensitive to 
Chl-a were tested with the simulated decomposed, geospatially, geospectrotemporally 
geosampled, NDVI biosignature, eco-epidemiological, endmember, fractionalized, 
wavelength, 5m, emissivity transmittance dataset . Good correlations were found between 
Chl-a and the band ratio R725/R675 of the discontinuoulsy canopied, trailing vegation, 
immature habitat emissivities. To optimally target hyperproductive, larval, riverine habitats 
we used an ordinary kriging technique in ArcGIS Geospatial AnalystTM to calculate the 
unmixed, Chl-a, endmember values from the residual forecasts of the bio-optical, geo-
spatiotemporal, eco-epidemiological, forecasting, risk models. Combining RapidEyeTM data 
in ArcGIS and object-based technology, the radiance fractional abundances were 
geospectrally unmixed from the Red Edge imaged, hyperproductiuve, S.damnosum s.l larval, 
habitat canopied, NDVI biosignature, which was then decomposed in ENVI technology. 
Reflectance  peak position shifted toward longer wavelengths with increasing Chl-a, from 
688 nm to about 706 nm. Chl-a demonstrated a strong relationship to peak magnitude of the 
fractionalized decomposed, canopied, biosignature As the water content of leaves in 
vegetation canopies increased, the strength of the absorption around 1599 nm increases 
Absorption at 819 nm is nearly unaffected by changing water content, so it is used as the 
reference. 

         The habitat canopy, 5m, endmember, derivative, forecast spectra were incorporated as a 
dependent variable in a weighted interpolator in ArcGIS for eco-hydrologically predicting 
seasonal, hyperproductive habitats based on unmixed, Chl-a covariate coefficients, field-
sampled, immature, count data. Sites targeted by the 5m signal were the chosen for habitat 
removal. Solving differential equations is not like solving algebraic equations. Not only are 
their solutions oftentimes unclear, but whether solutions are unique or exist at all are also 
notable subjects of interest.For first order initial value problems, gives one set of 
circumstances in which a solution exists. Given any ecogeorferenceable explicative  point 
seasonally hypeproductive, trailing vegetation, turbid water, discontinuous, infrequently 
canopied, sparsely shaded, agro-village , narrow riverine tributary,  S. damnosum s.l. capture 
point in the xy-plane, define some rectangular region , such that 

and is in the interior of . If we are given a differential equation 

and the condition that when , then there is locally a solution to this 

problem if and are both continuous on . This solution exists on some interval 
with its center at . The solution may not be unique. (See Ordinary differential equation for 
other results.)However, this only helps us with first order initial value problems. Suppose we 

had a linear initial value problem of the nth order: such 
that For any nonzero  , if and 

are continuous on some interval containing , is unique and exists 
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The ECF quantitated all endmember heteroskedastic and autocorrelation. Spatial 
Filtering with orthogonal eigenvectors reduces spatial misspecification endmem S. 
damnsoum s.l. capture point reflectance wavelength, dfrequency-orinted, transmittance 
emissivity   errors, which increases the strength of the model fit, which increases the 
normality of model residuals, and can increase the homoscedasticity of model residuals. In 
Gonycogo the mean daily collection during the last three days of the 31 day study was 32.66, 
representing an 89.10% reduction in biting density from the mean collection in the baseline 
collection of 292.4. In contrast, the mean daily collection in the paired control village of 
Ayago/Nile was essentially unchanged from the baseline collection during the last three days 
of the study (352.7 basline versus 348.6 at the end of the study). Similar results were seen in 
the other village pair. Here, an 81.2% reduction in biting rate was observed in the 
intervention village (Adbuk), while the biting rate in the control village (Laminlato) at the 
end of the study was 98.1% of that seen in the baseline evaluation.These preliminary data 
findings suggest that “Slash and Clear,” community-based interventions may prove an 
effective measure of reducing biting rates in communities afflicted with high vector densities. 
We predict that such community based vector control programs could be easily integrated 
into the CDTI format, and used for MDA for onchocerciasis. We further predict that such 
programs would be readily accepted and maintained by the communities, given the relief 
provided from the nuisance that high densities of the flies represent to the communities.  
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                                                  Appendices 

Appendix 1 

In Jacob et al. [XX] the forecasted Bayesian asymptotic behavior of the variance was 

denoted as , since . This was actually defined by , 

where , which was the fundamental hyperproductive, S. damnosum s.l., 
immature habitat, uncertainty-oriented, regression, probabilistic, endmember, fractionalized, 
RapidEye TM 5m transitional matrix of . Then 

 Clearly, . 

Thus,  This representation was then 

employed to show for the case  in the unmixed, wavelength, transmittance, 
paramterized, geospectrally eco-georeferencable, signature, forecasting, endmember 
emissivity, risk model in PROC MCMC. Hyperproductive, immature S. damnosum s.l. 
narrow African riverine, tributary, agro-village, capture point eco-epidemiological, immature 
habitat Simulium habitats were autoregressively, remotely targeted in a riverine, agro-village 
complex in Chutes Dienkoa, Burkina Faso. The authors observed that 
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  and  could also be used interchangeably 
in the vulnerability, endmember, RapidEyeTM, 5m, forecast model to capture geo-
spatiotemporality in the parameterized, covariate estimators. Further, by the stationarity of 

the iterative interpolative Markov chain in PROC MCMC, , 

was found to geo-spectrotemporally, 
geospatially adjust error coefficients in space and time 

while and eco-
cartographically delineated the matrix of the -step transition probabilities.  

The one-step transition probability aided the geo-predictive, narrow, African riverine, 
tributary, agro-village, capture point, eco-epidemiological trailing vegetation,turbid water,  
discontinuously infrequently canopied, S. damnosum s.l. habitat geo-spatiotemporal, 
geosampled, unmixed, canopied signature, moderate resolution, forecastable, riverine, risk 
model in PROC MCMC. This is the ability to quantitate the probability of transitioning from 
one state to another in a single step without propogational erroneous variables. The Markov 
chain is said to be time homogeneous if the transition probabilities from one state to another 

are independent of time index  [24]. As such, the transition 
probability matrix  in a geo-predictive, unmixed, endmember, emissivity, trailing 
vegetation, RapidEyeTM 5m, turbid water, canopied, sparsely shaded, S. damnosum s.l. 
habitat, vulnerability, forecast, risk model, auto-probabilistic, regression-related matrix 

consisted of the one-step transition probabilities . The -step transition probability was 

the probability of transitioning from state to state in steps for precisely, regressively, 
remotely quantitating the unmixed wavelength, paramerterizable transmittance, emissivity, 
geo-spatiotemporally sampled, immature habitat, covariate estimators employing 

. Jacob et al. [1] employed the -step transition matrix 

whose elements were the -step transition  probabilities , which they denoted as 
 for auto-regressively, auto-probabilistically quantitating, multiple interpolatable, 

canopied, sparsely shaded, unmixed, hyperproductive,  S. damnosum s.l. riverine, immature 
habitats. The -step transition probabilities were found from the single-step transition 

probabilities in PROC MCMC. To transition from to in steps, the process was first 

transitioned from to in steps, and then transitioned from to in steps, where 

. . In the matrix form, this became .  
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Setting , thereafter, yielded . From this equation J, 

the authors were able to conceive that:  in the remote, regression 
targeting of the hyperproductive S. damnosum s.l. habitats. Substituting this back into the 
previous equation yielded: . Continuing these substitutions, the authors 
were able to compute: . Therefore, the -step transition 
probability, uncertainty matrix was found by multiplying the single-step probability matrix by 
itself  times. The state vector at time  was found in terms of the transition probability 

matrix and the intial state vector .Additionally, the authors observed that 

 occurred when the canopied, sparsely shaded, trailing vegetation, 
turbid water, hyperproductive, S. damnosum s.l. geospectral, geospatial, forecasting, eco-
epidemiological, vulnerability model vector and matrix in PROC MCMC was employed. 

This quantitative regression equation then became . This vulnerability 
model output was then utililzed to remotely target, prolific, immature habitats in the Burkina 
Faso georeferenced, geosampled, riverine-village, agro-complex. The authors also found 
through substitution that the optimal geo-spatiotemporally geosampled, autoregressed, 

parameterized covariate, estimators were rendered by  or, 

 

The estimation, Bayesian hierarchical, probalistic regression of the unmixed, 
interpolative, RapidEyeTM 5m, canopied, wavelength, transmittance, emissivity, sparsely 
shaded, hyperproductive, S. damnosum s.l., forecast vulnerability model, where the 
dependent variable to be geo-predicted, is not a single, real-valued scalar, but instead an m-
length vector of correlated real numbers. As in the standard regression setup, there were n 
observations, where each observation i consisted of k-1 variables, grouped into a vector  of 
length k, where a dummy variable with a value of 1 has been added to allow for an intercept 
coefficient. This was viewed by the authors as a set of m-related regression problems for each 
geosampled, trailing vegetation-related, georeferenceable, geospectrotemporal, geospatial, 
infrequently, heterogeneously canopied, hyperproductive S. damnosum s.l. habitat 

observation i:  and , where the set of 
probabilistic errors  were all correlated. Equivalently, the decomposable, 
hierarchical, eco-epidemiological model was viewed as a single regression problem where the 

outcome was a row vector , where the regression coefficient vectors were stacked next to 
each other as follows:  The coefficient matrix B was a  matrix, 
where the coefficient vectors  for each regression estimator were stacked 

horizontally [i.e., : ]. The noise vector  for each geosampled, 
wavelength, frequency, covariate, emissivity, unmixed, RapidEyeTM 5m, illuminatively 
parameterizable explanatory decomposable, eco-georferencable, immature habitat 
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observation i was jointly normal, so that the outcomes for a given observation were 

correlated:   

The entire regression problem was then written in a probabilsic, uncertainty matrix 
form as  in PROC MCMC, where Y and E were  matrices. The design 
matrix X was an  matrix with the geo-spatiotemporally, geo-spectrotemporally, 
unmixed habitat observations stacked vertically, as in the standard linear regression, 

operational setup: . The classic, frequentist, linear least 
squares solution was then estimated employing the matrix of regression coefficients  using 
the Moore-Penrose pseudoinverse:  . 

In mathematics, and particularly in linear algebra, a pseudoinverse A+ of a matrix A is 
a generalization of the inverse matrix. When referring to a matrix, the term pseudoinverse, 
without further specification, is often used to indicate the Moore–Penrose pseudoinverse. The 
term generalized inverse is sometimes used as a synonym for pseudoinverse [142]. In linear 
algebra, an n-by-n square matrix A is called invertible (i.e., nonsingular or nondegenerate) if 
there exists an n-by-n square matrix B, such that , where In denotes the n-
by-n identity matrix, and the multiplication used is ordinary matrix multiplication [142]. 
Since this was the case in Jacob et al. [59] probabilistic, Bayesian, S. damnosum s.l. habitat, 
wavelength, forecastable transmittance, emissivity, unmixed, RapidEyeTM 5m, vulnerability 
model, then the matrix B is uniquely determined by A and is called the inverse of A, denoted 
by A−1. 

A square matrix that is not invertible is called singular or degenerate [142]. A square 
matrix is singular if and only if its determinant is 0 [24]. Singular matrices are rare in the 
sense that a square matrix randomly selected from a continuous uniform distribution on its 
entries will almost never be singular. Non-square matrices (m-by-n matrices, for which m ≠ 
n) do not have an inverse. However, in some cases such a matrix may have a left inverse or 
right inverse. If A is m-by-n and the rank of A is equal to n, then A has a left inverse: an n-
by-m matrix B such that BA = I. If A has rank m, then it has a right inverse: an n-by-m matrix 
B such that AB = I. Matrix inversion is the process of finding the matrix B that satisfies the 
prior equation for a given invertible matrix A. 

Given an  matrix , the Moore-Penrose generalized matrix inverse is a unique 
matrix pseudoinverse . This matrix was independently defined by Moore in 1920 and 

Penrose in 1955, and is variously known as the generalized inverse, the pseudoinverse, or the 
Moore-Penrose inverse. It is a matrix 1-inverse, and is implemented in the Wolfram 
Language as PseudoInverse [m]. The Moore-Penrose inverse satisfies 

= , = , = , =  where is the conjugate transpose. It is also 
true that  is the shortest length, least squares solution to the problem  If the 
inverse of  exists, then  as can be seen by pre-multiplying both sides of 
a Bayesian, hyperproductive, geo-predictive, narrow, African riverine, tributary, agro-village, 
capture point, eco-epidemiological trailing vegetation,turbid water,  discontinuously 
infrequently canopied,  S. damnosum s.l., riverine, immature habitat, sparsely shaded, 
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discontinuously canopied, probabilistic, RapidEyeTM 5m, regressors equation by to create a 

square matrix, which can then be inverted,  giving = =  

To obtain the viable Bayesian solution in Jacob et al. [59], the authors needed to 
autoregressively specify the conditional likelihood, and then find the appropriate conjugate 
prior. As with the univariate case of linear Bayesian regression, the authors were able to 
probabilistically quantitate a specific natural conditional conjugate prior, which was scale 
dependent. The conditional likelihood was then written as 

. In the infrequently canopied, eco-
epidemiological, hyperproductive, S. damnosum s.l. habitat, geo-predictive, risk model error 

 was defined in terms of . By so doing,  yielded 

. The authors sought a natural 
conjugate prior—a joint density , which was of the same functional form as the 
quantitated likelihood. Since the likelihood in the riverine, habitat ecoepidemiological, 
forecasting, vulnerability, RapidEyeTM 5m, risk model was quadratic in , the authors re-

wrote the likelihood so it was normal in  (i.e., the deviation from classical sample 
estimate). 

Employing the same technique as with the auto-predictive, elucidative, Bayesian 
linear regression in PROC MCMC, the authors then optimally determined the exponential 
term employing a matrix-form of the sum-of-squares technique. Using matrix algebra, the 
sum of squares has a quantitatively tabulated form of the empirical parameterized, 
wavelength, transmittance, emissivity, covariate dataset for all the field and remote, 
georeferenceable, geo-spatiotemporally, geo-spectrotemporally, geosampled, canopied, 
sparsely shaded, hyperproductive, S. damnosum s.l. African, agro-village complex, narrow, 
riverine tributary, turbid water, immature habitat, orthogonalizable elements defined from a 
vector which was regressively quantitated in PROC MCMC employing the formula  Σ xi

2 = 
x'x . In this regression equation, x was an n x 1 vector of geosampled immature habitat 
counts, while Σ xi

2 was the sum of the squared geosampled, trailing vegetation, turbid water, 
parmeterized covariate coefficient values from vector x. To illustrate this model in SAS, 
Jacob et al. [59] autoregressively, remotely, quantitated the sum of squares for the 
geosampled habitat elements of vector x where x eco-cartographically, ecohydrologically 
represented the geosampled, immature, productivity counts.  

 In Jacob et al. [59] for the probabilistic, regressively quantitated, field and remote, 
georeferenceable, geo-spatiotemporally, geo-spectrotemporally, geosampled, 
hyperproductive, trailing vegetation, turbid water, S. damnosum s.l., narrow tributary, riverine 
larval habitat, the sum of squares was also autoregressively quantitated by the sum of cross 
products. The sum of the cross products for the probabilistically autoregressed, 
parameterizable covariate, estimators was represented by XrjXrk. The sum of the squares was 
then quantitated by the Cross Products Matrix for a r x c transitional probabilistic estimation 
matrix, which was then represented in the Bayesian model. Thereafter, the sum of cross 
products between all the S. damnosum s.l. trailing vegetation, turbid water, hyperproductive, 
capture point habitat estimators was then Σ XrjXrk, X' X, as shown below: 

X' X  =  Σ X1
2  Σ X1 X2  . . .  Σ X1 Xc  
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Σ X2 X1  Σ X2
2  . . .  Σ X2 Xc 

. . .  . . .  . . .  . . . 
Σ Xc X1  Σ Xc X2  . . .  Σ Xc

2 
 

where X was an r x c matrix of raw scores: X11, X12, . . . , Xrc and X' X was a c x c matrix of 
sums of squares and sums of cross products. Σ Xi

2 is the sum of squares for all elements in 
column i of matrix X.  Σ Xi Xj is the sum of cross products produced by multiplying each 
element in column i of matrix X with the corresponding element from column j and summing 
the result. Thus, the diagonal elements of X' X are sums of squares, and the off-diagonal 
elements were cross products. Note that the cross product matrix X' X is a symmetric matrix. 

 Here, however, there was a need to use the Matrix Differential Calculus (Kronecker 
product and vectorization transformations). Thus, a sum-of-squares was employed to obtain 
new expression for 

. They then developed a conditional form for the priors: 
 where  was an inverse-Wishart distribution and 

 was some form of normal distribution in the matrix . This was accomplished 
using the vectorization transformation in SAS, which converted the likelihood from a 
function of the matrices  to a function of the vectors . The 
authors then then wrote , and 
thereafter employed  where  
denoted the Kronecker product of matrices A and B. By doing so, a generalization of the 
outer product was multiplied in an  matrix by a  matrix, rendering an 

 matrix consisting of every combination of products of elements from the two 
matrices. Therafter, the the geo-predictive, narrow, African riverine, tributary, agro-village, 
capture point, eco-epidemiological trailing vegetation,turbid water,  discontinuously 
infrequently canopied, S. damnosum s.l. habitat model 

 lead to a 

likelihood which was normal in the tabulated . With the likelihood in a more 
tractable form, the authors in Jacob et al. [59] were able to autoregressively, remotely 
autoprobabilistically quantitate a natural (conditional) conjugate prior 

Appendix 2  

In Jacob et al. [127] the first-order Durbin-Watson statistic was printed by default. 
This statistic was used to test for first-order autocorrelation in an empricial, eco-
epidemiological, field-operationizable dataset of geo-spatiotemporally geosampled, sparsely 
shaded, prolific, georeferenceable, trailing vegetation, S. damnosum s.l. riverine, turbid water, 
canopied, immature habitats. The authors employed the DWPROB option to print the 
significance level (p-values) for the Durbin-Watson tests. The DW= option was then 
employed to request higher-order Durbin-Watson statistics. Since the ordinary Durbin-
Watson statistic tested only for first-order autocorrelation, the Durbin-Watson statistics for 
higher-order autocorrelation were the generalized Durbin-Watson decomposed, S. damnosum 
s.l. narrow African riverine, tributray, agro-village, capture point eco-epidemiological, 
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immature habitat statistics. The following statements performed the Durbin-Watson test for 
autocorrelation in the Ordinary Least Square (OLS) residuals. The DWPROB option printed 
the marginal significance levels (i.e., p-values) for the Durbin-Watson statistics.  

 
/*-- Durbin-Watson test for autocorrelation --*/ 
proc autoreg data=a; 
  model y = time / dw=4 dwprob; 
run; 

      The AUTOREG procedure output was employed to conduct the eco-epidemiological 
vulnerability analyses. In this case, the first-order Durbin-Watson test was highly significant, 
with p < 0.0001 for the hypothesis of no first-order autocorrelation. Thus, autocorrelation 
correction was needed to qualitatively regressively quantitate the empirical, trailing 
vegetation, hyperproductive, S. damnosum s.l., riverine, immature habitat, optimized dataset. 

Figure 8.7 Durbin-Watson Test Results for OLS Residuals  
Forecasting Autocorrelated Time Series 

 

The AUTOREG Procedure 
Dependent Variable y 

 
 

Ordinary Least Squares Estimates for quantitating S. damnosum s.l. habitat covariates 

SSE 212.453263 DFE 31 

MSE 6.75098 Root MSE 2.467653 

SBC 171.984632 AIC 170.4357464 

MAE 2.765432 AICC 170.65984 

MAPE 12.5654832 HQC 171.48374 

    Regress R-Square 0.76453 

    Total R-Square 0.9874 
 

Durbin-Watson Statistics  

Order DW Pr < DW Pr > DW 

1 0.6584 <.0001 1.0000 

2 1.76483 0.0764 0.9765 

3 2.9984 0.5987 0.7675 

4 2.4563 0.9875 0.01433 
 
Note: Pr < DW is the p-value for testing positive autocorrelation, and Pr > DW is the p-value 
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for testing negative autocorrelation in the S. damnosum s.l. habitat covariates 
 

S. damnosum s.l. habitat covariates parameterized estimatators 

Variable DF Estimate Standard Error t Value Approx 
Pr > |t| 

Intercept 1 8.7643 0.8875 9.89 <.0001 

time 1 0.5875 0.0453 12.43 <.0001 

 

The Durbin-Watson test was utlilized to decide if autocorrelation correction was n 
positive or neagtive in the S. damnosum s.l. riverine, immature habitat dataset. Jacob et al. 
[26] generalized Durbin-Watson tests were not used to decide on the autoregressive order of 
the covariate paramterized estimators. The higher-order tests assumed the absence of lower-
order autocorrelation. If the ordinary Durbin-Watson test indicates no first-order 
autocorrelation, the second-order test will be utilized to check for second-order 
autocorrelation. Since the first-order Durbin-Watson test was significant, the order 2, 3, and 4 
tests were ignored.  

       In Jacob et al. [26], Durbin-Watson tests checked for autocorrelation which specified an 
order of any potential seasonality, since seasonality produces autocorrelation at the seasonal 
lag. Quarterly data use was DW=4, and monthly data used DW=12 in the S. damnosum s.l. 
habitat, forecasting, vulnerability, eco-epidemiological model.  

The authors also employed Durbin h test or Durbin t test to test for first-order 
autocorrelation. For the Durbin h test, they specified the name of the lagged dependent 
variable in the LAGDEP= option. For the Durbin t test, the authors specified the LAGDEP 
option without giving the name of the lagged dependent variable. The following statements 
added the variable YLAG to the dataset A and regress Y on YLAG instead of TIME in the S.. 
damnosum s.l. narrow African riverine, tributary, agro-village, capture point eco-
epidemiological, immature habitat model:  

 

data b; 
  set a; 
  ylag = lag1( y ); 
run; 
 
proc autoreg data=b; 
  model y = ylag / lagdep=ylag; 
run; 

 

The Durbin h statistic was 2.71 is significant with a p-value of 0.0023, indicating 
autocorrelation.  
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The AUTOREG Procedure using a Durbin h Test with a Lagged Dependent Variable  
Forecasting Autocorrelated Time Series 

 

Dependent Variable y 
 

Ordinary Least Squares Estimates 

SSE 97.7654 DFE 32 

MSE 2.99875 Root MSE 1.87641 

SBC 142.38765 AIC 139.88743 

MAE 1.298753 AICC 139.87643 

MAPE 8.116543 HQC 140.09854 

    Regress R-Square 0.8964 

    Total R-Square 0.93764 
 

Miscellaneous Statistics 

Statistic Value Prob Label 

Durbin h 2.7664 0.0023 Pr > h 
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Parameter Estimates 

Variable DF Estimate Standard Error t Value Approx 
Pr > |t| 

Intercept 1 1.5982 0.9367 1.67 0.0978 

ylag 1 0.9765 0.0676 18.22 <.0001 
 

Appendix 3  

Given a time series of data , where  is an integer index, and the  are real 
numbers, then an ARIMA (p', q) time series-dependent model was given by: 

in Jacob et al. [45] in PROC ARIMA, where  was the 
lag operator,  were the unmixed parameters of the autoregressive part of the model,  
were the parameters of the moving average part, and  were error terms. The error terms  
were assumed to be independent, identically distributed variables geosampled from a normal 

distribution with a mean of zero. The authors then assumed that the polynomial  
had a unitary root of multiplicity d. Then, the geo-spatial, geo-spectrotemporal linear, 
geosampled, hyperproductive, trailing vegetation, turbid water, discontinuously canopied, 
georeferenceable, S. damnosum s.l., riverine, immature habitat, forecasting vulnerability 

model was rewritten as: . An ARIMA(p,d,q) process 
expressed this polynomial factorization property with p=p'−d, which was subsequently given 

by: , and thus was thought as a particular case 
of an ARMA(p+d,q) process having the autoregressive polynomial with d unit roots. The 

model was then generalized as follows:  . 
This defined an ARIMA(p,d,q) process with drift δ/(1−Σφi). 

     Initially, the authors in Jacob et al. [45] constructed a Poissonian probability model in 
GEN MOD. The Poisson process was provided by the limit of a binomial distribution of the 
geo-spatiotemporally, geo-spectrotemporally, geosampled, predictor, covariate coefficient 

estimates employing (5.3). The authors viewed the 
distribution as a function of the expected number of count variables using the sample size N 
for quantifying the fixed p in equation (2.1), which was then transformed into the linear 
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equation: Based on the sample size N, the distribution 
approached which was remotely, autoregressively, auto-probabilistically quantitated 
as

 
The GENMOD procedure then fit a generalized linear model (GLM) to the 

geosampled, trailing vegetation, turbid water, hyperproductive, parameterizable, S. 
damnosum s.l. riverine, immature habitat data by ML estimation of the parameter vector β. 
The GENMOD procedure estimated the seasonally geosampled wavelength, parameterized, 
covariate estimators of each agro-village-level, sub-model, S. damnosum s.l. eco-
epidemiological risk model numerically through an iterative fitting process. The dispersion 
parameter was then estimated by the residual deviance and by Pearson’s chi-square divided 
by the df. Covariances, standard errors, and p-values were then computed for the geosampled 
covariate coefficients based on the asymptotic normality derived from the ML estimation.  

 
       Note, that the sample size N completely dropped out of the probability function, which 
had the same functional form for all the geo-spatiotemporally, geo-spectrotemporally 
geosampled, agro-village complex-level, wavelength, parameterizable, covarite estimator 
indicator values (i.e., ). As expected, the Poisson distribution was normalized so that the 
sum of probabilities equaled 1. The ratio of probabilities was then determined by 

which was then expressed as  
The Poisson distribution revealed that the wavelength, emissivity transmittance, 
parameterizable, trailing vegetation, georeferenceable, turbid water, S. damnosum s.l., turbid 
water decomposed, unmixed, covariate coefficients reached a maximum when 

 where  was the Euler-Mascheroni constant and  was a 
harmonic number, leading to the transcendental equation . The 

 regression model also 
revealed that the Euler-Mascheroni constant arose in the integrals. Commonly, integrals that 
render  in combination with temporal geosampled constants include 

, which is equal to  [5.2] [142]. 
Thereafter, the double integrals in the seasonal, hyperproductive, field or remote, sparsely 

shaded, regression model included (5.2). 
 

 
     An interesting analog of equation (5.2) in the regression-based, eco-epidemiological, 
vulnerability model was then calculated as 



International Journal of Geographic Information System  
Vol. 4, No. 1, April 2017, pp.1-519 
Available Online at http://acascipub.com/Journals.php 
  
 

468 
Copyright © acascipub.com, all rights reserved.  

 0.241564. This solution was also 

provided by incorporating Mertens theorem , where the product was 
aggregated over the geo-spectrotemporally geospatially sampled values found in the 
empirical ecological datasets. The authors noted that Mertens' 3rd theorem 

 was related to the density of prime numbers, where γ is the Euler–
Mascheroni constant. By taking the logarithm of both sides in the model, an explicit 

formula for γ was then optimally derived employing . This 
expression was also rendered by quantifying the data series employing Euler, and equation 

(5.2) by first replacing  in the equation , and then 

generating . We then substituted the telescoping sum 

, which then generated . Thereafter, the 

product was  .  
 

    Additionally, other series in the agro-village complex-level, regression, hyperproductive, 
trailing vegetation, turbid water, non-homogenously canopied, S. damnosum s.l., riverine, 
immature habitat, vulnerability forecast model included the equation (◇), 

where , and  was plus the 
Riemann zeta function. The Riemann zeta function ζ(s) is a function of a complex variables 

that analytically continues the sum of the infinite series , which converges when the 
real part of s is greater than 1, where lg is the logarithm to base 2 and the  is the floor 
function [24]. Jacob et al. (2011) earlier provided a series equivalent to 

 and, thereafter , which was then 

added to  to render Vacca's formula. Gosper et al. [210] employed 

the sums with  by replacing the undefined I, and then 
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rewrote the equation as a double series for applying the Euler's series transformation to each 
of the sampled time-series-dependent, covariate coefficient estimates.  

     Thereafter,  was employed as a binomial coefficient, rearranged to achieve the 
conditionally convergent series in the agro-village complex-level, linear, geosampled, auto-
probablistic, autoregressive, hyperproductive, trailing vegetation, turbid water, non-
homogenously canopied, S. damnosum s.l., riverine,immature habitat, georeferenceable, 
vulnerability model. The plus and minus terms were first grouped in pairs of the 
decomposable, geo-spectrotemporally, geospatially geosampled, covariate, coefficient 
estimates employing the resulting series based on the actual observational, covariate 
coefficient, indicator values. The double series was thereby equivalent to Catalan's integral: 

. Catalan's integrals are a special case of general formulas due to 

, where  is a Bessel function of the first 
kind [143].  

   The Bessel function is a function defined in a robust auto-probabilistic, 
autoregressive model by employing the quantifiable recurrence relations 

, which more recently have been defined as 
solutions in linear models employing the differential equation 

The Bessel function was defined in the agro-

village complex level model by the contour integral , where the 
contour enclosed the origin and was traversed in a counter-clockwise direction. This function 

generated:  
 

   In mathematics, Bessel functions are canonical solutions y(x) of Bessel's differential 

equation , for an arbitrary real or complex number α (i.e., the 
order of the Bessel function). The most common and important cases are for α an integer or 
half-integer [211]. To quantify the equivalence in the geo-spatiotemporal, regression-based 

parameterizable covariate estimators, we expanded  in a geometric series and 
multiplied the sampled geo-spatiotemporal, geo-spectrotempemporal linear, autoprobabilistic, 
autoregressive, hyperproductive, trailing vegetation, turbid water, discontinuously canopied, 
S. damnosum s.l., riverine, larval habitat, vulnerability model data feature attributes 

by , and integrated the termwise as in Sondow and Zudilin [227]. Other series for  

then included . A 
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rapidly converging limit for  was then provided by 

 and thereafter by 

, where was a Bernoulli 
number. Another limit formula was then provided by the equation 

 
 
In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep 

connections to number theory, whereby values of the first few Bernoulli numbers are B0 = 1, 
B1 = ±1⁄2, B2 = 1⁄6, B3 = 0, B4 = −1⁄30, B5 = 0, B6 = 1⁄42, B7 = 0, B8 = −1⁄30 [24]. Jacob et 
al.[2005] found if m and n are sampled values and f(x) is a smooth sufficiently differentiable 
function in a seasonal, agro-village complex-level, linear, autoregressive, autoprobabilistic, 
trailing vegetation, turbid water, discontinuous canopied, hyperproductive S. damnosum s.l. 

habitat model, which is defined for all the values of x in the interval  then the integral 

 can be approximated by the sum (or vice versa) 

. The Euler–Maclaurin formula then provided 
expressions for remotely autoregressively quantitating the difference between the sum and 
the integral in terms of the higher derivatives ƒ(k) at the end points of the interval m and n. 
The Euler–Maclaurin formula provides a powerful connection between integrals and sums 
which can be used to approximate integrals by finite sums, or, conversely, to evaluate finite 
sums and infinite series using integrals and the machinery of calculus [142]. Thereafter, for 
the agro-village level, time series, district-level, geosampled values p the authors had 
generated 30, B5 = 0, B6 = 1/42, B7 = 0, B8 = −1/30, and R which was an error term. Note 

 Hence, the authors re-wrote the autoregression-based, 
auto-predictive formula as 

. They 
then rewrote the equation more elegantly as 

with the convention of 

 (i.e. the -1th derivation of f is the integral of the function). Limits 
to the linear, geosampled, georeferenceable, agro-village complex-level, autoregression, 
trailing vegetation, turbid water, discontinuously canopied, S. damnosum s.l., riverine, 
immature habitat, auto-probabilistic, eco-epidemiological model were then rendered by 
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, where  was the Riemann zeta function. The Bernoulli 
numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent 
functions in formulas for the sum of powers of the first positive integers, in the Euler–
Maclaurin formula, and in expressions for certain values of the Riemann zeta function 
[Haight 1967].  

    Another connection with the primes was provided by  for the geosampled, 
agro-village, riverine-level numerical values from 1 to  in the dataset, and was found to be 

asymptotic to . De la Vallée-Poussin [28] proved that if a large number 
n is divided by all primes n, then the average amount by which the quotient is less than the 
next whole number is g [24]. An identity for g in our agro-village–level, auto-regression-

based model was then provided by , where was a modified Bessel 

function of the first kind, was a modified Bessel function of the second kind, and 

, where was a harmonic number. For non-integer α, Yα(x) is related 

to Jα(x) by  In the case of integer order n, the function 
was defined by taking the limit as a non-integer α tends to n:  [211]. The 
Bessel functions of the second kind, were denoted by Yα(x) and by Nα(x), which were 
actually solutions of the Bessel differential equation employing a singularity at the origin (x = 
0). This provided an efficient iterative algorithm for g by computing 

 and . Reformulating this identity rendered the limit 

. Infinite products involving g also arose from the Barnes G-function 
using the positive integer n.  

 
In mathematics, the Barnes G-function G(z) is a function that is an extension of 

superfactorials to the complex numbers, which is related to the Gamma function [24]. This 

function provided , and also the equation . The 
Barnes G-function was then linearly defined in our time series-dependent, agro-village-level, 
linear, trailing vegetation, turbid water, discontinuously canopied, S. damnosum s.l. habitat, 
regression-based risk model, which was then generated employing 
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, where γ was the Euler–
Mascheroni constant, exp(x) = ex, and ∏ was capital pi notation. The Euler-Mascheroni 

constant was then rendered by the expressions , where  was the 

digamma function , and the asymmetric limit form 

of .  
In mathematics, the digamma function is defined as the logarithmic derivative of the 

gamma function , where it is the first of the polygamma functions. In 
the georferencable, agro-village–level, geo-spatiotemporal, geo-spectrotempemporal, agro-
village-complex vulnerability model, the digamma function, ψ0(x) was then related to the 

harmonic numbers in that , where Hn was the nth harmonic number, and γ 
was the Euler-Mascheroni constant. In mathematics, the n-th harmonic number is the sum of 
the reciprocals of the first n natural numbers [143]. The difference between the nth 
convergent in equation (◇) and in our autoregression-based model was then calculated by 

, where  is the floor function which satisfied the inequality 

 [142]. The symbol g was then . This led to 
the radical representation of the agro-village complex-level, eco-epidemiological, covariate 

coefficients as , which was related to the double series 

, a binomial coefficient. Thereafter, another proof of 
product in the our agro-village complex-level regression model was provided by the equation 

. The solution was then made even clearer by 
changing . Both of these regression-based formulas were also analogous to the 

product for , which was rendered by calculating .  
     
      Unfortunately, extra-Poisson variation was detected in the variance estimates in the 
model. A modification of the iterated re-weighted least square scheme and/or a negative 
binomial non-homogenous, gamma-distributed mean, regression-based framework 
conveniently accommodated the extra-Poisson variation in the seasonal log-linear models 
employing decomposed wavelength, transmittance, RapidEyeTM emissivity frequencies as 
dependent response variables. Operationally, these models consist of making iterated 
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weighted least squares fit to approximately normally distributed dependent geo-predictive 
covariate coefficients based on observed rates or their logarithm. Unfortunately, the variance 
of the geo-spatiotemporal, geo-spectrotempemporal linear, geosampled, district-level, 
autoregression, hyperproductive, trailing vegetation, turbid water, discontinuously canopied, 
S. damnosum s.l., riverine, larval habitat, eco-epidemiological, vulnerability, unmixed, 5m, 
model observations in log-linear equations were assumed to be constant. Subsequently, 
introducing an extra-binomial variation scheme in the eco-epidemiological, linear-logistic, 
habitat was optimally fitted for a Poisson procedure. The probabilities describing the possible 
outcome of a single trial was then modeled as a function of forecasting geo-
spectrotemporally, geospatially decomposable variables using a logistic function [130].  

 
The authors in Jacob et al. [59] constructed a robust, negative binomial, regression 

model in SAS with non-homogenous means and a gamma distribution by incorporating 

in equation (5.2). The authors let  be the probability density function of 
in the model. Then, the distribution  was no longer conditional on . Instead it 

was obtained by integrating , with respect to : . 
The distribution in the agro-village-level, linear, auto-probabilistic, autoregressive, 
interpolatble, hyperproductive, trailing vegetation, turbid water, decomposed, 
discontinuously canopied, S. damnosum s.l. habitat model, parameterizable, covariate, 
unbiased estimators was then 

The negative binomial 
distribution was thus derived as a gamma mixture of Poisson random variables. The 

conditional mean in the model was , and the variance in the residual 

estimates was . To further estimate the models, 
the authors specified DIST=NEGBIN (p=1) in the MODEL statement in PROC REG. The 
negative binomial model NEGBIN1 was set p=1, which revealed the variance function 

 was linear in the mean of the model. The log-likelihood function of 

the NEGBIN1 model was then provided by . Additionally, the 

equation  was generated. The gradient for 
the regression model was then quantified employing 

 and 

. The negative binomial regression 

model with variance function  was then referred to as the NEGBIN2 
model. To estimate this regression-based model, the authors of Jacob et al. [59] 
autoregressively, auto-probabilistically specified DIST=NEGBIN (p=2) in the MODEL 
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statements. A test of the Poisson distribution was then performed by examining the 

hypothesis that . A Wald test of this hypothesis was also provided, which was 
the reported t statistics for the estimates in the model. Under the Wald statistical test, the 
maximum likelihood estimate of the parameter(s) of interest  was compared with the 
proposed value , with the assumption that the difference between the two would be 
approximately normally distributed [24]. The log-likelihood function of the regression 
models (i.e., NEGBIN2) was then generated by the equation: 

, whose gradient was 

. The variance in the agro-village riverine, habitat-level, forecasting, 
vulnerability, RapidEyeTM wavelength, transmittance model was then assessed by 

. The final mean in the model was calculated as 

, the mode as , the variance as , the skewess as 

, the kurtosis as , the moment generating function 

as , the characteristic function as , and 

finally the probability generating function as .  

  A spatial autoregressive model was then generated that used a variable Y.  This was a 
function of nearby sampled, agro-village–level, S. damnosum s.l., covariate coefficients in 
AUTOREG Y, which had an interpolator decomposable, indicator value 1 (i.e., an 
autoregressive response) and/or the residuals of Y, which were values of nearby geosampled 
Y residuals (i.e., an SAR or spatial error specification). For time series-dependent, eco-
epidemiological, risk, modelling onchocerciasis-related, parameterizable covariate estimators, 
the SAR model furnishes an alternative specification that frequently is written in terms of 
matrix W [24]. A misspecification perspective was then employed for performing a spatial 
autocorrelation uncertainty latent, estimation analysis, which utilized the sampled, agro-
village complex-level, covariate estimators. The model was built using   

(i.e. the regression equation) assuming the sampled data had autocorrelated 
disturbances. The model also assumed that the geosampled data could be decomposed into a 
white-noise component , and a set of unspecified, sub-district-level, regression models that 

had the structure . 

 Jacob et al. [127] found that white noise in a seasonal, malaria-based, regression model is 
a univariate or multivariate discrete-time stochastic process whose terms are independent and 
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independent (i.i.d) with a zero mean. In the model the misspecification term was  
Thereafter, an Autoregressive Integrated Moving Average (ARIMA) model was constructed, 
which revealed a conspicuous, but not very prominent, first-order, temporal, autoregressive 
structure in the individual, time series-dependent data. A random effects term was then 
specified using monthly time-series data. This specification included a district-specific 
intercept term that was a random deviation from the overall intercept term based on a draw 
from a normal frequency distribution. The random effects specification revealed a non-
constant mean across the districts. This random intercept represented the combined effect of 
all omitted covariates that caused districts to be more prone to malaria transmission than 
other districts.  

Additionally, inclusion of a random intercept assumed random heterogeneity in the 
districts’ propensity or underlying risk of malaria prevalence, which persisted throughout the 
entire duration of the time sequence under study. This random effects term displayed no 
spatial autocorrelation, and failed to closely conform to a bell-shaped curve. The model’s 
variance, however, implied a substantial variability in the prevalence of malaria across 
districts. The estimated model contained considerable overdispersion (i.e., excess Poisson 
variability) with a quasi-likelihood scale = 76.565. The following equation was then 
employed to forecast the expected value of the prevalence of malaria at the district-level: 
prevalence = exp[-3.1876 + (random effect)i]. In Jacob et al. [127], the ARIMA model c was 

viewed as a "cascade" of two models. The first was non-stationary: , 

while the second was wide-sense stationary:   

The explicit identification of the factorization of the autoregression polynomial into 
factors as above, can be extended to other cases, firstly to apply to the moving average 
polynomial and secondly to include other special factors. For example, having a factor 

 in a model is one way of including a non-stationary seasonality of period s into the 
model. This factor has the effect of re-expressing the data as changes from s periods ago. 

Another example is the factor , which includes qunatification of (non-
stationary) seasonality in residually forecasted eatimates. The effect of the first type of factor 
is to allow each season's value to drift separately over time, whereas with the second type 
values for adjacent seasons move together.  

Appendix 4 

The Beer–Lambert law can be expressed in terms of attenuation coefficient, but in this 
case is better called Lambert's law since amount concentration from Beer's law is hidden 
inside the attenuation coefficient. The (Napierian) attenuation coefficient μ and the decadic 
attenuation coefficient μ10 = μ/ln 10 of a material sample are related to its number densities 

and amount concentrations as  

, respectively, by definition of attenuation cross section 
and molar attenuation coefficient. Then the Beer–Lambert law becomes 
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 and  In case of 

uniform attenuation, these relations become  or equivalently, 

 
 

In concept, the derivation of the Beer–Lambert law is straightforward. Assume that a 
beam of light enters a material sample. Define z as an axis parallel to the direction of the 
beam. Divide the material sample into thin slices perpendicular to the beam of light, with 
thickness dz sufficiently small that one particle in a slice cannot obscure another particle in 
the same slice when viewed along the z direction. The radiant flux of the light that emerges 
from a slice is reduced, compared to that of the light that entered, by dΦe(z) = −μ(z)Φe(z) dz, 
where μ is the (Napierian) attenuation coefficient, which yields the following first-order 

linear ODE:  

The attenuation is caused by the photons that did not make it to the other side of the slice due 
to scattering or absorption. The solution to this differential equation is obtained by 
multiplying the integrating factor throughout to obtain 

 which simplifies due to the product 

rule (applied backwards) t  

Integrating both sides and solving for Φe for a material of real thickness ℓ, with the incident 
radiant flux upon the slice Φe

i = Φe(0) and the transmitted radiant flux Φe
t = Φe(ℓ ) 

gives  Since the decadic attenuation coefficient μ10 is related to the 
(Napierian) attenuation coefficient by μ10 = μ/ln 10, one would also 

have  

To describe the attenuation coefficient in a way independent of the number densities 
ni of the N attenuating species of the material sample, one introduces the attenuation cross 
section σi = μi(z)/ni(z). The coefficient σi has the dimension of an area; it expresses the 
likelihood of interaction between the particles of the beam and the particles of the species i in 
the material sample. One can also use the molar attenuation coefficients εi = (NA/ln 10)σi, 
where NA is the Avogadro constant, to describe the attenuation coefficient in a way 
independent of the amount concentrations ci(z) = ni(z)/NA of the attenuating species of the 
material 
sample
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Expectation-maximization works to improve , rather than directly 
improving . Here we show that improvements to the former imply improvements to 
the latter. For any  with non-zero probability , we can 
write  We take the expectation over values 
of  by multiplying both sides by , and summing (or integrating) over . The left-
hand side is the expectation of a constant, so we 
get:

where  is defined by the negated sum it is replacing. This 
last equation holds for any value of , including , 

. Subtracting this last equation from the 
previous equation renders 

. However, Gibbs' 
inequality tells us that , so we can conclude 
that  

Suppose that  is a probability distribution. Then for any other 
probability distribution  the following inequality between positive 
quantities (since the pi and qi are positive numbers less than one) 

holds with equality if and only if  for all i. Put in 
words, the information entropy of a distribution P is less than or equal to its cross entropy 
with any other distribution Q. 

The difference between the two quantities is the Kullback–Leibler divergence, or 

relative entropy, so the inequality can also be written:  For 
discrete probability distributions P and Q, the Kullback–Leibler divergence of Q from P is 

defined to be  In words, it is the expectation of the logarithmic 
difference between the probabilities P and Q, where the expectation is taken using the 
probabilities P. The Kullback–Leibler divergence is defined only if Q(i)=0 implies P(i)=0, 
for all i (absolute continuity). Whenever P(i) is zero the contribution of the i-th term is 

interpreted as zero because . For distributions P and Q of a continuous 
random variable, the Kullback–Leibler divergence is defined to be the integral: 

[ 5], where p and q denote the densities of P and Q. 

More generally, if P and Q are probability measures over a set X, and P is absolutely 
continuous with respect to Q, then the Kullback–Leibler divergence from P to Q is defined 

as  where  is the Radon–Nikodym derivative of P with 
respect to Q, and provided the expression on the right-hand side exists. Equivalently, this can 
be written as 
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 which we recognize as the entropy of P relative to Q.  

Continuing in this case, if  is any measure on X for which  and  exist 
(meaning that p and q are absolutely continuous with respect to ), then the Kullback–

Leibler divergence from P to Q is given as  The logarithms in 
these formulae are taken to base 2 if information is measured in units of bits, or to base e if 
information is measured in nats. Most formulas involving the Kullback–Leibler divergence 
hold regardless of the base of the logarithm. 

Various conventions exist for referring to DKL(PǁQ) in words. Often it is referred to as 
the divergence between P and Q. However this fails to convey the fundamental asymmetry in 
the relation. Sometimes it may be found described as the divergence of P from, or with 
respect to Q (often in the context of relative entropy, or information gain). However, in the 
present article the divergence of Q from P will be the language used, as this best relates to the 
idea that it is P that is considered the underlying "true" or "best guess" S. damnosum s.l. 
larval habitat distribution, that expectations will be calculated with reference to, while Q is 
some divergent, less optimal, approximate distribution. Note that the use of base-2 logarithms 
is optional, and allows one to refer to the quantity on each side of the inequality as an 
"average surprisal" measured in bits. 

Note that the use of base-2 logarithms is optional, and allows one to refer to the 
quantity on each side of the inequality as an "average surprisal" measured in bits. Since 

 it is sufficient to prove the statement using the natural logarithm (ln). Note 
that the natural logarithm satisfies , for all x > 0 with equality if and only if 
x=1. Let denote the set of all  for which pi is non-zero. Then 

= = So theerfater the model 

,may be applicable ans then trivially , 
since the righthand side does not grow, but the lefthand side may grow or may stay the same. 

For equality to hold, we require: 1) , for all , so that the approximation 

is exact, and 2) , so that equality continues to hold between the 
third and fourth lines of the proof. This can happen if and only if  for i = 1, ..., n. The 
entropy of  is bounded by   The proof is trivial—simply set 

 for all i. 

Suppose that  is a probability distribution. Then for any other 
probability distribution  the following inequality between positive quantities 
(since the pi and qi are positive numbers less than one) holds 
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 with equality if and only if  for all i. Put in words, 
the information entropy of a distribution P is less than or equal to its cross entropy with any 
other distribution Q. The difference between the two quantities is the Kullback–Leibler 
divergence or relative entropy, so the inequality can also be written as 

 

For discrete probability distributions P and Q, the Kullback–Leibler divergence of Q 

from P is defined as  In words, it is the expectation of the 
logarithmic difference between the probabilities P and Q, where the expectation is taken 
using the probabilities P. The Kullback–Leibler divergence is defined only if Q(i)=0 implies 
P(i)=0, for all i (absolute continuity). Whenever P(i) is zero the contribution of the i-th term 

is interpreted as zero because . For distributions P and Q of a continuous 
random variable, the Kullback–Leibler divergence is defined to be the integral 

[5]  where p and q denote the densities of P and Q. More 
generally, if P and Q are probability measures over a set X, and P is absolutely continuous 
with respect to Q, then the Kullback–Leibler divergence from P to Q is defined as 

 where  is the Radon–Nikodym derivative of P with respect 
to Q, and provided the expression on the right-hand side exists. In mathematics, the Radon–
Nikodym theorem is a result in measure theory which states that given a measurable space 

, if a σ-finite measure  on  is absolutely continuous with respect to a σ-finite 
measure μ on , then there is a measurable function , such that for 

any measurable subset : . 

 Equivalently, this can be written as  which we 
recognize as the entropy of P relative to Q. Continuing in this case, if  is any measure on X 

for which  and  exist (meaning that p and q are absolutely continuous 
with respect to ), then the Kullback–Leibler divergence from P to Q is given as 

 The logarithms in these formulae are taken to base 2 if 
information is measured in units of bits, or to base e if information is measured in nats. Most 
formulae involving the Kullback–Leibler divergence hold regardless of the base of the 
logarithm. 

Thus, choosing  to improve  beyond  will improve  
beyond  at least as much in the riverine habitat risk model. Under some 
circumstances, it is convenient to view the EM algorithm as two alternating maximization 
steps. Consider the 
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function: , 
where q is an arbitrary probability distribution over the unobserved geosampled data z, pZ|X(· 
|x;θ) is the conditional distribution of the unobserved data given the observed data x, H is the 
entropy, and DKL is the Kullback–Leibler divergence. Then the steps in the EM algorithm 
may be viewed as: 

Expectation step: Choose q to maximize F:   

Maximization step: Choose θ to maximize F:  

Boolean algebra was introduced by George Boole in his first book The Mathematical 
Analysis of Logic (1847), and described more fully in his An Investigation of the Laws of 
Thought (1854) [212, 213]. According to Huntington, the term "Boolean algebra" was first 
suggested by Sheffer in 1913 [214]. Boolean algebra has been fundamental in the 
development of digital electronics, and is provided for in all modern programming languages. 
It is also used in set theory and statistics. The basic operations of Boolean algebra are as 
follows. And (conjunction), denoted x∧y (sometimes x AND y or Kxy), satisfies x∧y = 1 if x = 
y = 1 and x∧y = 0 otherwise. Or (disjunction), denoted x∨y (sometimes x OR y or Axy), 
satisfies x∨y = 0 if x = y = 0 and x∨y = 1 otherwise. Not (negation), denoted ¬x (sometimes 
NOT x, Nx or !x), satisfies ¬x = 0 if x = 1 and ¬x = 1 if x = 0. If the truth values 0 and 1 are 
interpreted as integers, these operations may be expressed with the ordinary operations of 
arithmetic: 

 

Alternatively, the values of x∧y, x∨y, and ¬x can be expressed by tabulating their values with 
truth tables as follows , where 

0 0 0 0 
1 0 0 1 
0 1 0 1 
1 1 1 1 

 

0 1 
1 0 

 

The three Boolean operations described above are referred to as basic, meaning that they can 
be taken as a basis for other Boolean operations, which can be built up from them by 
composition, the manner in which operations are combined or compounded. Operations 
composed from the basic operations include the following examples: 

 
 

 
 
These definitions give rise to the following truth tables giving the values of these operations 
for all four possible inputs where: 
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0 0 1 0 1 
1 0 0 1 0 
0 1 1 1 0 
1 1 1 0 1 

The first operation, x → y, or Cxy, is called material implication. If x is true, then the 
value of x → y is taken to be that of y. But if x is false, then the value of y can be ignored.  
However the operation must return some truth value and there are only two choices, so the 
return value is the one that entails less, namely true. (Relevance logic addresses this by 
viewing an implication with a false premise as something other than either true or false.) 

The second operation, x ⊕ y, or Jxy, is called exclusive or (often abbreviated as XOR) 
to distinguish it from disjunction as the inclusive kind. It excludes the possibility of both x 
and y. Defined in terms of arithmetic, it is addition mod 2 where 1 + 1 = 0. The third 
operation, the complement of exclusive or, is equivalence or Boolean equality: x ≡ y, or Exy, 
is true just when x and y have the same value. Hence x ⊕ y as its complement can be 
understood as x ≠ y, being true just when x and y are different. Its counterpart in arithmetic 
mod 2 is x + y + 1. 

Given two operands, each with two possible values, there are 22 = 4 possible 
combinations of inputs. Because each output can have two possible values, there are a total of 
24 = 16 possible binary Boolean operations. Boolean algebra treats the equational theory of 
the maximal two-element finitary algebra, called the Boolean prototype, and the models of 
that theory, called Boolean algebras. These terms are defined as follows. An algebra is a 
family of operations on a set, called the underlying set of the algebra. We take the underlying 
set of the Boolean prototype to be {0,1}. 

Thus, an alegrbraically quantitated, empirical dataset of regressively tabulated trailing 
vegetation, turbid water, hyperproductive S. damnosum s.l., sparsely shaded, discontinuously 
canopied habitats in a weights decomposable matrix can take on finitely many arguments. For 
the prototype each argument of an operation will be dichotomous (e.g., either 0 or 1) as result 
of the operational gridding algorithms, and the number of arguments taken on for each 
operation during the regression exercise (e.g., arity of the operation). Even though the 
maximal number of parameterizable covariate was 0 or 1, the binomialization of the 
operation on (01) of arity n was applicable to 2n possible outcome values.  

For each choice of arguments the operation had the ability to return 0 or 1, whence 
there were operationizable 22n n-ary operations. The prototype, therefore, had two operations 
taking no arguments, called zeroary or nullary operations, namely zero and one. It had four 
unary operations, two of which are constant operations, another was the identity, and the 
negation, returned the opposite of its argument: 1 if 0, 0 if 1. It had sixteen binary operations; 
again two of these are constant, another returns its first argument, yet another returns its 
second, one is called conjunction and returns 1, if both arguments are 1 and otherwise 0. 
Another is called disjunction and returns 0 if both arguments are 0 and otherwise 1, and so 
on. The number of (n+1)-ary operations in the prototype is the square of the number of n-ary 
operations, so there are 162 = 256 ternary operations, 2562 = 65,536 quaternary operations, 
and so on. 
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     The finitary operations on {0,1} may be exhibited as truth tables, thinking of 0 and 1 as 
the truth values false and true. They can be laid out in a uniform and application-independent 
way that allows us to name, or at least number, them individually. The stress on finiteness 
came from the idea that human mathematical thought is based on a finite number of 
principles[ and all the reasonings follow essentially one rule: the modus ponens[25] The 
project was to fix a finite number of symbols (essentially the numerals 1, 2, 3, ... the letters of 
alphabet and some special symbols like "+", "->", "(", ")", etc.), give a finite number of 
propositions expressed in those symbols, which were to be taken as "foundations" (the 
axioms), and some rules of inference which would model the way humans make conclusions  
( www.mathworld.com) These names provide aconvenient shorthand for the Boolean 
operations. The names of the n-ary operations are binary numbers of 2n bits. There being 22n 
such operations, one cannot ask for a more succinct nomenclature! Note that each finitary 
operation was a switching function. This layout and associated naming of operations is 
illustrated here in full for arities from 0 to 2. 

Truth tables for the Boolean S. damnosum s.l. habitat model operations of arity up to 
2 
Constants 

  

0 1 
 

Unary Operations 
 

    

0 0 1 0 1 
1 0 0 1 1 

 

Binary Operations 
 

 

                

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

 

    These tables continue at higher arities, with 2n rows at arity n, each row giving a valuation 
or binding of the n variables x0,...xn−1, and each column headed nfi rendering the value 
nfi(x0,...,xn−1) of the i-th n-ary operation at that valuation. The operations include the 
decomposable, field and remote georeferenceable, hyperproductive, canopied, S. damnosum 
s.l., covariate, parameterized variables, for example 1f2 is x0 while 2f10 is x0 (as two copies of 
its unary counterpart) and 2f12 is x1 (with no unary counterpart). Negation or complement ¬x0 
appears as 1f1 and again as 2f5, along with 2f3 (¬x1, which did not appear at arity 1), disjunction 
or union x0∨x1 as 2f14, conjunction or intersection x0∧x1 as 2f8, implication x0→x1 as 2f13, 
exclusive-or symmetric difference x0⊕x1 as 2f6, set difference x0−x1 as 2f2, and so on. 

As a minor detail important more for its form than its content, the operations of an 
algebra are traditionally organized as a list. Although here we are indexing the operations of a 
Boolean algebra by the finitary operations on {0,1}, the truth-table presentation above 
serendipitously orders the operations first by arity and second by the layout of the tables for 
each arity. This permits organizing the set of all Boolean operations in the traditional list 
format. The list order for the operations of a given arity is determined by the following two 
rules:  1) the i-th row in the left half of the table is the binary representation of i with its least 
significant or 0-th bit on the left ("little-Indian" order, originally proposed by Alan Turing, so 
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it would not be unreasonable to call it Turing order), and 2) The j-th column in the right half 
of the table is the binary representation of j, again in “little-Indian” order. In effect the 
subscript of the operation is the truth table of that operation. By analogy with Gödel 
numbering of computable functions one might call this numbering of the Boolean operations 
the Boole numbering. In mathematical logic, a Gödel numbering is a function that assigns to 
each symbol and well-formed formula of some formal language a unique natural number, 
called its Gödel number. The concept was used by Kurt Gödel for the proof of his 
incompleteness theorems [215]. 

    When programming in C or Java, bitwise disjunction is denoted x|y, conjunction as x&y, 
and  negation as ~x. A program can therefore represent for example the operation x∧(y∨z) in 
these languages as x&(y|z), having previously set x = 0xaa, y = 0xcc, and z = 0xf0. The "0x" 
indicates that the following constant is to be read in hexadecimal or base 16, either by 
assignment to the probabilistically regressable, parameterizable, geospectral, unmixed, 
endmember, S. damnosum s.l. variables or defined as macros. These one-byte (eight-bit) 
constants can correspond to the columns for the input variables. This technique is almost 
universally employed in raster graphics hardware to provide a flexible variety of ways of 
combining and masking images, the typical operations being ternary and acting 
simultaneously on source, destination, and mask bits. 

All bit vectors of a given length as tabulated from the empiricially, geo-
spatiotemporally geopsampled, sparsely shaded, hyperproductive, trailing vegetation, turbid 
water, S. damnosum s.l. , immature data form a Boolean algebra "pointwise", meaning that 
any n-ary Boolean operation can be applied to n bit vectors, which can then subsequently 
quantitate one bit position at a time. For example, the ternary or of three bit vectors each of 
length in a S. damnosum s.l., interpolatable, wavelength, transmittance, endmember, 
emissivity, vulnerability forecast risk model is the bit vector of length formed by ignoring the 
three bits in each of the four bit positions, thus 0100∨1000∨1001 = 1101. Another example is 
the truth tables which for the n-ary operations in a hyperproductive, georeferenceable, 
sparsely shaded, canopied, stochastically/deterministically, delineatable, eco- cartographic, 
risk model, whose columns are all the bit vectors of length 2n can be combined pointwise 
whence the n-ary operations form a Boolean algebra. This works equally well for bit vectors 
of finite and infinite length, the only rule being that the bit positions all be indexed by the 
same set in order that "corresponding position" be well defined in ArcGIS. 

 The power set of algebraic, regressively parameterizable, field or remote 
georeferenceable, hyperproductive S. damnsoum s.l. habitats may be efficiently quantitated. 
The power set algebra and the set 2W of all subsets of a given set W, however, need to be 
employed during the quantification exercise.  

  This is simply Example 2 in disguise, with W serving to index the bit positions. Any 
subset X of W can be viewed as the bit vector having 1's in just those bit positions indexed by 
elements of X. Thus the all-zero vector is the empty subset of W while the all-ones vector is 
W itself, these being the constants 0 and 1 respectively of the power set algebra. The 
counterpart of disjunction x∨y is union X∪Y, while that of conjunction x∧y is intersection 
X∩Y. Negation ¬x becomes ~X, complement relative to W. There is also set difference X∖Y = 
X∩~Y, symmetric difference (X∖Y)∪(Y∖X), ternary union X∪Y∪Z, and so on. The atoms here 
are the singletons, those subsets with exactly one element. 
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       Examples 2 and 3 are special cases of a general construct of algebra called direct 
product, which is applicable not just to Boolean algebras but all kinds of algebra including 
groups, rings, etc. The direct product of any family Bi of Boolean algebras where i ranges 
over some index set I (not necessarily finite or even countable) is a Boolean algebra 
consisting of all I-tuples (...xi,...) whose i-th element is taken from Bi. The operations of a 
direct product are the corresponding operations of the constituent algebras acting within their 
respective coordinates; in particular operation nfj of the product operates on n I-tuples by 
applying operation nfj of Bi to the n elements in the i-th coordinate of the n tuples, for all i in I. 

    When all the algebras being multiplied together in this way are the same algebra A we call 
the direct product a direct power of A. The Boolean algebra of all 32-bit bit vectors is the 
two-element Boolean algebra raised to the 32nd power, or power set algebra of a 32-element 
set, denoted 232. The Boolean algebra of all sets of integers is 2Z. All Boolean algebras we 
have exhibited thus far have been direct powers of the two-element Boolean algebra, 
justifying the name "power set algebra". It can be shown that every finite Boolean algebra is 
isomorphic to some power set algebra. Hence the cardinality (number of elements) of a finite 
Boolean algebra is a power of 2, namely one of ...,2n,... This is called a representation 
theorem as it gives insight into the nature of finite Boolean algebras by giving a 
representation of them as power set algebras.This representation theorem does not extend to 
infinite Boolean algebras: although every power set algebra is a Boolean algebra, not every 
Boolean algebra need be isomorphic to a power set algebra. In particular, whereas there can 
be no countably infinite power set algebras (the smallest infinite power set algebra is the 
power set algebra 2N of sets of natural numbers, shown by Cantor to be uncountable), there 
exist various countably infinite Boolean algebras. To go beyond power set algebras we need 
another construct. A subalgebra of an algebra A is any subset of A closed under the operations 
of A. Every subalgebra of a Boolean algebra A must still satisfy the equations holding of A, 
since any violation would constitute a violation for A itself. Hence, every subalgebra of a 
Boolean algebra is a Boolean algebra. 

A subalgebra of a power set algebra is called a field of sets. Equivalently a field of 
sets is a set of subsets of some set W including the empty set and W and closed under finite 
union and complement with respect to W (and hence also under finite intersection). Birkhoff's 
1935 representation theorem for Boolean algebras states that every Boolean algebra is 
isomorphic to a field of sets [216]. Now Birkhoff's HSP theorem for varieties can be stated 
as, every class of models of the equational theory of a class C of algebras is the 
Homomorphic image of a Subalgebra of a direct Product of algebras of C. Normally all three 
of H, S, and P are needed. The first of these two Birkhoff theorems shows that for the special 
case of the variety of Boolean algebras Homomorphism can be replaced by Isomorphism. 
Birkhoff's HSP theorem for varieties in general therefore becomes Birkhoff's ISP theorem for 
the variety of Boolean algebras. 

It is convenient when talking about a set X of natural numbers to view it as a sequence 
x0,x1,x2,... of bits, with xi = 1 if and only if i ∈ X. This will make it easier to talk about 
subalgebras of the power set algebra 2N, which makes the Boolean algebra of all sequences of 
bits. It also fits well with the columns of a truth table: when a column is read from top to 
bottom it constitutes a sequence of bits, but at the same time it can be viewed as the set of 
those valuations (assignments to variables in the left half of the table) at which the function 
represented by that column evaluates to 1. 
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Appendix 5 

     In Jacob et al. [22] the authors wanted to determine the contribution of sunlit canopy, S. 
damnosum s.l. habitat surface predictor variables and their shading effects. The effect of 
sunlit canopy on the bidirectional reflectance was quantified using the second term in 

equation
  ds

svsi
A
CGKviR

cA
vi

g  
 cos

,
cos

,
,

. This variation depended on the both the 
density and angular distribution of ds  in the equation. Strahler and Jupp [140] assumed that 
each object in a scene could be modelled as a sphere without mutual illumination shading 
between ds  elements. Then the second term was approximated as: 

  CeviCK vR
c

 sec2

1,1
2
1 

. In this expression, the first term was the illuminated 
proportion of the trailing vegetation LULC habitat area based on a single sphere viewed at 
position v  and illuminated at position i . This was weighted by the second term which was 

the proportion of the area of spheres visible from zenith angle v . Since both terms varied 
smoothly between zero and one, this contribution to the riverine habitat hotspot was quite 

flat. In the case of a spheroid, we simply then replaced vi,  with vi , , where 
 cossinsincoscos, vivivi  .  

 
The radiative transfer equation coefficients in the decomposition of the radiation field for 
constructing the georeferenced S.damnosum s.l.riverine larval habiat Boolean model: 

F0 extraterrestrial solar radiance 
F    Fresnel reflectance function 
f  ,  BRDF of soil 
gl    distribution function of the leaf normal orientation 
  , area scattering transfer function of canopy  

  height of canopy in meters 

i 0 extraterrestrial solar net flux incident on the top of atmosphere 
  ,0  unscattered solar radiance 
  ,1  single scattering radiance 
  , multiple scattering radiance 

J   ,  source function of radiative transfer 
  leaf dimension parameter 
  wavelength 
LAD  leaf angle distribution 
LAI  leaf area index 

0

 cosine of solar zenith angle 
  leaf wax refractive index 
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N  total Lumber of layers of the coupled medium split for multiple scattering calculation, 
each of thickness   
  ,  solid angle consisting of cosine of zenith angle  and azimuth angle   
  ,  phase function of atmosphere 
0  solar azimuth angle 

rl leaf reflectance 

R s  ,  bidireccional reflectance factor of soil surface 

R s  reflectance of Lambertian surface 
  optical depth of medium 
  atmospheric optical depth 

e


 aerosol optical depth 
  molecular optical depth 
t  total optical depth of the coupled atmosphere-canopy medium 
lt  leaf transmittance 
 zul  leaf area density 

  single scattering albedo 
 

Next, in order to geospatially characterize the sparsely shaded wavelength, 
RapidEyeTM and obtain stable solutions of within-canopy multiple scattering, we decomposed 
the spectrally extracted Red Edge NDVI biosignature into three parts; unscattered radiance 
  ,0  , single scattering radiance   ,1  , and multiple scattering radiance   ,   ,  

=   ,0   +   ,1   +   ,  in ArcGIS. 

      A simple scheme was then represented by   ,0   which was denoted by 1, and was not 
scattered by the atmosphere, but reflected directly by the within canopy surface features. 
  ,1   represented the various Red Edge, NDVI, canopy, 5m, biosignature radiance values 

either scattered once by the atmosphere, denoted by 2, or once by the within canopy, 

structural, spectral variables which was denoted by 3. The variable   ,  was the most 
complicated component, which included all of other imaged, riverine, larval habitat, 
canopied, operationizable, georeferenced components in the radiation field of the coupled 
medium. 

 Unscattered sunlight radiances   ,0   were then characterized by the following 
radiative transfer equation and corresponding boundary conditions. When T < Ta, the 
radiative transfer model rendered: 
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, where 
bot
a  and 

top
c  were the optical depths at the 

bottom of the atmosphere and the ToA of the habitat canopy, respectively. Here different 
notations from the 5m imager were used to indicate the physical meaning of the canopy 
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boundary conditions. The model provided the upper boundary condition, which meant only 
parallel sunlight illuminated the atmosphere at the top of the riverine larval habitat canopy in 

the direction 0 . When   ,the residuals were: 
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Jointly solving the above equations with these boundary conditions rendered: 
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   The Red Edge NDVI biosignature information was expressed as   ,0

2 u , which 
represented the upwelling sunlight radiance within the georeferenced habitat canopy, and the 
function  , . The extinction coefficients of the canopy endmembers were modified, and 
we then incorporated the extracted within-canopy radiance values including the floating, 
hanging, and surrounding dead vegetation canopy geospectral components employing : 

     ,1, dtGtht
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, where t0 was defined 

as
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. 
      The Red Edge NDVI endmember biosignature model in ArcGIS revealed that for single 
scattering radiances, unscattered sunlight became the scattering source, and the boundary 
conditions. These conditions were then determined based on the fact that no incident single 
scattering radiances originated from above ToA or below the bottom of the canopy. When T 
< Ta occurred in the model, the residuals rendered: 
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Additionally, when T > Ta the decomposition trailing vegetation, S. damnosum s.l. 
larval hábitat model rendered: 
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, where 0i was the incident solar net flux arriving at the top of 

the habitat canopy 

 000 exp  ii

. In the downward direction 0 , the solution was 
easily derived. When T < Ta, the riverine larval habitat Red Edge NDVI endmember 
biosignature decomposition model was solved using: 
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. Then t   the model was solved 
using the equation: 
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, where t1 was defined by the 

equations
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          Gexp,, 11

, which represented the single scattering riverine, 
habitat canopy radiances emerging from the atmosphere without scattering in the riverine, 
trailing vegetation habitat canopy.  
 

In the upward direction (p > 0), the solutions were a little more complicated because 

due to the hotspot effect, which was determined by  
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, and the second integration at Ta < T < Tt in 
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the above equation (see Figure 9). This equation was then explicitly obtained by means of an 
alternative integer and range, which was solved using 
       000

0 exp, 


 


 GiF
. The radiance   ,1   at Ta < T <Tt derived for 

the Red Edge, NDVI, endmember, biosignature material was then numerically evaluated 

without further assumptions. An explicit approximation to   ,1   was then derived and used 
for inversion in the canopy,  LULC, biosignature decomposition model. 
 

     The first term in equation 
  CeviCK vR

c
 sec2

1,1
2
1 

 ignored the problem of mutual 
shading of the geosampled trailing vegetation, sparsely shaded, S. damnosum s.l. riverine 
habitat canopy and the ripple water components. Strahler and Jupp [140] handled this 
problem through multiple integration, in which the mutual shadowing of canopies and other 
associated objects were treated in the same way as the mutual shading of leaves.  However, 
our objective in this research was to derive a simple approximation to describe the effect of 
the S. damnosum s.l. larval habitat based on collections of individual discrete reflectance 
surface values (i.e., Precambrian rock and ripple water components). To carry this out, we 
developed an approach that applied one-stage geometric optics to deal with the spatial 
relationship between the sub-pixel endmember reflectance spectra of the decomposed S. 
damnosum s.l. habitat surface, the ripple water components that were mutually shaded in the 
illumination direction, and the parts mutually shaded in the view direction. We then 
quantified mutual shadowing proportions generated from the S. damnosum s.l. habitat and its 
associated ripple water components. In Li and Strahler [217] and Li [218], simulation and 
mathematics simplified to the one-dimensional case was proved so that for the nadir-viewed 

cone model, mutual shadowing of illumination would not change the ratio  gc KK 1 . In 

this research, this ratio was itself denoted cK , which we used to generate u AAc  for 

determining consistency with gK , where the mutual shadowing in illumination and viewing 

directions was independent AAc  for consistency with gK . 

     We then considered the proportion of the S. damnosum s.l. habitat which was mutually 
shadowed by the Precambrian rock and ripple water components. In the direction of 

illumination, the immature, S. damnosum s.l. riverine habitat had an area of iR  sec2
, and 

the total projected LULC area of the habitat was then calculated to be iR  sec2
, if there 

was no mutual shadowing. Because of mutual shadowing, however, the net projected area 

was iRe   sec2

1 . The difference indicated the total mutual shadowing of the S. damnosum s.l. 
riverine habitat attribute. Thus, the authors in Jacob et al. [22] defined the quantity Mi, the 

mutual shadowing proportion in the illumination direction, as i

R

i R
eM

i











sec
11 2

sec2

. iM , 
which revealed the degree of mutual shadowing in the illumination direction. In other words, 
each spheroid, on average, had a proportion Mi of the imaged S. damnosum s.l. habitat 
surface area that was not sunlit. This part of the habitat was concentrated at the lower part of 
the spheroid. We then generated a boundary drawn on the habitat surface of the spheroid with 
the area comprising Mi located below it. Similarly, we defined Mv as the mutual shadowing 
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proportion of the ripple water components in the view direction as v

R

v R
eM

v











sec
11 2

sec2

. 
The viewing shadows were concentrated at the lower part of the spheroid so we were able to 
define the Mv boundary. The proportion of sunlight the RapidEyeTM sensor captured 
corresponded to the area above both M1 and Mv boundaries, which were then dependent on 
both zenith and azimuth differences between the illumination and view directions. At the 
hotspot, Mi and Mv boundaries overlapped and the RapidEyeTM data revealed no mutual 
shadowing of the S. damnosum s.l. habitat or the ripple water components. When the view 
zenith angle was larger than the illumination zenith angle, Mv was greater than Mi and little to 
no mutually shaded habitat area was visible, based on the azimuth differences between the 
imaged objects. Thus, we were able to capture the essence of the mutual-shading effect of the 
canopy, and the ripple water components.  

     We then quantified the f-Ratio of Nonnadir-Viewed Spheroids. First, we considered a 
single spheroid in the decomposed sub-mixel endmember, trailing vegetation, 
hyperproductive, georeferenced, canopied, sparsely shaded, spectral data. For the spheroidal 
case, it is necessary to show whether the f-Ratio is still independent of density, as in the case 
of the nadir-viewing cones [217, 218]. From the view direction, the spheroid had a projected 

area vv R   sec2
. However, only the portion 

 vi  ,1
2
1

 of the S. damnosum s.l. habitat 
with ripple water components was sunlit. Similarly, the illumination shadow on the ground 

occupied the habitat area iR  sec2
. The compound area of viewed habitat, and ripple water 

components plus illumination shadow projected onto the background was 
   ,,secsec2

vivi OR  . Thus, we defined the f-ratio for the spheroidal and its 
associated trailing vegetation, canopied, sparsely shaded attributes as 
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, where c  was the sunlit area of the S. damnosum s.l. riverine 

habitat, Precambrian rock and ripple water components.  We then defined the corresponding 

ratio g

c

K
Kf



1  for the endmember selection of these RapidEyeTM, sub-mixel emissivities. For 

our purposes, n represented the shadow parameters generated from the decomposed, 5m, S 
damnosum s.l. riverine habitat mixel. If there was no mutual shadowing, we had Ff  . As n 
increased, however, mutual shadowing occurred, and as such, 

   ,,secsec2
vivi OR

g eK  . We then defined the mutual shadowing proportion M  as 







gK
M

1
1

, which was the fraction of total shadowing cast from the ripple water 
components that fell onto the S. damnosum s.l. habitat instead of the background. The sunlit 
and viewed habitat surface features were reduced by hiding either from viewing or from 

illumination. Thus, the f-ratio with mutual shadowing was  
 n
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g
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n
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, 

where 
cA  was the total decrement from cn  to cA  (i.e., the background-projected area of 

viewed sunlit, riverine habitat surface). We expressed 
cA  as three terms: a decrement due 

to mutual shading in the view direction, plus a decrement due to mutual shading in the sun 
direction, and a subtraction of those elements shaded in both directions 
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using  oiivvvA PMPMPn
c

 , where Pv was the conditional probability that the S. 
damnosum s.l. habitat faced the sun given that it was mutually shaded from view. In this 
research Pi was the probability that ripple water habitat surface elements faced the viewer 
given that it was mutually shaded from illumination. Both Pi and Pv were average proportions 
of the habitat areas projected in the view direction. Po, the third term, overlapped part of the 

first two terms, expressed as a fraction of v . Po contained three parts derived from the 
RapidEyeTM-imaged habitat surface elements: ripple water components and the vegetation 
canopy geoclassified LULC structure. This collection contributed to the hotspot, due to the 
spatial correlation of the shadows. Since the probabilities of being hidden in multiple 
directions were not independent, we were able to substitute  oiivvvA PMPMPn

c
  into 
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, which yielded a single expression for 
 

M
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1

1
. We then modeled, Pv, Pi, and Po. We used all illumination or 

viewing shadows incorporating Mi and Mv boundaries respectively. In our model, Pv, Pi, and 
Po were used to visualize the Mv and Mi  boundaries. If viewing and illumination shadows fall 
strictly below Mv and Mi  boundaries, then Pv,, the conditional probability that at surface 
element facing the sun given the mutually shadowed areas will be the ratio of the illuminated 
portion of the projected surface below the Mv boundary [219].  

Correspondingly, in this research, Pi was the conditional probability that the sampled 
S. damnosum s.l. habitat directly faced the viewer given that it was mutually shaded from 
illumination and was the ratio of the viewed portion of the projected habitat area below the 
Mi boundary. Note, that Mi was the proportion of mutually-shaded S. damnsoum s.l. habitat 

surface projected to the direction of illumination, but viiMP   was the area of this fraction of 
the habitat surface with Precambrian rock and ripple water components projected to viewing 
direction. Proper calculation of this portion of the riverine habitat and its associated attributes 
involved some projection change. We used Po as the variable representing the overlap area o, 

which was also represented as a fraction of v .  

    The authors of Jacob et al. [45] then considered the case in the principal plane. For 
simplicity, they assumed that all shadows from the S. damnosum s.l. habitat, and rippled 
water components fell below the boundaries Mv and Mi, which were the traces of planes 
intersecting the spheroid at its center. The angle between the planes of the Mi and the 

illumination boundary was  iM M
i

21cos 1   . The authors defined vM  similarly. At the 

hotspot, the Mi and Mv boundaries coincided when 1 iv PP , MMP vo  , and 1 Ff . 

It was then assumed that the viewing zenith angle increased to iv   . In usual cases when 
mutual shadowing is considered, the Mv boundary is higher than the Mi boundary [23, 24]. In 
the RapidEyeTM sensor’s view, Pv was the ratio of the S. damnosum s.l. habitat’s canopied 

surface area between vM  boundary and the illumination boundary to the whole area under 

the Mv boundary. That is, 
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, while  Pi was one, and Po cancelled the Mi 

term. Then, the equation became 
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. This result 
suggested that when the viewing direction in the principal plane deviated from (θv >θi), the 
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f -ratio will change in the endmember model. When the coverage is very low, the increment 
of θm may be also so small that Mv will be under the Mi boundary. In this case, mutual 
shadowing can be simply ignored as in Strahler and Jupp, [140].  

The authors in Jacob et al. [22] found that when θv moved inward on the principal 

plane but had not reached nadir, the Mi was higher than Mv. Hence, 1vP , vo MP  , 

and
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i

M

viM
iP




cos1
coscos1






. After θv passed the nadir, the Mv  boundary went to the 
opposite side of the spheroid from Mi. In this case, the RapidEyeTM, sub-mixel spectral data 

revealed the horizontal projection of the habitat and its ripple water components at 2  . 
The authors then used Pi just as in Strahler and Jupp, [140], with   equal to  , and Pv was 
the fraction of Mv over the illumination boundary, i.e., 
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      Note, the authors reported that when v  was between the hotspot and nadir, Pv was 
always one, so a discontinuity of Pv appeared at the nadir. This discontinuity arose from the 

assumption that all shadows fell under the vM  boundary. Additionally, in this research, the 
vM  at 0v  was the physical intersection of boundaries between the habitat, and the rippled 

water components, which did not change with viewing geometry, thus, vvMP  was still 

continuous at nadir, and equal to oP . In other words, the formula had a very large viewing 

zenith, so that  0cos   viM v ,   Mn cAc
 . When iM  and vM  were 

independent,   
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 . 

If all the spatial objects are at the same height, the situation will be very close to the 
“uniform height case” – that is, mutual shadows will always fall on the lower part of the 
objects and the object top-viewing effect will be strong [218]. However, when heights are 
distributed over a wide range, the top layer of the canopy will play a more important role in 
determining the BRDF of the canopy than the lower layer [219]. Therefore, when the habitat 
structural heights were quantified by spectral distribution, the BRDF was apparent. The 
BRDF was determined by the size, shape, and height of the trailing vegetation habitat and the 
ripple water components in the top layer. Thus, we restricted ourselves to considering a single 
top layer only, where the range of distribution of height of the sampled S. damnosum s.l. 
riverine habitat and its attributes did not exceed twice the vertical axis of the spheroid. To 
share the weighting between the spatiotemporally sampled, spectral predictor, covariate, 

coefficient estimates we used the equation 

2
12

4
1 






 


b
hh

, if   bhh 412  . When 
  bhh  12 ,   is forced to be zero and it is necessary to redefine the layers (Keshava and 

Mustard 2002). By doing so, both vP  and iP  were calculated as a weighted sum of 
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corresponding terms   21 1 PPP   , where 1P  and 2P  were the spectral probabilities 
associated with the spatial dimensions of the sampled habitat.  

The bidirectional reflectance was modeled as a pure phenomenon that resulted in 
scenes of discrete, three-dimensional objects (i.e., turbid ripple water components) from the 
S. damnosum s.l. riverine habitat being illuminated and viewed from different positions in the 
hemisphere. The resulting scene was broken down into their canopy fractions, specifically 
sunlit and shadowed background, as well as scene brightness. Illumination direction was 
calculated by a linear combination of the canopy fractions and their respective radiance 
estimates. The shape of the patterns of the diffuse rippled water components were the driving 
explanatory spectral predictor variables in the model. These S. damnosum s.l. riverine habitat, 
spectral, sub-pixel emissivities conditioned the mixture of sunlit and shaded objects and 
background data that was observed from multiple viewing directions, thus quantifying all 
directions of illumination. This mixture, in turn, controlled the brightness in the image. 
However, since the use of data for quantitative spectral monitoring requires consistent surface 
reflectance data [23] we corrected the radiance effects from varying sun sensor target 
geometries in the multitemporal, RapidEyeTM datasets described by the BRDF. In this 
research, measuring the spread of the corrected results from the desired equal reflectance line 
provided a measure of the accuracy of our method. After correction, the root mean square 
reflectance errors were approximately 0.01 in the visible and 0.02 in the near-infrared. 

       An expression for additional azimuthual variation was also derived from the geometric-
optical model. This azimuthual variation differed fundamentally in radiance for each layer of 
the S. damnosum s.l. riverine habitat canopy. It was observed that all non-zero polar angles 
were most evident in the canopy when vertical and nearly opaque components of the 
S.damnosum s.l. habitat and its neighboring Precambrain rock and ripple water components 
were illuminated and viewed along polar sun angles. For the variation of the directional 
reflectance of the multi-scattered diffuse riverine canopy cover, azimuthual view angles and 
shade-related parameters were quantified using the illuminated area of the imaged habitat 
(i.e., areas affected by the sun at large angles from the zenith). Our results also indicated that 
the cause of the azimuthual variation could be traced to solar flux illumination of the 
vertically-oriented Precambrian rock and rippled water components, as well as the variation 
of reflectance moderated by azimutually isotropic sources of flux from sky light and the 
riverine larval habitat canopy reflectance values. Spectral unmixing yielded abundance 
estimates for each endmember together summing up to the 100% reflectance measured in the 
image. A scattergram representing the endmember reference signature of S. damnosum s.l. 
habitat ripple water pixel reflectance values was then generated. 
 

Appendix 6 

The Laplace transform is an integral transform, perhaps second only to the Fourier 
transform in its utility in solving physical problems.  general integral transform is defined 

by  where  is called the integral kernel of the transformhe 

function  in an integral or integral transform  Whittaker and 
Robinson (1967, p. 376) use the term nucleus for kernel. he Laplace transform satisfied a 
number of useful properties. Consider exponentiation. 
If  for  (i.e.,  is the Laplace transform of ), 
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then  for . This follows 

from = = = The Laplace transform also 
has nice properties when applied to integrals of functions. If  is piecewise 

continuous and , then  It is particularly useful in 
solving linear ordinary differential equations such as those arising in the analysis of 
electronic circuits. The (unilateral) Laplace transform  (not to be confused with the Lie 

derivative, also commonly denoted ) is defined by  where  is 
defined for  [57]. The unilateral Laplace transform is almost always what is meant by 
"the" Laplace transform, although a bilateral Laplace transform is sometimes also defined as 

 [220]. The unilateral Laplace transform  is 
implemented in the Wolfram Language as LaplaceTransform [f[t], t, s]. 

 

The inverse Laplace transform is known as the Bromwich integral, sometimes known 
as the Fourier-Mellin integral (see also the related Duhamel's convolution principle). A table 
of several important one-sided Laplace transforms is given below: 
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In the above table, is the zeroth-order Bessel function of the first kind,  is the 
delta function, and  is the heaviside step function. The Laplace transform has many 
important properties. The Laplace transform existence theorem states that, if  is piecewise 
continuous on every finite interval in , satisfying , for all , then 

 exists for all . The Laplace transform is also unique, in the sense that, given 
two functions  and  with the same transform so that  

then Lerch's theorem guarantees that the integral  vanishes for all  for a null 
function defined by  

The Laplace transform is linear since 

= =  
The Laplace transform of a convolution is given by . Now 
consider differentiation. Let  be continuously differentiable  times i . 
If , then  This can be 
proved by integration by parts, 

= = =

=  

Continuing for higher-order derivatives then gives 
This property can be used to transform differential 

equations into algebraic equations, a procedure known as the Heaviside calculus, which can 
then be inverse transformed to obtain the solution. For example, applying the Laplace 
transform to the equation gives 

 which can be rearranged to 

 If this equation can be inverse Laplace transformed, then 
the original differential equation is solved.  
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In general, non-homogeneous differential equation is given by 

 

and the homogeneous equation is ,  Now attempt to 
convert the equation from  to one with constant coefficients 

 by using the standard transformation for linear second-order ordinary 
differential equations. Comparing (3) and (5), the functions and  are 

and  Let  and define 

= = =  Then  is given by 

= = = . This is a constant. Therefore, 
the equation becomes a second-order ordinary differential equation with constant coefficients 

 Define = =  and 

= =  and  with  

The solutions are  In terms of the original 

variable ,  Zwillinger [221 p. 120] 
gives two other types of equations known as Euler differential equations, 

[222, p. 201] and  the latter of which can be 
solved in terms of Bessel functions. Function  defined by the recurrence relations 

 and  The Bessel functions are more frequently 

defined as solutions to the differential equation  There are two 
classes of solution, called the Bessel function of the first kind and Bessel function of the 
second kind . 

The Bessel functions of the first kind  are defined as the solutions to the Bessel 

differential equation , which are nonsingular at the origin. They 
are sometimes also called cylinder functions or cylindrical harmonics. The above plot shows 

 for , 1, 2, ..., 5. The notation  was first used by Hansen (1843) and subsequently 
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by Schlömilch (1857) to denote what is now written  [223, p. 14). However, Hansen's 

definition of the function itself in terms of the generating function is the 
same as the modern one [223, p. 14]. Bessel used the notation  to denote what is now called 
the Bessel function of the first kind (Cajori 1993, vol. 2, p. 279). The Bessel function  

can also be defined by the contour integral  where the contour 
encloses the origin and is traversed in a counterclockwise direction [224, p. 416]. The Bessel 
function of the first kind is implemented in the Wolfram Language as Bessel J[nu, z]. To 
solve the differential equation, apply Frobenius method using a series solution of the 

form  

If is an ordinary point of the ordinary differential equation, expand  in a Taylor 
series about . Commonly, the expansion point can be taken as , resulting in the 

Maclaurin series  Plug  back into the ODE and group the coefficients by power. 
Now, obtain a recurrence relation for the th term, and write the series expansion in terms of 
the s. Expansions for the first few derivatives are  

= , = ,= , = = If  is 
a regular singular point of the ordinary differential equation,  
solutions may be found by the Frobenius method or by expansion in a Laurent series. In the 

Frobenius method, assume a solution of the form so that 

= = , , =  

Now, plug  back into the ODE and group the coefficients by power to obtain a 
recursion formula for the th term, and then write the series expansion in terms of the s. 
Equating the  term to 0 will produce the so-called indicial equation, which will give the 
allowed values of  in the series expansion. As an example, consider the Bessel differential 

equation Plugging (◇) into (◇) yields 

The indicial 
equation, obtained by setting , is then  Since  is 
defined as the first nonzero term, , so . For illustration purposes, ignore 

 and consider only the case  (avoiding the special case ), then equation 
(14) requires that , so  and (so) and  for, 

3, ..., so  for . Plugging back in to (◇), rearranging, and simplifying 
then gives the series solution that defined the Bessel function of the first kind , which is 
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the nonsingular solution to (◇). (Considering the case proceeds analogously and 
results in the solution .)  

Fuchs's theorem guarantees that at least one power series solution will be obtained 
when applying the Frobenius method if the expansion point is an ordinary, or regular, 
singular point. For a regular singular point, a Laurent series expansion can also be used. 
Expand in a Laurent series, letting  Plug  
back into the ODE and group the coefficients by power. Now, obtain a recurrence formula for 
the th term, and write the Taylor series in terms of the s. Plugging into (1) yields 

 The indicial 
equation, obtained by setting , is  Since  is defined as 
the first nonzero term, , so . Now, if , 

 First, look at the special case , then 

(11) becomes  so  Now let 

, where , 2, .... = =  

which, using the identity , gives  Similarly, letting , 

 which, using the identity 

, gives  

Plugging back into (◇) with gives 

y= = = =

=  

The Bessel functions of order  are therefore defined as  =  and 

 =  so the general solution for  is  Now 
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consider a general . Equation (◇) requires  

for , 3, ..., so = , = for , 3, .... Let , where , 2, ..., 

then = =  where  is the function of  
and  obtained by iterating the recursion relationship down to . Now let , where , 
2, ..., so 

= = =  

Plugging back into (◇), y= , y 

=

=  Now define 

 where the factorials can be generalized to gamma functions 
for nonintegral . The above equation then becomes  Returning to 

equation (◇) and examining the case ,  
However, the sign of   is arbitrary, so the solutions must be the same for  and . We are 

therefore free to replace  with , so  and 
we obtain the same solutions as before, but with  replaced by . 

 

We can relate  and  (when  is an integer) by writing 

Now let . Then 

= =  

But for , so the denominator is infinite, and the terms on the left are 

zero. We therefore have = =  
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Note that the Bessel differential equation is second-order, so there must be two 
linearly independent solutions. We have found both only for . For a general 
nonintegral order, the independent solutions are  and . When  is an integer, the general 
(real) solution is of the form where  is a Bessel function of the first 
kind, (a.k.a. ) is the Bessel function of the second kind (a.k.a. Neumann function or 
Weber function), and and are constants. Complex solutions are given by the Hankel 
functions (a.k.a. Bessel functions of the third kind). The Bessel functions are orthogonal in 

 according to where  is the th 
zero of  and  is the Kronecker delta [24, p. 592] except when  is a negative 

integer,  where  is the gamma function and  is 
a Whittaker function.  

In terms of a confluent hypergeometric function of the first kind, the Bessel function 

is written  A derivative identity for expressing higher order 

Bessel functions in terms of  is  where  is a Chebyshev 
polynomial of the first kind. Asymptotic forms for the Bessel functions are 

for , and for  (correcting 
the condition of Abramowitz and Stegun [57, p. 364]). A derivative identity is 

 An integral identity is  Some sum identities 

are , which follows from the generating function (◇) with , 

[57, 

p. 363], for  [57, p. 361], 

[57, p. 361], and the Jacobi-Anger expansion 

 which can also be written  

The Bessel function addition theorem states  Various 

integrals can be expressed in terms of Bessel functions  which 

is Bessel's first integral, =  = , for 
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, for for 

. The Bessel functions are normalized so that  for positive integral 

(and real) . Integrals involving  include  and  
Ratios of Bessel functions of the first kind have continued fraction 

 [225, p. 349]. The Laplace transform satisfied a number of 
useful properties. Consider exponentiation. If for  (i.e.,  is the 
Laplace transform of ), then  for . This follows from  = 

 =  =  The Laplace transform also has nice 
properties when applied to integrals of functions. If  is piecewise continuous and 

, then  

Appendix 7 

Generally speaking, a Green's function is an integral kernel that can be used to solve 
differential equations from a large number of families, including simpler examples such as 
ordinary differential equations wit initial or boundary value conditions, as well as more 
difficult examples such as inhomogeneous partial differential equations (PDE) with boundary 
conditions.  

A second order, linear nonhomogeneous differential equation is 
 where g(t) is a non-zero function. Note 

that we did not employ constant coefficients in the larval habitat eco-epidemiological, risk 
model here because nothing that is done in this section requires it. Also, a coefficient of 1 is 
used on the second derivative just to make some of the work a little easier to write down. It is 
not required to be a 1. Thus the final model would be 

. 

Important for a number of reasons, Green's functions allow for visual interpretations 
of the actions associated to a source of force or to a charge concentrated at a point [226], thus 
making them particularly useful in areas of applied mathematics. In particular, Green's 
function methods are widely used in physics and engineering. More precisely, given a linear 
differential operator acting on the collection of distributions over a subset  of some 
Euclidean space , a Green's function  at the point  corresponding to  is any 
solution of , where denotes the delta function. The motivation for defining 
such a function is widespread, but by multiplying the above identity by a function , and 

integrating with respect to  yields  The right side 
reduces to f(x) due to properties of the delta function, and because l is a linearizable operator 
acting only on x and on s. 
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In the forecasting, S. damnosum s.l. riverine larval habitat, eco-epidemiological, risk 
model, the right-hand side reduces merely to , due to properties of the delta function, and 
because  is a linear operator acting only on , and not on , the left-hand side was rewritten 

as This reduction was particularly useful for solving  in 
differential equations of the form  where the arithmetic confirmed that 

, and whereby it followed that  has the specific integral form 

 The intuitive physical interpretation of a Green's function was 
associated to our S. damnosum s.l. differential equation. In particular, these functions 
revealed a length  suspended between two walls, held in place by an identical horizontal 
force applied on each of its ends, and a lateral load placed at some interior point  on a line of 
integers.  

Let  be the point corresponding to  on the deflected tangent, and suppose the 
downward force  is rope. Corresponding to this physical system would then be the 
differential equation  for  with , a system whose 
simplicity allows both its solution , and its Green's function , to which we wrote 

explicitly , and respectively. The 
displaced rope then had the piecewise linear format given by  above, thus 
confirming the claim that the Green's function  associated to this system represents the 
action of the horizontal rope corresponding to the application of a force .  

A Green's function taking a pair of arguments  is sometimes referred to as a two-
point Green's function [25]. This is in contrast to multi-point Green's functions which are of 
particular importance in the area of many-body theory. As an elementary example of a two-
point function we considered the problem of determining the potential  generated by a 
interpolatable distribution whose density was , whereby applications of Poisson's 
equation had the potential at  produced by each element , which yielded a solution 

 which held over the entire riverine region, where . Because 
the right-hand side can be viewed as an integral operator converting  into , we re-wrote this 
solution in terms of a Green's function , having the form 

 whereby the solution can be rewritten: . 
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The above figure shows the Green's function associated to the solution of the -  
equation discussed above where  and , respectively , is plotted on the -, 
respectively -, axis. A somewhat comprehensive list of Green's functions corresponding to 
various differential equations was then generated. 

Due to the multitude of literature written on Green's functions, several different 
notations and definitions may emerge, some of which may be topically different than above, 
but which in general do not affect the important properties of our results. In our model output 
we denoted the empirically regressed S. damnosum s.l. variables  and  in terms of vectors  
and . 

Appendix 8 
 

The Digma function is a special function which is given by the logarithmic derivative 
of the gamma function (or, depending on the definition, the logarithmic derivative of the 
factorial). Because of this ambiguity, two different notations are sometimes (but not always) 

used, with  defined as the logarithmic derivative of the gamma 

function , and  defined as the logarithmic derivative of the factorial 
function. The two are connected by the relationship  The th derivative of  
is called the polygamma function, denoted . The notation  is therefore 
frequently used for the digamma function itself, and Erdélyi et al. (1981) use the notation 

for . The digamma function  is returned by the function PolyGamma [z] or 
PolyGamma [0, z] in the Wolfram Language, and typeset using the notation . The 
digamma function arises in simple sums such as 

= =  where  is a Lerch transcendent. 
 

    The Lerch transcendent is generalization of the Hurwitz zeta function and 
polylogarithm function. Many sums of reciprocal powers can be expressed in terms of it. It is 
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classically defined by  for  and , , .... It is implemented in 
this form as HurwitzLerchPhi[z, s, a] in the Wolfram Language. The slightly different form,  

, sometimes also denoted , for (or and ) 
and , , , ..., is implemented in the Wolfram Language as LerchPhi[z, s, a].  Note that 
the two are identical only for .  
A series formula for  valid on a larger domain in the complex -plane is given by 

 which holds for all complex  and complex  
with  [230]. The Lerch transcendent can be used to express the Dirichlet beta 

function =  =  A special case is given by 

 where  is the polylogarithm. Special cases giving simple constants 

include = ,  = , =  and 

 = , where  is Catalan's constant,  is Apéry's constant, and  is the 
Glaisher-Kinkelin constant. This gives the integrals of the Fermi-Dirac distribution 

 =  =  where  is the gamma 

function and  is the polylogarithm and Bose-Einstein distribution  
=  =  

Double integrals involving the Lerch transcendent include 

=

where  is the gamma function. 
These formulas lead to a variety of beautiful special cases of unit square integrals [230]. 

Special cases are given by = , = ,  = , and 

=  
Gauss's digamma theorem states that 

 
An asymptotic series for the digamma function is given by  

=  =  = 

=  =  where  is the Euler-
Mascheroni constant and  are Bernoulli numbers. The digamma function satisfies 
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 For integer , where  is the 
Euler-Mascheroni constant and  is a harmonic number. Other identities include 

,   
,  Special values are  = , and 

=  At integer values,  =  =  and at half-integral values,  

=  =  where  is a harmonic number. It is given by the unit 

square integral  for  [230]. Plugging in 
 gives a special case  involving the Euler-Mascheroni constant. The series for  is 

given by  A logarithmic series is given by 

. A surprising identity that arises from the FoxTrot series 
is given by 

 

Special cases are given by = ,  =  ,  = 

,  =  Gauss's digamma theorem states that 

. An asymptotic series for the 
digamma function is , given by 

 =  = 

 =  = where  is the Euler-
Mascheroni constant and  are Bernoulli numbers.  

The digamma function satisfies  For integer , 

 where  is the Euler-Mascheroni constant and  is a harmonic 

number. Other identities include ,  

 Special values are  =  
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=  =  At integer values,  =  =  (Derbyshire 2004, p. 58), and 

at half-integral values, =  =  where  is a 
harmonic number. It is given by the unit square integral 

for  [230]. Plugging in  gives a 
special case involving the Euler-Mascheroni constant. The series for  is given by 

 A logarithmic series is given by 

[230]. A surprising identity that arises from the FoxTrot 
series is given by  
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